
John von Neumann Institute for Computing

Parallel Endmember Extraction Techniques
Applied to a Self-Organizing Neural Network for

Hyperspectral Image Classification

D. Valencia, A. Plaza, R.M. Pérez, M.C. Cantero,
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1. abstract

Advances in remote sensing technology have recently led to the development of hyperspectral
sensor instruments, capable of collecting hundreds of images for the same area on the surface of the
Earth at different wavelengths in the electromagnetic spectrum. Such images, which can be consid-
ered spatially and spectrally continuous, are characterized by their extremely large dimensionality.
The identification of pure spectral constituents (calledendmembers) in those images is considered
to be a crucial task in hyperspectral data exploitation. Endmember extraction algorithms are compu-
tationally very expensive, due to the fact that they are based on complex mathematical operations.
However, both the intrinsic properties of the image data and regularities in computations make these
algorithms suitable for parallel implementation. In order to exploit the proposed techniques in appli-
cations that require a response in near real time, this paper investigates parallel implementations of
a combined morphological/neural classification algorithm for hyperspectral imagery. The proposed
implementation has been developed by considering two possible data-domain partitioning schemes:
spatial-domain parallelism and spectral-domain parallelism. The performance of the parallel al-
gorithm is tested on Thunderhead, a 256-processor massively parallel Beowulf cluster at NASAs
Goddard Space Flight Center in Maryland.

2. Introduction

Last generation hyperspectral sensors have recently demonstrated their potential in land cover
identification and characterization applications [1]. Each pixel collected by those sensors is given
by a high-dimensional vector of values that provides a “spectral signature”, which can be used to
accurately characterize the composition of each site. A common technique for hyperspectral image
classification relies on the identification of pure spectral signatures, often called spectral “endmem-
bers” due to the fact that they are typically located on the corners of the hyperdimensional cube
defined by the data volume. These pure signatures can be used to produce bothhard andsoft clas-
sifications, where a pixel vector may be classified into a single pure class or several mixed classes
with different sub-pixel proportions.
One of the most successful approaches to endmember extraction in the literature has been the Auto-
mated Morphological Endmember Extraction (AMEE) algorithm [2], which is fully automated and
does not require any data pre-processing. This technique successfully integrates both the spatial and
spectral information in the data to conduct a multidimensional endmember search. The algorithm
is computationally expensive due to complex mathematical operations involved. However, both the
intrinsic properties of the image data and the regularities in endmember-based computations make
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this algorithm highly amenable to parallel implementation. It should also be noted that the endmem-
ber pixels provided by endmember extraction algorithms such as AMEE are suitable to be used as
input information for other applications. For instance, there are many situations where a detailed
knowledge of image endmembers is not sufficient to extract a detailed land-cover classification map.
In this context, artificial neural networks (ANNs) have demonstrated to be a powerful tool for land-
cover classification because the information provided by ANNs can not only be used to providehard
labels, but also to obtainsoft classification labels, e.g., by taking into account the degree of member-
ship or similarity of a certain input pattern (pixel vector) to a certain output class (endmember). In
the field of ANN-based remotely sensed data interpretation, Kohonen’s self-organizing map (SOM)
has been widely recognized as a very powerful tool to perform both hard and soft classification. This
model is based on an unsupervised learning strategy that does not require any previous test samples
[3,4]. Again, one of the main restrictions of SOM-based analysis is its high computational com-
plexity, which is a serious drawback in applications that require a response in near real-time, such
as those aimed at detecting and/or tracking natural disasters such as forest fires, oil spills, and other
types of chemical contamination.
In this paper, we develop a parallel implementation of a combined AMEE/SOM (morphologi-
cal/neural) approach to hyperspectral image classification. Although a few parallel algorithms for
hyperspectral imaging exist in the literature [5], our parallel approach is the first one that integrates
both spatial and spectral information in simultaneous fashion. It relies on data-parallel domain de-
composition techniques aimed at minimizing inter-processor communication and maximizing load
balance. It should be noted that the proposed method relies on well-known strategies, which have
been widely used in the past for handling parallel computations in other research areas including
High-Performance Fortran (HPF) and parallel skeletons [6,7]. However, the application of the pro-
posed data-parallel strategy to hyperspectral imaging is new and represents a novel contribution.
The paper is structured as follows. Section 3 describes the algorithm proposed for parallelization.
Section 4 discusses key features related to the parallelization of the algorithms and their implemen-
tation. Section 5 reports parallel performance and classification results achieved by our combined
AMEE/SOM approach. Finally, section 6 concludes with some remarks and hints at plausible future
research.

3. Algorithms

In this section, we briefly address the fundamental properties of the individual AMEE and SOM
techniques. These methods are available in the open literature and we will not expand on their
detailed properties here, but relevant hints for their parallelization will be pointed out.

3.1. Automated morphological endmember extraction (AMEE)
In order to define extended morphological operations in hyperspectral imaging, we first impose an

ordering relation in terms of spectral purity in a set of neighboring pixel vectors lying within a kernel
neighborhood, known as structuring element (SE) in mathematical morphology terminology [2].
Using the two basic morphological operations illustrated in Fig. 1, the AMEE algorithm calculates
amorphological eccentricity index(MEI) by comparing the output of the dilation to the output of the
erosion for each pixel in the input data, using the SE in sliding-window fashion [2]. The MEI index
is updated by repeating the above procedure by several algorithm iterations, where the result of the
morphological dilation replaces the input data at the end of each iteration. The complexity of AMEE
algorithm isO(pfxpBxIMAXxN), wherepf is the number of pixels of the input hyperspectral image
f ; pB is the number of pixels in the structuring element;I is the number of iterations executed by
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Figure 1. Morphological operations extended to hyperspectral imagery.

the algorithm; andN is the number of spectral bands. This results in very high computational
complexity, in particular, when the value ofN is very large [2]. Parallelization of AMEE must
take into account the data dependencies introduced by the adopted sliding window-based approach,
illustrated in Fig. 1.

3.2. Self-organizing map (SOM)
The neural model proposed in this work consists of N input neurons and M output neurons [3],

where N is the dimensionality of the input pixel vectors, and M is the number of endmembers or class
prototypes provided by AMEE algorithm. The network consists of two layers, with feedforward
connections from the input layer to the output layer and a set of associated connection weights,
arranged in a matrix that will be denoted hereinafter asWMxN . The working procedure of the
network is given by two different stages: clustering and training. In the former, the endmembers
found by AMEE are presented to the network so that feedforward connections change and adapt to
the information provided by the spectral data. In the training stage, feedforward connections project
input patterns onto the feature space, and the Euclidean distance is used to identify a winning neuron.
This procedure is summarized below:

1. Weight initialization. Normalized random values are used to initialize the weigth vectors:w
(0)
i ,

with i = 1, 2, ...,M .

2. Training. In this work, this step is accomplished by using AMEE-generated endmember signa-
tures.

3. Clustering. For each input patternx, a winning neuroni∗ is obtained at timet by using an
Euclidean distance-based similarity criterion, i.e.,i∗[x] = min1<=j<=M ||x − wj ||

2 .

4. Weight adjustment. The winning neuron (and those neurons in the neighborhood of the winning
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one) adapt their weights using the following expression, whereα(t) andσ(t) are the learning
and neighbouring functions, respectively.w

(t+1)
i = wt

i +
∑tmax

t′=t0
α(t′)σ(t′)(x − w

(t)
i )

5. Stopping rule. The SOM algorithm terminates as soon as a pre-determined number of iterations,
tmax, has been accomplished.

4. Parallelization

Two types of data parallelism can be exploited in the proposed algorithm: spatial-domain paral-
lelism and spectral-domain parallelism. Spatial-domain parallelism subdivides the input image into
multiple blocks made up of entire pixel vectors, and assigns one or more blocks to each processing
element (PE). On other hand, the spectral-domain parallel paradigm subdivides the whole multi-
band data into blocks made up of contiguous spectral bands (sub-volumes), and assigns one or more
sub-volumes to each PE. In the following, we provide a discussion on the two types of parallelism
above and their impact on the individual steps (morphological/neural) of the proposed method.

4.1. Parallelization of the morphological algorithm
In previous work, we have analyzed several parallelization strategies for the morphological stage

of our combined algorithm [8,9]. Those studies revealed that, when the input data partitioning is ac-
complished in the spectral domain, the local spatial information of the images remains together. This
is an important property for parallelization of image processing algorithms of the window-moving
type, because this paradigm allows division of the input data into sub-volumes that can be processed
independently by the AMEE algorithm. Also, this approach does not need to hold any replicated
information to complete the calculations involved in the morphological process. Despite the above
remarks, our previous work [9] has demonstrated that the spectral domain decomposition paradigm
is not suitable (in general) for hyperspectral imaging applications. The main reason is that most
hyperspectral imaging techniques consider the spectral information contained in each pixel vector as
a unique entity. In other words, a spectral domain decomposition paradigm would break the spectral
identity of the data because each pixel vector would be split amongst several PEs. If we take into ac-
count the fundamental characteristics of the morphological algorithm, the selection of a partitioning
scheme in the spatial domain is critical for the success of our parallelization.
Several reasons justify our decision to implement a spatial domain-based partitioning framework.
First, this strategy retains the spatial/spectral information, a desired property in a combined ap-
proach such as the one implemented by the proposed morphological algorithm. Since the resulting
partitions are composed of spatially adjacent pixel vectors, the application of a sliding window-
based approach can be accomplished in parallel with minimum changes to the original algorithm,
thus enhancing code reusability and portability. A second reason has to do with the cost of inter-
processor communication. In spectral-domain parallelism, the SE-based calculations made for each
hyperspectral pixel need to originate from several PEs, and thus require intensive communications.
A final major reason is that spatial information is particularly relevant in the local neighborhood
around each pixel. Subsequently, partitioning in the spatial domain guarantees that spatial/spectral
information can be retained at no extra cost by the proposed parallelization strategy [8]. To conclude
this subsection, we emphasize that the main drawback of the proposed parallelization strategy for
the morphological algorithm is the need to replicate information in order to reduce inter-processor
communication [9]. However, we have experimentally proved that the cost of processing redundant
information is insignificant compared to the cost of transmitting the boundary data. The introduction
of replicated data introduces border-handling and overlapping issues which are simply resolved by
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considering those pixels inside the local processor domain only for the MEI calculation [8].

4.2. Parallelization of the neural algorithm
In order to parallelize the SOM algorithm, we face similar problems than those already raised

in the previous subsection. A straightforward approach to parallelization of the neural algorithm
is to simply replicate the whole neural network architecture, which is a feasible approach due to
the random nature of the initial weights of the network. However, this option would result in the
need for very complex rules of reduction, and also in integrity hazards [4]. Taking into account
our previous studies [4,8] and considering the relatively small size of the training set, we have ex-
perimentally tested that the overhead usually takes place in the training stage (i.e, in the form of
Euclidean distance calculations and adjustment of weight factors). This fact makes partitioning of
the weight matrixWMxN a very appealing solution to reduce the computation time. Again, two main
alternatives can be adopted to carry out such partitioning: (1) Division by input neurons (endmem-
bers/training patterns); or (2) Division by output neurons (class prototypes). It should be noted that,
in the latter case, the parallelization strategy is very simple. Quite opposite, when the former ap-
proach is adopted, there is a need to communicate both the calculations and the intermediate results
among different processors. This introduces an overhead in communications that may significantly
slow down the algorithm; according to our preliminary experiments, this option could even give
worst results than those found by the sequential version of the SOM algorithm. On the other hand,
the partitioning scheme based on dividing by class prototypes only introduces a minor communica-
tion overhead. This approach creates the need to introduce a broadcast/all-reduce protocol in order
to obtain the class prototype through local minimum calculations, in batch-mode processing fashion.
The winner neuron for each pattern needs to be tallied, and subsequent modifications for the weight
update factor also need to be stored for further addition/subtraction. This approach also allows us
to directly obtain the winner neuron at each iteration without the need for any further calculations.
It also facilitates a pleasingly parallel solution which takes full advantage of the processing power
available in the considered parallel architecture while, at the same time, minimizing the overhead
introduced by inter-processor communications.
At this point, we must emphasize that the proposed parallel scheme still creates the need to replicate
calculations to further reduce communications. However, the amount of replicated data is limited to
the complete training pattern set, which is stored at every local processor along with administrative
information, such as the processor that holds the winner neuron, the processor that holds neurons in
the neighborhood of the winner neuron, etc. Such information can also be used to reduce the com-
munication overhead even further. For instance, we have considered two different implementations
of the neighborhood modification functionσ(t′) : the first one is applied when a node isinside the
neighborhood of the winner neuron, while the second is used when the node isoutside the domain
of that processor. To assess integrity of the considered function, a look-up table is locally created
at each processor to tally the value ofσ(t) for every neuron pair. While in the present work the

neighborhood function is gaussian, i.e.,σ(t) = e−
|i∗−i|

t , other functions may also be considered as
well [4]. In any regard, it is important to emphasize that when the neighborhood function is applied
to the processor that holds the winner neuron, the neighborhood function is used in its traditional
form. Quite opposite, when the function is applied to other processors, a modified version is imple-
mented to average the distances to all possible winner neurons. This approach reduces the amount
of communications and represents a more meaningful and robust neighborhood function [4]. As a
final major remark, our MPI-based implementation makes use of blocking primitives to ensure that
all processors are synchronized. This prevents integrity problems in the calculations related with
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WMxN .

5. Experimental results

The proposed parallel algorithm has been implemented in the C++ programming language using
calls to message passing interface (MPI), where the MPICH 1.2.6 version was used in experiments
due the demonstrated flexibility of this version to migrate the code to different platforms. The par-
allel algorithm has been tested on Thunderhead, a massively parallel Beowulf cluster at NASAs
Goddard Space Flight Center in Maryland, where our parallel code is currently being exploited in
various Earth-based remote sensing applications. Thunderhead is composed of 256 dual 2.4 Ghz
Intel Xeon nodes, each with 1 Gb of memory and 80 Gb of main memory. The total peak perfor-
mance of the system is 2457.6 Gflops. Before discussing the parallel performance achieved by the
proposed algorithm, we briefly describe a hyperspectral scene (designated by AVIP92) that will be
used for validation purposes in this work. The scene was collected by the NASA/JPL AVIRIS sys-
tem [1] over a small area (145 lines by 145 samples) over the Indian Pines agricultural test site in
Northwestern Indiana (available online from http://dynamo.ecn.purdue.edu along with 16 mutually
exclusive ground-truth classes). Although the scene represents a challenging classification problem,
the proposed algorithm achieved 90% overall accuracy and high individual test accuracies when
applied to this scene. Fig. 2 shows the parallel performance of the morphological and neural algo-
rithms, displayed separately for clarity. The two considered performance measures are the speedup
and the parallel efficiency. In order to compute the speedup, we approximate the time required to
complete a task onN parallel processors usingT (N) = AN + BN

K
whereAN is the sequential

(non-parallelizable) portion of the computation andBN is the parallel portion. In the morphological
algorithm,AN is given by the sequence of operations implemented by the partitioning module, and
BN refers to the endmember extraction procedure. In the neural algorithm,AN corresponds to the
generation of random weight values, whileBN is dominated by the training procedure. We can de-
fine the speedup forN processors asS(N) = T (1)

T (N)
≈

AN+BN

AN+(
BN

N
)

whereT (1) denotes single processor

time. Using the definitions above, we can further compute the parallel processing efficiency, defined
as the actual speedup divided by the number of processors, i.e.,EN = SN

N
. As shown by Fig. 2, the

Figure 2. Speedup/parallel efficiency achieved by morphological/neural algorithms on Thunderhead.
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morphological algorithm scales reasonably well on Thunderhead. This is because it takes advantage
of some of the intrinsic characteristics of window-moving image processing algorithms, such as spa-
tial and temporal data locality that result in cache reuse. The best speedup compromise forI = 7
algorithm iterations was achieved forN = 16 processors, withS16 = 12.33 andE16 = 0.77. The
degradation in parallel efficiency as the number of processors is increased is likely due to the effect
of redundant computations. On the other hand, Fig. 2 also reveals that, although parallelization of
the neural algorithm is more complicateda priori due the expected impact of communications, the
parallel neural code also scales relatively well (for a reduced number of processors). It should be
noted that the cost of communications in the parallel neural algorithm cannot be reduced by intro-
ducing redundant computations, as it was the case in the morphological algorithm. Even though
the amount of data to be exchanged is minimized by the proposed parallel neural strategy, we still
had to deal with the size of the minimum transfer unit (MTU) of the communication network, a
parameter that is not easily adjustable in the Thunderhead system. In future developments, we are
planning on incorporating techniques able to automatically adjust the size of the MTU according to
the properties of the input data. For instance, the domain of a single batch-mode iteration could be
expanded to several network epochs (with all training patterns involved at each one) instead of just
one epoch as in the current implementation. This could lead to much better data compaction inside
the considered MTU. Also, we have detected that the parallel efficiency achieved for large training
sets is significantly higher than that found for smaller training sets. This is because computations
clearly dominate communications in this case, thus greatly enhancing the granularity of the parallel
computation. As one would expect, the use of large training sets also results in much higher classi-
fication accuracies by the SOM neural network.
Although only results with 4 processors are reported in this work, we also observed that increasing
the number of processors introduced fluctuations in the achieved speedups with significant drops in
parallel efficiency. This is due in part to the scheduling policies implemented in the Thunderhead
cluster, which tend to assign high priority to jobs that require a very large number of processors.
Even in spite of the above limitations, our measured speedups reveal slight superlinear scaling ef-
fects in some cases, probably due to cache reuse (e.g., when105 training iterations were considered,
values ofE2 = 1.135 andE4 = 1.01 were measured). This reveals that cache spatial and temporal
locality could be partially used to overcome the limitations imposed by excessive communications.
The above results also lead us to believe that the best configuration for the parallel SOM algorithm
is likely to be achieved when most neural network partitions fit completely in the local processor
caches. Further experimentation, however, is highly desirable in order to adapt the parallel proper-
ties of the neural algorithm to those observed in the morphological algorithm. In particular, there
is a need to balance the combined computing power achieved by the pool of processors employed
by the morphological algorithm and those used by the neural algorithm in the same algorithm run.
This feature brings out new exciting future perspectives, such as the possibility to launch multiple
neural-based classifiers in parallel. Such multiple classifier-based processing framework represents
a completely novel data analysis paradigm in hyperspectral imaging, and previously looked too com-
putationally complex to be developed in practical applications.

6. Conclusions

The aim of this paper has been the parallel implementation on high performance computers of
an innovative morphological/neural technique for unsupervised classification of hyperspectral data
sets. We show that parallel computing at the massively parallel level, supported by message passing,
provides a unique framework to accomplish the above goal. For this purpose, computing systems
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made up of arrays of commercial off-the-shelf computing hardware are a cost-effective way of ex-
ploiting this sort of parallelism in remote sensing applications. The two discussed parallelization
strategies (morphological/neural) provide several intriguing findings and parallel design consider-
ations that may help hyperspectral image analysts in selection of efficient algorithms for specific
applications. Further, the proposed parallel strategies offer an unprecedented opportunity to explore
methodologies in fields that previously looked to be too computationally intensive in practice, due
to the inmense files common to remote sensing problems. The combination of this readily available
computational power and the new perspectives introduced last generation sensor instruments may
introduce major changes in the systems currently used by NASA and other agencies to process Earth
and planetary remotely sensed data.
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