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ABSTRACT 
 
During the last years, several terrestrial ecosystems have suffered from large spill oil events threatening coastal habitats 
and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain, as well as 
repeated oil spill leaks evidenced in the Santa Barbara coastline in California, and the Patuxent river (Chesapeake 
watershed) in Maryland. Both spaceborne and airborne hyperspectral sensors allow detailed identification of materials, 
and very accurate (sub-pixel) estimates of their fractional abundance covers. In the event of an oil spill, the information 
produced by remotely sensed hyperspectral instruments can be used to design an effective environmental oil spill 
protection and response plan, which could help to reduce the environmental consequences of the spill and cleanup 
efforts, as well as to protect human life. In this paper, we discuss a novel automated hyperspectral target detection 
technique for determining the level of oil contamination of polluted areas in the shoreline. The method is based on the 
simultaneous use of spatial and spectral information by extended mathematical morphology operations. Both simulated 
and real hyperspectral data, collected over polluted areas, are used in this work to illustrate the effectiveness of the 
proposed approach. 
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1. INTRODUCTION 
 
Large spills of oil and related petroleum products in the marine environment can have serious biological and economic 
impacts1.  Public and media scrutiny is usually intense following a spill, with demands that the location and extent of the 
oil spill be identified.  Hyperspectral remote sensing is playing an increasingly important role in oil spill response 
efforts2,3,4. Recent improvements in sensor technology, space power, computers, pattern recognition algorithms, and 
communication systems suggest that efficient standoff detection and identification systems are feasible5. These systems 
involve passive and active methods for sensing of chemical and biological materials when the sensor is physically 
separated from the site of interest. Nearly any chemical or biological element can be a pollutant, meaning that in large 
enough quantities it has the potential for causing ecological damage. In the event of an oil spill on sea water, fast and 
accurate determination of hazard areas is needed, particularly if monitoring large quantities of oil spilled.  
 
During the last years, several terrestrial ecosystems have suffered from large spill oil events threatening coastal habitats 
and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain6 (see Fig. 1), as 
well as repeated oil spill leaks evidenced in the Santa Barbara coastline in California, and the Patuxent river (Chesapeake 
watershed) in Maryland. Chemical measurements of man’s influences on coastal environments, such as those mentioned 
above, fall into three general classes: 1) the assessment of the major chemical constituents of sea water including salt, 
dissolved oxygen, major nutrients (nitrogen, phosphate, silicate) and carbon; 2) the quantification of trace elements, 
principally metals, in the water, the bottom, and the sea life; and 3) the measurement of pollutant hydrocarbons including 
synthetic organics and petroleum hydrocarbons. The result of many such measurements is to determine where the 
nutrients and pollutants are in the ecosystem. In order to discover whether an area is polluted or otherwise influenced, its 
chemical and biological characteristics must be compared with some area that is as similar as possible but seems not to 
have been affected by man. These comparative sites are called reference or control stations1. Generally, it is sensible to 
have as many reference sites as possible so that a range of normal values is available for comparison. 
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Figure 1. Prestige tanker 2002 shipwreck in Galicia, Northern Spain. (a) Tanker breaking and subsequent oil leakage on 
sea water. (b) Cleanup efforts at Galicia coastal environments. (c) Biological impacts of the Prestige environmental 
disaster (© Copyright La Voz de Galicia, S.A. Polígono de Sabón, Arteixo, A Coruña, Spain). 

 
Airborne and space-borne hyperspectral sensors have been widely evaluated in terms of their usefulness in responding to 
oil spills4. These sensors allow detailed identification of materials, and very accurate (sub-pixel) estimates of their 
fractional abundance covers7. In the event of an oil spill, the information produced by remotely sensed hyperspectral 
instruments can be used to design an effective environmental oil spill protection and response plan, which could help to 
reduce the environmental consequences of the spill and cleanup efforts, as well as to protect human life. In this paper, we 
describe an innovative approach for standoff detection using hyperspectral data. The proposed approach, which is based 
on mathematical morphology concepts8, is able to use both the spatial and spectral information contained in the data set 
to detect chemical and biological agents. Section 2 describes the proposed approach. Section 3 describes real 
multispectral data, collected by the CASI sensor right after the 2002 Prestige tanker oil spill in Galicia, northern Spain. 
These data, along with AVIRIS spectral signatures collected during an oil spill event in the Santa Barbara coastline in 
California, are used to illustrate the performance of the proposed method in Section 4. The paper concludes with some 
remarks in Section 5. 
  

2. STANDOFF DETECTION BY EXTENDED MORPHOLOGICAL OPERATIONS 
 
2.1. Extending mathematical morphology to multispectral imagery 
Our attention in this section focuses primarily on the development of a mechanism to extend morphological operations to 
hyperspectral image data. The two basic operations of classic mathematical morphology are dilation and erosion8. 
Following a usual notation, let us consider a grayscale image f , defined on a space E . Typically, E  is the 2-
Dimensional (2-D) continuous space 2R  or the 2-D discrete space 2Z . In the following, we refer to morphological 
operations defined on the discrete space. The flat erosion of f  by using a structuring element (SE) 2ZB ⊂  is defined by 

( )( )
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where ( )B2Z  denotes the set of discrete spatial coordinates associated to pixels lying within the neighborhood defined by 
B  and ∧  denotes the minimum. On the other hand, the flat dilation of f  by B  is defined by 
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where ∨  denotes the maximum. In order to extend the two basic morphological operations to hyperspectral images9, let 
us now consider an image f , defined on the N-Dimensional (N-D) continuous space, where N  is the number of spectral 
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channels. An ordering relation can be imposed in the set of pixels lying within a flat structuring element, denoted by B , 
by defining metrics that calculate the cumulative distance between one particular pixel ( )yx,f , where ( )yx,f  denotes an 
N-D vector at discrete spatial coordinates ( ) 2y,x Z∈ , and every other pixel in the neighborhood given by B . Based on 
the previous considerations, flat extended dilation and flat extended erosion can be respectively defined as follows:  
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where Dist  is a point-wise distance measure between two N-D vectors. The choice of Dist  is a key topic in the resulting 
ordering relation between hyperspectral image pixels within the structuring element. In this work, Dist  refers to the 
spectral angle distance, which is invariant to unknown multiplicative scaling that may arise due to different illumination 
conditions and sensor observation angle. This choice allows us to use extended morphological operations for the purpose 
of pure signature (endmember) extraction10. 
 
2.2. Extended morphological profiles 
Our main goal in this section is to incorporate the idea of multiscale analysis into extended morphological operations, so 
that the most appropriate SE size can be selected at each pixel by plotting the morphological operation output at each 
pixel against the value of the varying SE size11. The resulting plot is called a morphological profile12. Let us consider a 
hyperspectral image f  defined on NR . Given a flat SE (designed by B ) of minimal size, extended opening by 
reconstruction can be defined by 
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where the elementary term ( )[ ]( )y,x| ff BB οδ  is an extended geodesic dilation, defined as the maximum of the 
elementary dilation of Bοf  using B  at pixel ( )yx,  and the value of ( )yx,f . This operation is repeated k times until 
idempotence is reached. 
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In a similar fashion, extended closing by reconstruction is given by  
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Extended morphological profiles are created as follows. Let the vector ( )y,xk
οp  be the extended opening by 

reconstruction profile at the pixel ( )y,x  of the image f , defined by: 
 

( ) ( ) ( ){ }y,xy,xk
λ= Bοο fp ,      { }k  ..., ,1 ,0=λ ,                   (8) 

 

And let ( )y,xk
•p  be the extended closing by reconstruction profile at the pixel ( )y,x  of the image f , defined by: 

 

( ) ( ) ( ){ }y,xy,xk
λ• •= Bfp ,      { }k  ..., ,1 ,0=λ ,                   (9) 

 

Here ( ) ( ) ( ) ( ) ( )y,xy,xy,x 00 BB οfff ==•  for 0=λ . We define the derivative of the extended opening profile ( )y,xk
οp∆  

as the following vector, where { }k  ..., 2, ,1=λ : 
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By duality, the derivative of the closing profile ( )y,xk
•∆p  is defined as the vector: 
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Given all of the above, the multi-scale opening characteristic ( )y,xk
οΦ  at the point ( )y,x  of the image f  is defined as 

the SE size with the greatest associated value in ( )y,xk
οp∆  
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Similarly, the multi-scale closing characteristic ( )y,xk
•Φ  is defined as the SE size with the greatest associated value in 

the derivative of the extended closing profile ( )y,xk
•∆p  
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2.3. Standoff detection algorithm 
The proposed standoff detection algorithm, called ADMP (Automated Determination of Morphological Profiles), is 
summarized in Table 1. Firstly, those pixels that remain indifferent to the closing-by-reconstruction process but are 
replaced during opening by reconstruction can be designed as “pure”. In contrast, those pixels that remain indifferent to 
the opening-by-reconstruction process but are replaced during closing by reconstruction can be labeled as “mixed”. 
Hence, pure/mixed pixels can be easily identified by comparing the maximum derivative value obtained in the opening-
by-reconstruction series, i.e. ( )y,xk

•∆∨ p , to the maximum derivative value produced by the closing-by-reconstruction 

series, i.e. ( )y,xk
οp∆∨ . As shown in Table 1, if ( )yx,f  is labeled as “pure”, then its associated purity index score 

( )yx,Π  is calculated as the residual between the extended opening-by-reconstruction and the original pixel. In contrast, if 
( )yx,f  is designed as a mixed pixel by the algorithm, then ( )yx,Π  is calculated as the residual between the extended 

closing-by-reconstruction image and the original pixel. In both cases, the operation is performed by using an optimum 
SE size, provided by ( )y,xk

οΦ  and ( )y,xk
•Φ , respectively. A general block diagram of the proposed method is shown in 

Fig. 2. 
 

Inputs:  
Hyperspectral pixel vector: ( )yx,f . 
Maximum number of iterations: k. 

Outputs:  
Labeling of ( )yx,f  as “pure” or “mixed”. 
Morphological profile purity index, ( )yx,Π , for ( )yx,f . 

Begin 
If ( ) ( )y,xy,x kk

•∆∆ ∨∨ > ppο  then 
    Label ( )yx,f  as “pure”. 

  ( ) ( ) ( ) ( )⎥⎦
⎤
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ο
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Else 
  Label ( )yx,f  as “mixed”. 
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⎤
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End 
 

Table 1. Pseudo-code of ADMP algorithm. 
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Figure 2. Block diagram of the proposed standoff detection technique. 
 
As Fig. 2 shows, the input to the method is the full hyperspectral data cube, with no previous dimensionality reduction. 
Firstly, the ADMP algorithm is applied to each pixel of the original image. As a result, two grayscale images are 
produced, called pure morphological image (PMI) and mixed morphological image (MMI). The PMI contains those 
pixels labeled as “pure” by ADMP, while the MMI contains those pixels labeled as “mixed”. Each pixel position ( )yx,  
in both PMI and MMI stores the associated ( )yx,Π  score calculated by ADMP. Automated endmember selection is 
performed at the PMI by using a threshold value. Several techniques have been discussed in the literature for automated 
thresholding of grayscale images. In our application, we have found appropriate results by using the multi-level Otsu 
method13, an approach based on the minimization of the weighted sum of group variances. The final selection of 
endmembers is refined by a three-stage approach which consists of the following steps: 1) Spatial/spectral region 
growing, 2) Calculation of mean spectra from resulting regions, and 3) Redundant endmember thinning9. 
  

3. DATA 
 
On November 13th, 2002, the Prestige oil tanker, loaded with 77 000 tons of heavy fuel oil, ran into trouble off Cap 
Finisterre, Galicia, Spain. An aerial survey undertaken by the Spanish authorities observed an oil leakage from the 
vessel, and on Tuesday, November 19th, 2002, the tanker split in two and sank. Much of the oil was spilled into the sea, 
but much remains on board and will continue to spill for several months. On Tuesday, December 3rd, 2002, the 
POLMAR plan (MARitime POLlution fight plan) was set up in France to face the pollution that arrives on the French 
coasts. In the following days and in order to help the POLMAR aircraft equipped with different kind of sensors, the 
French Navy Hydrographic and Oceanographic Service (SHOM) decided to test the feasibility of an airborne 
multispectral survey to detect and map the spill. An aerial remote sensing campaign was mobilized at short notice by 
AvelMor and Borstad Associates Ltd, using the Borstad Associates’ Compact Airborne Spectrographic Imager (CASI) to 
obtain multispectral imagery over the spill off the coasts of Portugal and Spain6. 
 
Despite the adverse weather, imagery was acquired on December 16th, 18th, 19th and 20th. Some of the data were 
radiometrically calibrated, geometrically and geographically corrected in the evening of the flights to quickly obtain 
maps of the spill extent. The CASI was flown for this project in spatial mode and was configured to acquire 5 spectral 
channels (Table 1). The band configurations were chosen specifically for oil slicks mapping using spectral channels 
previously selected for similar oil slick mapping projects. Fig. 3 illustrates the spectral differences observed on the CASI 
images between sea water and oil on the surface. Hydrocarbons absorb incident energy in the ultraviolet portion of the 
electromagnetic spectrum (< 400 nm) and re-emit a part of it in the visible portion of the spectrum (400-650 nm) by a 
fluorescence phenomenon14. The reflected energy becomes more significant in the blue portion of spectrum. As shown in 
Fig. 3, in the visible region of the electromagnetic spectrum, oil has a higher surface reflectance than water, but also 
shows limited nonspecific absorption tendencies. Oil generally manifests throughout this visible spectrum. Overall, 
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however, oil has no specific characteristics that distinguish it from the background. The above physical properties allow 
the detection of hydrocarbons present on the ocean surface. From the spatial point of view, the detection is possible at a 
scale dependent on the spatial resolution of the sensor (slicks of approximately 5m² for this present experiment6). 
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Figure 3. Spectral signatures of sea water and oil slick, collected right after the Prestige crisis using a CASI imaging 
spectrometer. 

 
4. EXPERIMENTAL RESULTS 

 
Before addressing our experimental results, it should be noted that ground-truth information related to the fractional 
coverage of materials inside each pixel is very difficult to obtain in a real-world standoff detection scenario15. As a 
result, mixed pixel analysis techniques are difficult to validate and substantiate16. In order to overcome the above 
limitation, a commonly accepted approach in the literature has been the use of simulated imagery. It should be taken into 
account that simulated scenes may not fully describe the complexity of a real scenario but, if carefully simulated, they 
have the advantage that the abundance fractions of constituents can be fully controlled and varied as necessary. In our 
experiments, the proposed method was tested on simulated scenes representing oil spill events. Spectral signatures from 
sea water and oil slick were selected from imagery collected right after two recent oil spill events:  

1) Multispectral CASI data collected after the Prestige tanker oil spill event in Galicia, Northern Spain. 
2) Hyperspectral AVIRIS data collected after an oil spill event in the Santa Barbara coastline in California. 

 
The above spectral signatures were artificially mixed in computer simulations to create two simulated scenes, i.e. a 
multispectral scene made up of 5 spectral bands, and a hyperspectral scene with 224 spectral bands. Both scenes, with a 
size of 100x100 pixels, were simulated by using a simple linear mixture model with random non-negative abundance 
fractional values at each pixel. The sum of the two fractional abundances associated to the spectral constituents at each 
pixel, i.e. sea water and oil slick, adds to 1 (fully constrained linear mixture model17). Random noise was added to the 
two scenes above to simulate contributions from ambient (clutter) and instrumental sources. White gaussian noise was 
created by using numbers with a standard normal distribution obtained from a pseudorandom number generator and 
added to each pixel. For the simulations, we consider the SNR for each band as the ratio of the 50% signal level to the 
standard deviation of the noise18. This results in noise standard deviation that is roughly proportional to the average 
signal, a phenomenon often observed in radiometric data. Thus, the simulated hyperspectral data are created, based on a 
simple linear mixture model, by the following expression 

 

( ) ( ) ( )∑
=

⋅α⋅⎟
⎠
⎞

⎜
⎝
⎛ +=

R

1j
jj y,xy,x

2
SNRy,x rns ,                   (14) 

where ( )y,xs  denotes a vector containing the simulated discrete spectrum at the pixel with spatial coordinates ( )y,x  of 
the simulated image, R  is the total number of reference spectral signatures used to simulate the scene (2 in our case), 

( )y,xjα  is the assigned fractional abundance of spectral signature jr  at the pixel, and ( )y,xn  is the noise factor. An SNR 
value of 30:1 has been considered in the generation of each simulated scene. It should be noted that, for simplicity, 
multiple scattering effects have not been simulated. In addition, we have assumed uniform illumination throughout the 
scenes. 
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Prior to a full examination and discussion of results, it is important that the parameter values used for the proposed target 
detection technique. The spatial domain probed in this experiment by the ADMP algorithm was provided by a range of 
increasing square-shaped SE’s with sizes ranging from 2x2 pixels (aprox. 10 meters) up to 7x7 pixels (aprox. 35 meters). 
This range was determined empirically after considerations on the relationship between spatial resolution of the data and 
minimum size of oil slicks6. After applying the ADMP algorithm, a set of endmembers associated with each constituent 
material of the simulated scenes (sea water and oil slick, respectively) was obtained. The abundance of each endmember 
was estimated by using fully constrained linear spectral unmixing17. We can visualize the performance of the proposed 
method on the two simulated scenes by plotting estimated in contrast to true abundances for the different constituents at 
each image pixel. In Fig. 4, scatterplots of true versus estimated abundance values and resulting root mean square error 
(RMSE) are shown for each material and scene. In general, we observe that acceptable quantitative agreements between 
the estimated and true abundances are obtained. However, we can notice that, when hyperspectral data are used, a 
significant improvement in terms of abundance estimation is obtained. Overall, the proposed method is able to accurately 
characterize mixed pixels made up of sea water and oil slick in different proportions, with sub-pixel precision. 
Nonetheless, it should be clarified that, because of the simple nature of the simulation carried out in this section, the 
above observations are not conclusive. In order to test these statements in a more complex situation, the development of 
further experiments using real data from oil spill events with reliable ground-truth are required.  

 

 
a)  b) 

 
c)  d) 

 

Figure 4. Scatterplots of true vs. estimated abundances for sea water in multi- (a) and hyperspectral (b) simulated data. 
Scatter-plots of true vs. estimated abundances for oil slick in multi- (c) and hyperspectral (d) simulated data. 

 
CONCLUSIONS AND FUTURE LINES 

 
We have described a novel approach to perform unsupervised standoff detection and mixed pixel classification in 
hyperspectral images. The proposed approach , based on the calculation of morphological profiles, can be successfully 
applied for the purpose of monitoring large oil spill events, and may help design effective environmental oil spill 
protection and response plans, which could help to reduce the environmental consequences of the spill and cleanup 
efforts. The method has a hierarchical effect that improves spatial localization for mapping applications. A drawback of 
the proposed approach concerns the necessity of looking at a range of increasing opening- and closing-by-reconstruction 
operations, which may result in a heavy computational burden when processing high-dimensional data. A research topic 
deserving future interest focuses on the development of effective implementation strategies. Massive parallel 
implementations using computer Beowulf-type low-cost cluster architectures are currently being tested in our laboratory 
in order to empower the proposed technique with real-time capabilities. 
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