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Abstract—As the initial stage of a supervised classification, the 
quality of training has a significant effect on the entire 
classification process and its accuracy. In hyperspectral data 
analysis, a judicious selection of training samples can be 
tremendously difficult due to the presence of subpixel targets and 
mixed pixels, in particular, when no prior knowledge about the 
data is available. For instance, the Multi-Layer Perceptron 
(MLP) neural network can provide very accurate nonlinear 
estimations of fractional abundances, provided that the training 
set contains all possible mixture conditions. However, the 
requirement of large volumes of training data is a serious 
limitation in remote sensing because, even if classes concurring to 
a per-pixel cover class mixture are known, proportions of these 
classes are very difficult to be estimated a priori. This paper 
investigates, explores and further proposes solutions to resolve 
the issues above. Specifically, we develop a nonlinear neural 
network-based mixture model, coupled with unsupervised 
algorithms for automated generation of semi-labeled samples that 
can be effectively used for mixed pixel classification. These 
unsupervised algorithms, intended for situations where ancilliary 
information is difficult to be collected prior to data analysis, rely 
on the principle that patterns that lie close to the location of 
decision boundaries in feature space are more informative than 
patterns drawn from the class cores. Computer simulations and 
real experiments are conducted for performance analysis of 
nonlinear unmixing techniques based on training samples. 

Keywords- Hyperspectral imaging, Nonlinear mixture analysis, 
Training samples, Semi-labeled samples, Multi-layer perceptron. 

I.  INTRODUCTION 
Most of the pixels collected by hyperspectral imagers 

contain the resultant mixed spectrum from the reflected surface 
radiation of subpixel constituent materials within the pixel. 
Mixed pixels exist for several reasons. First, if the spatial 
resolution of the sensor is not high enough to separate different 
pure signature materials at a macroscopic level (endmembers), 
these can jointly occupy a single pixel, and the resulting 
spectral measurement is a composite of the individual spectra. 
Second, mixed pixels can also result when distinct materials are 
combined into a homogeneous mixture. This circumstance also 
occurs independent of the spatial resolution of the sensor. 

Spectral mixture analysis involves the separation of a pixel 
spectrum into its component endmember spectra and the 

estimation of the abundance value for each endmember in the 
pixel. The use of a linear spectral mixture model assumes that 
the collected spectra are linearly mixed. The definition of a 
linear (macroscopic) mixture is that endmember substances are 
sitting side-by-side within the field of view of the imager. 
Although the linear model has several advantages including 
ease of implementation and flexibility in different applications, 
there are many naturally occurring situations where a nonlinear 
mixture model may better describe the resultant mixed spectra 
for certain endmember distributions. In particular, nonlinear 
mixtures occur in situations where endmember components are 
randomly distributed throughout the field of view of the 
instrument.  

In recent years, neural networks have demonstrated great 
potential as a method to decompose mixed pixels due to the 
inherent capacity of neural architectures to approximate 
nonlinear functions [1]. Although many types of neural 
networks exist, for decomposition of mixed pixels in terms of 
nonlinear relationships mostly feed-forward networks such as 
the multi-layer perceptron (MLP) have been used. Despite 
some encouraging results, exploitation of neural networks in 
mixed pixel classification and, specifically, in pixel unmixing, 
remains difficult. This is because the requirement of large and 
representative training sets is a serious limitation in remote 
sensing due to extremely difficult training data collection, in 
particular, when the information to be collected has to do with 
endmember fractional abundances. Therefore, a great challenge 
in neural network-based analysis of remotely sensed imagery is 
to find an adequate pool of training samples without prior 
knowledge for the network so that that these unsupervised 
training samples can accurately describe the data. This goal is 
particularly important in spectral mixture analysis applications. 
However, a judicious selection of training data can be 
tremendously difficult in hyperspectral image data, due to the 
presence of mixed pixels and subpixel targets.  

While conventional approaches tend to select training 
samples located in exemplar (i.e., pure) regions of each class, 
recent studies in the literature demonstrate that patterns that lie 
away from the class core, and near to the decision boundaries 
commonly used in conventional, pure pixel classification, are 
more informative [2]. This is particularly so in the context of 
mixed pixel classification problems, where such patterns in the 
boundary correspond to most highly mixed pixels in the data. 
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This paper offers a new look at the problem of training 
sample generation for neural network-based abundance 
estimation in hyperspectral imagery, and provides an 
unsupervised algorithm to generate semi-labeled samples [3], 
i.e., samples whose fractional abundances are estimated during 
the analysis process, so that they can be effectively used as 
training samples for neural network-based mixed pixel 
classification. The algorithm is intended for situations in which 
ground-truth fractional abundances are difficult to collect prior 
to data analysis, and is based on soft classifiers that rely on the 
principle that patterns that lie close to the location of decision 
boundaries in feature space can lead to significantly more 
accurate abundance estimation accuracies than patterns drawn 
from the class cores [4]. 

The paper is organized as follows. Section II describes the 
proposed neural network architecture for nonlinear spectral 
unmixing. Section III develops an unsupervised semi-labeled 
sample generation algorithm. Section 4 conducts experimental 
results using  computer simulated and real hyperspectral data 
sets dominated by nonlinear mixing effects. Section 5 
concludes with some remarks and hints at plausible future 
research. 

II. NEURAL NETWORK ARCHITECTURE 
The neural network classifier considered in experiments is 

based on MLP, a standard multi-layer architecture that can 
successfully approximate virtually any function when trained 
correctly. This implies that training is the most important step 
in MLP-based classification [1]. The architecture of the MLP 
used in this work comprises a number of identical processing 
units organized in layers, with those units on one layer 
connected to those on the next layer by means of weighted 
connections. The topology of the fully connected three-layer 
MLP used in this work is shown in Fig. 1, where the neuron 
count at the input layer, p, equals the number of endmember 
classes (estimated by a fully constrained linear mixture model), 
where a vector of linear endmember abundances for each 
spectral signature r, denoted by ( ) ( ) ( ) ( )( )rrrrγ pγγγ ,,, 21 ⋅⋅⋅= , is used 
as the input pattern. On other hand, the output layer has the 
same number of neurons as the input layer. Finally, a specific 
problem domain dictates how to select the number of hidden 
layers and the number of neurons in those layers. Since this 
paper is devoted to investigation of training methods, finding 
optimal network parameters for the MLP is beyond its scope. 
Based on previous results in the literature and our own 
experimentation, we set the number of hidden neurons 
empirically to p×2 , i.e., twice the number of input neurons. 

The usage of the MLP neural architecture in Fig. 1 involves 
two phases: training and classification. MLP models are 
typically trained using the error back-propagation algorithm 
[5], a supervised learning-from-data technique of training 
where a set of labeled input-output training vector pairs are 
presented to the network, which computes an error between the 
output vector, that can be seen as an estimate of the endmember 
abundance fractions of the training vector, and the vector of 
desired values for each output unit. This error is propagated 
successively back through the network and the matrix of 
weights is progressively updated until the network 

approximates the desired output closely enough. The main 
problem of this approach is that the accuracy of classification 
largely depends on the quality of training, which requires high-
quality fractional estimates that are very difficult to collect on 
the ground. In the following section, we develop a semi-labeled 
sample generation algorithm, which estimates such fractional 
covers (based on soft classifiers) by searching for the most 
informative patterns in feature space.  
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Figure 1.  Architecture of multi-layer perceptron (MLP) neural network used 
for mixed pixel classification. 

III. SEMI-LABELED SAMPLE GENERATION ALGORITHM 
Our main goal in this section is to provide an algorithm able 

to estimate fractional abundances of the most informative 
spectral signatures. These signatures are likely to be close to 
the vicinity of the hyperplanes that can separate the classes in 
conventional classification procedures [4]. The separation of a 
training set into border and non-border patterns in the context 
of a pure pixel classification problem was first explored by 
Foody [1], who expressed ‘borderness’ as the difference 
between the two smallest distances measured for each training 
pattern. Here, membership is indicated by the Mahalanobis 
distance, which provides a measure of the typicality of a 
pattern to a certain class. In this section, we develop a novel 
automatic algorithm that is based on the concepts above, but 
adapted to a mixed pixel classification scenario. The algorithm 
is based on the following sequential steps: 

1. Extract a set of spectral endmembers { }p
1ii =e  from the 

data using an automated extraction algorithm [5], and 
label those endmembers as class core patterns. 

2. Apply a spectral screening algorithm to identify the 
sample spectral signatures within a small spectral angle 
θ  from any of the p core classes above, denoted from 
now on as { }q

1jj =
r , with pq ≥ . 

3. Assign each signature of the set { }q
1jj =

r  to one of the 

available pure classes { }p
1ii =e , by computing 

( ) ( ){ }ij
i

i
j ,SAMmin arg err =  for all q , ,1j ⋅⋅⋅= , where 

SAM is the spectral angle mapper [5], and the notation 
of ( )i

jr  indicates that jr  would be assigned to the class 

ie  if the SAM between jr  and ie  is the minimum.  
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4. Let ( ) { }q
1jj

i
kj, =

⊆ rr  be the k-th sample associated with 

class ie , and let ( )i
kj,r  be the cardinality of ( ){ }i

kj,r , which 

is the set of the samples in { }q
1jj =

r  associated with ie . 

5. For each sample signature ls , estimate its fractional 
abundances by computing the Mahalanobis distance to 
each ie  as ( ) ( ) ( )il

-1
i

T
ilil ,DM µsKµses −−= , where 

iK  is the sample covariance matrix of the class given 
by ie , and iµ  is the mean for that class.  

6. Compute a borderness score for each sample ls  as the 
difference between the two smallest values of 

( )il ,DM es , with p , ,1j ⋅⋅⋅= . 

7. Select a set of t  border samples, denoted by 
( ){ }t 1l
border

l =s , with the lowest borderness score, and use 
their estimated fractional abundances in step 5 to train 
the proposed MLP-based neural network classifier. 

The following section provides an experimental assessment 
of the proposed approach in spectral mixture analysis 
applications using both computer simulations and real data 
experiments. 

IV. EXPERIMENTAL RESULTS 

A. Computer simulations 
One of the major problems involved in analyzing the 

quality of fractional abundance estimation methods in remotely 
sensed imagery is the fact that ground-truth information about 
the real abundances of materials at sub-pixel levels is very 
difficult (if not downright impossible) to obtain in real 
scenarios. In order to avoid this shortcoming, simulation of 
hyperspectral imagery has been suggested as a simple and 
intuitive way to perform a preliminary evaluation of analysis 
techniques. The primary reason for the use of simulated 
imagery as a complement to real data analysis is that all details 
of the simulated images are known. These details can be 
efficiently investigated because they can be manipulated 
individually and precisely. In this section, we use simulated 
data based on real spectra collected by the AVIRIS imaging 
spectrometer. Two AVIRIS imaging spectrometer datasets of 
the Jasper Ridge Biological Preserve (JRBP) in California have 
been selected for experiments. The datasets, acquired on April 
1998, consist of 512x614 pixels and 224 spectral bands, with a 
nominal ground resolution of 20 meters and spectral resolution 
of 10 nm (available online: http://aviris.jpl.nasa.gov). In a 
previous study of surface materials over JRBP, image 
endmembers were derived from the scenes above based on 
extensive ground knowledge. Fig. 2 plots spectral signatures 
associated with two of the main constituent materials at JRBP. 
These endmember signatures, denoted as 1e  (soil) and 2e  
(evergreen forest) will be used to simulate nonlinear mixtures 
using a simple nonlinear function, the logarithmic function. 
Simulation experiments will be used as a baseline to interpret 
results with real data, described in the following subsection. 
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Figure 2.  Pure spectral signatures of soil and evergreen forest obtained from 

an AVIRIS hyperspectral scene collected over Jasper Ridge, California. 

Using the spectral signatures in Fig. 2, we have created a 
simulated image with nonlinear mixtures of 1e  and 2e  using a 
simple logarithmic function. The logarithmic function is useful 
to simulate nonlinear effects due to atmospheric absorption 
phenomena and other sources of non-linearity, although the 
exploration of further nonlinear functions in computer 
simulations is a highly desirable topic for future research work. 
The resulting 90x90-pixel scene consists of nine vertical 
regions 91,..., RR  of ten pixels width, containing nonlinear 
mixtures where the abundances of  1e  and 2e  were first 
established linearly using the proportions in Table I, and then 
processed by a logarithmic function by ( ) ( )y,xlogy,x jj α=c , 
where ( )y,xjα  is the initial (linear) abundance and ( )y,xjc  is 
the nonlinear abundance of je .  

TABLE I.  ABUNDANCE ASSIGNMENT FOR REGIONS IN A SIMULATED 
SCENE WITH SIMPLE LOGARITHMIC NONLINEAR MIXTURES 

Region 1R 2R  3R 4R  5R  6R  7R  8R  9R  
( )y,x1α 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

( )y,x2α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
 

It should be noted that all the pixels in the simulated scene 
above are mixed in different proportions, with no pure 
instances of any material. Our main reason to avoid including 
completely pure spectral signatures in the simulated data is that 
this is a common situation in hyperspectral analysis, where no 
completely pure pixels may be present in the scene due to 
available spatial resolution and mixing phenomena. Random 
noise was added to the scene above to simulate contributions 
from ambient (clutter) and instrumental sources. White 
gaussian noise was created by using numbers with a standard 
normal distribution obtained from a pseudorandom number 
generator and added to each pixel. For the simulations, we 
consider the SNR for each band as the ratio of the 50% signal 
level to the standard deviation of the noise. 

Table II shows an experimental study of the accuracy of 
linear spectral unmixing (LMM) and the proposed MLP-based 
approach in fractional abundance estimation using the scene 
with simulated nonlinear mixtures described above. Two 
different sets were used for the training of the network. The 
first one, T1, is composed of 27 manually selected spectral 
signatures that represent every possible mixture case (3 pixels 
per region) in the data set. The second one, T2, uses only 4 
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intelligently selected training samples by the proposed 
algorithm in section III. In both cases, true fractional 
abundances (known after the controlled simulation procedure) 
and Mahalanobis distance-based estimations were used to train 
the network. The former case is therefore based on a learning 
procedure based on training samples, while the latter does not 
consider ground-truth and relies entirely on semi-labeled 
samples. 

TABLE II.  RMSE ERROR (PERCENTAGE) IN ABUNDANCE ESTIMATION 
FOR SIMULATED NONLINEAR MIXTURES USING TRAINING AND SEMI-

LABELED SAMPLES 

Training samples Semi-labeled samplesEndmember 
material LMM MLP-T1 MLP-T2 MLP-T1 MLP-T2 

Soil 11.05% 1.58% 1.69% 1.61% 1.71% 
Forest 12.58% 1.79% 1.85% 1.82% 1.87% 

 

From results in Table II, we can conclude that the training 
samples selected by the proposed unsupervised algorithm (T2) 
in section III are the most informative and useful in terms of 
decreasing the overall RMSE. Specifically, only 4 training 
samples are required to obtain RMSE scores below 2%. It 
should be noted that, in order to obtain similar scores using 
manual selection, at least 15 manually selected samples (T1) 
had to be used. In addition, the scores associated with semi-
labeled samples are always very similar to those found using 
training samples, a fact that seems to indicate that the true 
fractional abundance proportions were successfully estimated 
by the proposed Mahalanobis distance-based method. Although 
the above results are encouraging, further experiments with real 
data sets are required. 

B. Real Data Experiments 
In this section, real spectra collected from nonlinear 

mixtures will be analyzed. These data, provided by Prof. John 
Mustard at Brown University, consisted of a set of spectral 
signatures collected using the RELAB spectrometer (a high-
resolution, bi-directional spectrometer at Brown University). 
The measurement precision of the RELAB spectrometer is 
better than 0.25%, which makes it an ideal candidate to 
evaluate fractional abundance estimation accuracy. The data 
included spectra from individual endmembers such as Olivine, 
Enstatite and Magnetite, where two types of mixtures 
(Olivine/Enstatite and Olivine/Magnetite were considered in 
experiments). Table III shows the known abundances for each 
of the endmembers above in the available mixtures. 

TABLE III.  NONLINEAR MIXED SIGNATURES IN MUSTARD DATA 

Olivine/Enstatite Olivine/Magnetite 
Olivine Enstatite Olivine Magnetite 

0.90 0.10 0.95 0.05 
0.75 0.25 0.90 0.10 
0.50 0.50 0.75 0.25 
0.25 0.75 0.50 0.50 
0.10 0.90 0.25 0.75 

 

Using the ten mixed spectra in Table III, we created a 
synthetic scene made up of 500x500 pixels, where the mixed 
spectra above were randomly distributed throughout the scene 
using approximately the same number of pixels for each 

mixture. Table IV shows the abundance estimation results 
using the same configuration addressed in computer 
simulations, i.e., linear mixture analysis (LMM) and MLP-
based abundance estimation using training sets T1 (made up of 
10 manually selected pixels representing all mixture cases) and 
T2 (made up of only 3 intelligently selected pixels using the 
algorithm in section III). As can be seen in Table IV, while 
LMM could not capture mixture variability in the data, all MLP 
cases produced better estimation results. In particular, when the 
MLP was trained with only 3 semi-labeled training samples, it 
produced almost identical results than those found after training 
MLP with all mixture cases and using ground-truth fractions. 
The above results seem to indicate that intelligent incorporation 
of semi-labeled samples into the classification procedure 
enables an appropriate representation of mixed classes, as well 
as a meaningful evaluation of mixed pixel classification 
accuracy in terms of endmember fractional abundances. 

TABLE IV.  RMSE ERROR (PERCENTAGE) IN ABUNDANCE ESTIMATION 
FOR REAL NONLINEAR MIXTURES USING TRAINING AND SEMI-LABELED 

SAMPLES 

Training samples Semi-labeled samplesEndmember 
material LMM MLP-T1 MLP-T2 MLP-T1 MLP-T2 
Olivine 11.21% 7.45% 7.89% 8.41% 8.16% 

Enstatite 12.70% 8.12% 8.23% 7.99% 8.29% 
Magnetite 11.92% 7.98% 8.14% 7.95% 8.92% 

 

V. CONCLUSIONS 
Finding training samples without prior knowledge is a very 

challenging issue in hyperspectral data exploitation. The high 
spectral resolution provided by modern hyperspectral sensors 
allows uncovering many weak, subpixel targets that cannot be 
identified a priori. Also, the complexity of intra-pixel mixing 
phenomena indicates that the most highly mixed pixels may be 
the most informative ones and, therefore, the best candidates to 
be selected as training samples for supervised classification. 
The incorporation of mixed pixels as training samples does, 
however, require detailed ground data on abundance fractions 
for the training sites. In this paper, we explored an alternative 
solution, based on the use of intelligent algorithms aimed at 
generating semi-labeled samples, i.e., samples whose fractional 
abundances are estimated during the analysis process. 
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