
Parallel Hyperspectral Image Processing on Commodity Graphics Hardware

J. Setoain, C. Tenllado, M. Prieto
ArTeCS Group, Complutense University of Madrid,

Madrid, Spain
jsetoain@pdi.ucm.es

{tenllado, mpmatias}@dacya.ucm.es

D. Valencia, A. Plaza, J. Plaza
GRNPS Group, University of Extremadura,

Caceres, Spain
{davaleco, aplaza, jplaza}@unex.es

Abstract

Many recent research efforts have been devoted to the
use of commodity hardware for solving computationally-
intensive scientific problems. Among such problems, hyper-
spectral imaging has created new processing challenges in
the remote sensing community. Hyperspectral sensors are
now capable of collecting hundreds of images, correspond-
ing to different wavelength channels, for the same area on
the surface of the Earth. For instance, NASA is continu-
ously gathering high-dimensional image data with hyper-
spectral sensors such as Jet Propulsion Laboratory’s Air-
borne Visible-Infrared Imaging Spectrometer (AVIRIS).

The increasing programmability and parallelism of com-
modity graphics processing units (GPUs) makes them
strong candidates for addressing some of these challenges.
In this paper, we describe a GPU-based framework for im-
plementation of hyperspectral image processing algorithms
which takes advantage of multiple levels of parallelism
found in modern GPUs. This framework is inexpensive,
uses readily available PC graphics hardware boards, and
provides the desired performance at the quality required.
Experimental results are presented and discussed in the
context of a realistic application, based on hyperspectral
data collected by NASA’s AVIRIS system.

1. Introduction

Imaging spectroscopy, also known as hyperspectral
imaging [2], is a new technique that has gained tremen-
dous popularity in many research areas, including satellite
imaging and aerial reconnaissance. Most applications of
this emerging technology require timely responses for swift
decisions which depend upon high computing performance
of algorithm analysis. Examples include target detection
for military and defense/security deployment, urban plan-
ning and management, risk/hazard prevention and response
including wild-land fire tracking, biological threat detec-

tion, monitoring of oil spills and other types of chemical
contamination. The concept of hyperspectral imaging was
introduced when NASA’s Jet Propulsion Laboratory devel-
oped the Airborne Visible-Infrared Imaging Spectrometer
(AVIRIS) system[4] , which covers the wavelength region
from 0.4 to 2.5μm using 224 spectral channels and nominal
spectral resolution of 10 nm (see Fig. 1). This sensor rou-
tinely collects images hundreds of kilometers long, each of
them with hundreds of MBs in size, and this explosion in
the amount of collected information has rapidly introduced
new processing challenges.

Last-generation hyperspectral image analysis algorithms
naturally integrate the wealth spatial and spectral informa-
tion contained in the data by treating the input volume as an
image cube made up of spatially arranged pixel vectors [10].
From a computational perspective, these algorithms exhibit
inherent parallelism at multiple levels: across pixel vec-
tors (coarse grained pixel-level parallelism), across spec-
tral information (fine grained spectral-level parallelism) and
even across tasks (task-level parallelism). Taking in mind
that data accesses in these algorithms are regular and pre-
dictable, they can be nicely mapped onto parallel vector
processor systems such as the NEC SX or the Cray SV
series, and to high-performance clusters. Unfortunately,
these systems are generally expensive and difficult to adapt
to onboard remote sensing data processing scenarios, in
which low-weight and low-power integrated components
are mandatory to reduce mission payload.

An exciting new development is the emergence of pro-
grammable graphics processing units (GPUs) [8, 9]. Driven
by the ever-growing demands of the game industry, GPUs
have evolved from expensive application-specific units into
highly parallel and programmable systems. Although,
their programming capabilities still pose important chal-
lenges (which still make software development a compli-
cated task), current GPUs are general enough to perform
computation beyond the domain of graphic rendering [9].

From the viewpoint of a general-purpose programmer,
these platforms can be better abstracted by using a stream

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

Figure 1. Concept of hyperspectral imaging using Jet Propulsion Laboratory’s AVIRIS system.

model under which all data portions are represented as
streams, which are ordered sets of data, so that applications
are constructed by chaining multiple kernels. Kernels op-
erate on entire streams, i.e., taking one or more streams as
inputs and producing one or more streams as outputs. They
must satisfy one major constraint: their semantic must not
depend on the order in which output elements are produced.
Thereby, data-level parallelism is exposed to hardware and
kernels can operate on streams without any sort of synchro-
nization. Modern GPUs take advantage of these features
by replacing the hardware components for complex con-
trol flow with extra processing units. Currently, state of the
art GPUs are able to deliver peak performances above 300
Gflops, i.e., more than one order of magnitude over high-
end microprocessors.

Hyperspectral imaging algorithms can fully benefit from
GPU-based hardware and programming models, thus tak-
ing advantage of additional features such as the availability
of fast and accurate transcendental functions instructions,
as well as the compact size and relatively low cost of these
units. As mentioned above, low-weight integrated compo-
nents such GPUs are desirable to reduce payload and data
transmission overheads in onboard processing, and to sat-
isfy the extremely high computational requirements sought
in many planned and future Earth-observing missions.

In this paper, we will outline a GPU-based implementa-
tion of a hyperspectral image classification algorithm, used
as a representative case study of techniques that take into
account both the spatial and spectral information of the data
in simultaneous fashion. The remainder of the paper is orga-

nized as follows. Section 2 gives a brief outline of the archi-
tecture of modern GPUs. Section 3 develops the proposed
algorithm and describe its implementation using a stream
processing model. Section 4 provides an assessment of the
parallel algorithm from the viewpoint of both classification
accuracy and parallel performance on a NVIDIA GeForce
7800GTX. Finally, Section 5 concludes with some remarks
and provides hints at plausible future research.

2 Commodity Graphic Processing Units Ar-
chitecture

In this Section we briefly describe the different archi-
tectural features of GPUs, which help to understand how
to structure algorithms and data representations and map
them efficiently onto GPUs. Modern GPUs implement a
generalization of the traditional rendering pipeline [6, 8], il-
lustrated in Figure 2. The vertex and fragment processors
are the programmable elements of the pipeline, and the pro-
grams they execute are called vertex and fragment shaders,
respectively. The vertex stage performs operations on the
stream of vertices sent to the GPU. Vertex processors trans-
form each of these vertices into a 2D projection space, and
apply lighting to determine their colors. This stage is now
fully programmable, a fact which allows for custom trans-
formations for special effects. Once transformed, vertices
are reassembled into triangles and rasterized into a stream
of pixel fragments. These fragments are discrete portions of
the triangle surface that corresponds to the pixels of the ren-
dered image. Apart from identifying constituent fragments,

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

Figure 2. Programmable Graphics Pipeline

the rasterization stage also interpolates attributes stored at
the vertices, such as texture coordinates, and stores the in-
terpolated values at each fragment.

Fragment processors compute output colors using arith-
metic operations and texture lookups. For this purpose,
texture memories can be indexed with different texture co-
ordinates and texture values can be retrieved from multi-
ple textures. In order to increase computational efficiency,
these processors support short-vector instructions that op-
erate on 4-element vectors (Red/Green/Blue/Alpha chan-
nels) in SIMD fashion, and include dedicated texture units
that operate with a deeply pipelined texture cache [8]. Fur-
thermore, the latency of data accesses is hidden using tex-
ture prefetching and transferring 2D blocks of data from
the memory to the texture cache [7]. Finally, results from
the fragment processors are combined with the existing data
stored at the associated 2D locations in the frame buffer to
produce the final colors.

For non-graphics related applications, fragment proces-
sors are typically more useful than vertex processors: there
are usually more fragment than vertex pipelines, and frag-
ment processors have better memory access performance.
However, GPU-based architectures evolve fast and this sit-
uation may change in the near future.

To summarize the architecture outline above, it is impor-
tant to note that mapping applications onto GPU requires
structuring the computations in a stream-flow model, in
which kernels are expressed as fragment programs and data
streams as textures [1].

The programming effort above has already been studied
by many researchers, who have successfully ported a large
number of scientific applications [9]. Nevertheless, to the

best of the authors’ knowledge, hyperspectral image pro-
cessing algorithms have not yet been ported to GPUs. As a
result, the design and development of cost-effective hyper-
spectral imaging algorithms on GPU platforms represents
both a challenge and a highly innovative contribution.

3 GPU-based morphological algorithm

This section first develops a morphological algorithm for
hyperspectral image classification. Then, it provides a cost-
effective GPU-based implementation based on the design
principles outlined in the previous Section.

3.1 General Algorithm

Mathematical morphology [13] is a classic non-linear
spatial processing technique that provides a remarkable
framework to achieve the desired integration of spatial and
spectral information in hyperspectral image analysis. Be-
fore describing our proposed approach, let us denote by f
a hyperspectral data set defined on an N-dimensional (N-D)
space, where N is the number of channels or spectral bands.
The main idea of the algorithm is to impose an ordering re-
lation in terms of spectral purity in the set of pixel vectors
lying within a spatial search window or structuring element
(SE) around each image pixel vector [13]. To do so, we first
define a cumulative distance between one particular pixel
f (x,y), where f (x,y) denotes an N-D vector at discrete spa-
tial coordinates (x,y)εZ2, and all the pixel vectors in the
spatial neighborhood given by B (B-neighborhood) as:

DB[f (x,y)] = ∑
i

∑
j

SID[f (x,y), f (i, j)] (1)

where (i, j) are the spatial coordinates in the B-
neighborhood and SID is the spectral information diver-
gence, a commonly used distance in remote sensing appli-
cations [2]:

SID[f (x,y), f (i, j)] =
N

∑
l=1

pl · log(
pl

ql
)

+
N

∑
l=1

ql · log(
ql

pl
) (2)

where:

pl =
fl(x,y)

∑N
k=1 fk(x,y)

(3)

ql =
fl(i, j)

∑N
k=1 fk(i, j)

(4)

Based on the distance above, we calculate the extended
morphological erosion of f by B for each pixel in the input
data scene as follows [11]:

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

(f ΘB)(x,y) = argmin(i, j){DB[f (x + i,y+ j)]} (5)

where the argmin operator selects the pixel vector is
most highly similar, spectrally, to all the other pixels in the
B-neighborhood. On the other hand, the extended morpho-
logical dilation of f by B is calculated as follows [11]:

(f ⊕B)(x,y) = argmax(i, j){DB[f (x + i,y+ j)]} (6)

where the argmax operator selects the pixel vector that
is most spectrally distinct to all the other pixels in the B-
neighborhood. With the above definitions in mind, we pro-
vide below an unsupervised classification algorithm for hy-
perspectral imagery which relies on extended morphologi-
cal operations:

Automated Morphological Classification (AMC)

Inputs: Data cube f , structuring element B, Number of
classes c.

Outputs: 2-D matrix which contains a classification label
for each pixel f (x,y) in the input image:

1. Initialize a morphological eccentricity index score
MEI(x,y) = 0 for each pixel.

2. Move B through all the pixels of f , defining a local spa-
tial search area around each f (x,y) and calculate the
maximum and minimum pixel at each B-neighborhood
using dilation and erosion respectively. Update the
MEI at each pixel using the SID between the maxi-
mum and the minimum.

3. Select the set of c pixel vectors in f with higher associ-
ated score in the resulting MEI image and estimate the
sub-pixel abundance αi(x,y) of those pixels at f (x,y)
using the standard linear mixture model described in
[2].

4. Obtain a classification label for each pixel f (x,y)
by assigning it to the class with the highest sub-
pixel fractional abundance score in that pixel. This
is done by comparing all estimated abundance frac-
tions {α1(x,y),α2(x,y), . . . ,αc(x,y)} and finding the
one with the maximum value, say αi∗(x,y), with i∗ =
arg{max1≤i≤c{αi(x,y)}}.

One of the main features of the algorithm above is regular-
ity in the computations. As shown in previous work [12],
its computational complexity is O(p f × pB ×N), where p f

is the number of pixels in f and pB is the number of pixels
in B. This results in high computational cost in real appli-
cations. However, an adequate GPU-based implementation
can greatly enhance the computational performance of the
algorithm, as explained in the following subsection.

Figure 3. Hyperspectral image split into
streams with four spectral channels.

3.2 GPU Implementation

The first issue that has to be addressed in the descrip-
tion of our GPU-based implementation, from an implemen-
tation point of view, is the mapping of hypespectral images
onto textures, following the stream programming model de-
scribed in Section 2. Although a single 3D texture would
be the most natural choice, GPUs work better with bidi-
mensional textures. Therefore, we have opted to split every
hyperspectral image into a stack of 2D textures, as Figure 3
shows. Furthermore, we have mapped every group of four
consecutive channels onto the RGBA color channels of the
texture elements, in order to take advantage of the the SIMD
capabilities of the fragment processors. In case of a target
hyperspectral image that exceeds the capacity of the GPU
memory, we split it into multiple chunks made up of entire
pixel vectors, i.e. every chunk incorporates all the spectral
information on a localized spatial region. Figure 3 repre-
sents one of these chunks.

Our stream based implementation of the AMC algo-
rithm, comprises the following stages (Fig. 4):

1. Stream uploading

2. Normalization

3. Cumulative distance computation

4. Maximum and minimum

5. Compute SID

6. Stream downloading

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

The Stream Uploading stage divides the image into
chunks and uploads them as streams into the GPU mem-
ory. Once the streams have been transferred, normalization
reduces pixel vectors and obtains normalized values follow-
ing equations 3 and 4, as Figure 4 illustrates.

The extended morphological erosion and dilation are
produced from these normalized streams as described in
Section 3.1. Expression (5) indicates that for each pixel
vector, we have to compute B2 cumulative SID’s, obtained
by applying (1) on B2 neighboring pixel vectors. The Cu-
mulative Distance stage (See Fig. 4) produces a different
cumulative stream for each of these B2 neighbors, i.e. ac-
cum0 (shown in figure 4) stores the cumulative distance
of neighbor 0 for all pixels in the incoming chunk, and so
forth.

Erosion and Dilation stages are then performed on the
Maximum and Minimum stage. The kernel produces a new
stream, which contains the index of the neighbors with max-
imum and minimum cumulative distance for each pixel vec-
tor. As shown by Figure 4, it uses as inputs the cumulative
streams generated in the previous stage.

Finally, the SID Compute stage, uses the Maximum/Min-
imum stream to compute the SID distance for the pixel vec-
tors selected, completing step 2 of the AMC algorithm.

To conclude this section, we would like to emphasize
that every stage in the flowchart described in Figure 4 com-
prises at least one kernel, although in most cases the stage
is implemented using more than one kernel. Furthermore,
output streams often loop back to the input until the whole
stage completes, as it is indeed the case in the Cumulative
Distance stage.

4 Experimental results

In this section, we provide an assessment of the effec-
tiveness of the proposed GPU-based parallel algorithm on
current state-of-the-art GPU platforms. We have also ex-
tended our analysis to a three-years-old system in order to
anticipate potential benefits that may be achieved on future
generations of GPUs. The details of both experimental plat-
forms are described in the following Section.

4.1 Experimental Platforms

Our study has been performed on two different gener-
ations of GPUs corresponding to NV30 and G70 families.
As a reference, we also include performance results on con-
temporary Intel processors. Tables 1 and 2 describe the
main features of our experimental platforms. Here, imple-
mentations have been built with two different compilers,
the GNU-C/C++ compiler (version 4.0, optimizing flags -
O3 -msse) and the Intel C/C++ compiler with autovector-
ization capabilities enabled (version 9.0, optimizing flags

-O3 -tpp7 -restrict -xP). In general, the Intel compiler ver-
sions achieve better performance since it is able to vector-
ize several loops. On the other hand, fragment programs
have been hand-coded using Cg [5], and all Cg fragment
programs were compiled using the profile fp30, which al-
lows for advanced NVidia fragment programmability [3].
We should also note that our CPU reference implementa-
tions have also been hand-tuned to exploit data locality and
maximize computation reuse.

Table 1. Experimental GPU’s Features
Feature FX5950 Ultra 7800 GTX
Year 2003 2005
Architecture NV38 G70
Bus AGPx8 PCI Express
Video Memory 256MB 256MB
Core Clock 475 MHz 430 MHz
Memory Clock 950 MHz 1.2 GHz GDDR3
Memory Interface 256-bit 256-bit
Memory bandwidth 30.4 GB/s 38.4 GB/s
#Pixel shader processors 4 24
Texture fill rate 3800 MTexels/s 10320 MTexels/s

Table 2. Experimental CPU’s Features
Feature Pentium 4 (Northwood M0) Prescott (6x2)
Year 2003 2005
FSB 800 MHz, 6.4 GB/s 800 MHz, 6.4 GB/s
ICache L1 12KB 12KB
DCache L1 8KB 16KB
L2 Cache 512KB 2M
Memory 1GB 2 GB
Clock 2.8 GHz 3.4 GHz

4.2 Hyperspectral image data

The Indian Pines AVIRIS hyperspectral data set consid-
ered in experiments consists of 2166 samples by 614 lines
and 216 spectral bands (around 500 MB in size). It was
gathered over the Indian Pines test site in North-Western In-
diana, a mixed agricultural/forested area, early in the grow-
ing season. The data set, represents a very challenging clas-
sification scenario, mainly due to the early growth stage of
crops at the time of data collection. Discriminating among
the major classes under this circumstances is extremely dif-
ficult, a fact that has made this scene a universal and exten-
sively used benchmark to validate the classification accu-
racy of hyperspectral analysis algorithms.

Fig. 5 (left) shows a spectral band at 587 nm
of the original scene, and Fig. 5 (right) shows a
ground-truth map available for the area, composed of
30 mutually-exclusive land cover classes. Part of these
data, including ground-truth, are available on-line (from
http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec).

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

4.3 Assessment of the GPU-based algo-
rithm

Before empirically investigating the performance of the
GPU-based implementation, we first briefly discuss the
classification accuracy obtained for the different ground-
truth classes available for the AVIRIS Indian Pines scene.
For this purpose, Table 3 shows the overall and individ-
ual classification accuracies (in percentage) achieved by
the proposed parallel algorithm, using a 3x3 structuring
element for the construction of morphological operations.
As shown by Table 3, the lowest classification accuracies
were reported for the buildings class, due to the presence
of mixed pixels in this area as a result of the coarse spatial
resolution of the scene, and for some of the corn classes due
to the early growth stage of crops in these areas which also
results in heavily mixed pixels. Quite opposite, very high
classification accuracies were reported for macroscopically
pure classes such as BareSoil, Concrete/Asphalt or Woods.
The measured overall accuracy of 72.35% is a very good
classification result given the extremely high complexity of
the data set, as reported in previous studies [12].

In order to study the scalability of our parallel GPU-
based implementation, we have tested a wide range of im-
age sizes. The largest one corresponds to the full Indian
Pines data set, whereas the others are cropped portions of
this image. Tables 4 and 5 show the execution times for
both the CPU and GPU based implementations. The full
Indian Pines data set has been processed in only 12 seconds
in spite of the overheads involve in data transfer between
main memory and the GPU, which confirms our introspec-
tion that GPUs are indeed very suitable for hyperspectral
image processing.

Results in Tables 4 and 5 further demonstrate that the
complexity of our GPU-based implementations scales lin-
early with the problem size, i.e., doubling the size doubles
the execution time. When the latest-generation platforms
were considered, the speedups of the GPU-based imple-
mentations over their CPU-based counterparts are outstand-
ing. Using the GNU C/C++ compiler, the speedup remains
close to 55 for all the image sizes. Although the Intel com-
piler reduces this value to 20, this result is still highly ac-
ceptable in the context of the considered application.

Finally, we should also note the remarkable relative evo-
lution of both the CPU- and the GPU-based implementa-
tions. For instance, our CPU-based implementation on the
most recent family of Intel microprocessors only achieved
marginal performance improvement (below than 10%) with
regards to the previous generation considered in experi-
ments. Along the same period of time, NVidia GPUs have
multiplied by six the number of fragment processors, and
increased the on-board memory bandwidth. These enhance-
ments together result in a remarkable 400% improvement.

Table 3. Classification accuracy for each
ground-truth class

Class Accuracy (%)
BareSoil 98.05
Buildings 30.43
Concrete/Asphalt 96.24
Corn 99.37
Corn? 86.77
Corn-EW 37.01
Corn-NS 91.50
Corn-CleanTill 65.39
Corn-CleanTill-EW 69.88
Corn-CleanTill-NS 71.64
Corn-CleanTill-NS-Irrigated 60.91
Corn-CleanTilled-NS? 70.27
Corn-MinTill 79.71
Corn-MinTill-EW 65.51
Corn-MinTill-NS 69.57
Corn-NoTill 87.20
Corn-NoTill-EW 91.25
Corn-NoTill-NS 44.64
Fescue 42.37
Grass 70.15
Grass/Trees 51.30
Grass/Pasture-mowed 79.87
Grass/Pasture 66.40
Grass-runway 60.53
Hay 62.13
Hay? 61.98
Hay-Alfalfa 83.35
Lake 83.41
NotCropped 99.20
Oats 78.04
Road 86.60
Woods 88.89
Overall: 72.35

Figure 6 graphically describes these effects and provides
some insights on the expected computational power of fu-
ture hyperspectral imaging developments based on com-
modity graphics hardware platforms.

5 Conclusions

In this paper, we have explored the viability of using
commodity graphics hardware for efficiently implementing
last-generation hyperspectral image processing algorithms
that make use of spatial and spectral information in simul-
taneous fashion. This approach represents a cost-effective
alternative to high performance clusters, which are expen-
sive and difficult to adapt to current mission payload re-
quirements in onboard remote sensing. Experimental re-
sults show outstanding speedups, which are expected to pro-
duce a significant impact in the remote sensing community.

Despite the impressive figures reported in this work,
there is still much room for improvement in our GPU-based

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

Table 4. Execution time (in milliseconds) for
both the CPU and GPU implementations for
different image sizes. Programs where com-
piled with gcc-4.0

Size (MB) P4 C Prescott FX5950 U 7800 GLX
68 91.7453 84.0052 6.79324 1.55211
136 183.32 167.852 19.572 3.067
205 274.818 251.427 29.2864 4.57477
273 367.485 336.239 39.0221 6.0956
410 550.158 502.935 40.4066 9.16738
547 734.243 671.157 53.9204 12.1771

Table 5. Execution time (in milliseconds) for
both the CPU and GPU implementations for
different image sizes. Programs where com-
piled with the Intel C/C++ compiler.

Size (MB) P4 C Prescott FX5950 U 7800 GLX
68 55.5 46.7 6.79324 1.55211
136 110.7 93.2 19.572 3.067
205 166.2 139.7 29.2864 4.57477
273 222.2 186.4 39.0221 6.0956
410 332.6 279.4 40.4066 9.16738
547 444.1 372.8 53.9204 12.1771

Figure 6. Performance of the different CPU
and GPU implementations . Compilation was
done with gcc.

implementation. In future research, we plan to study addi-
tional partitioning strategies to balance the CPU and GPU
workloads.

References

[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for gpus: stream
computing on graphics hardware. ACM Trans. Graph.,
23(3):777–786, 2004.

[2] C.-I. Chang. Hyperspectral imaging: Techniques for spec-
tral detection and classification. Kluwer, Academic Pub-
lishers, 2003.

[3] M. J. K. Editor. NVIDIA OpenGL Ex-
tension Specifications. Available online at
http://www.nvidia.com/dev content/nvopenglspecs/nvOpen
GLspecs.pdf, May 2004.

[4] R.-O. G. et al. Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (aviris). Remote Sensing
of Environment, 65:227–248, 1998.

[5] R. Fernando and M. J. Kilgard. The Cg Tutorial: The Defini-
tive Guide to Programmable Real-Time Graphics. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[6] J. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Com-
puter Graphics. Principles and Practice. 2nd Edition in C.
Addison-Wesley, 1996. FOL j 96:1 1.Ex.

[7] Z. S. Hakura and A. Gupta. The design and analysis of a
cache architecture for texture mapping. In Proceedings of
the 24th Annual International Symposium on Computer Ar-
chitecture, pages 108–120, June 1997.

[8] J. Montrym and H. Moreton. The geforce 6800. IEEE Micro,
25(2):41–51, 2005.

[9] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krger, A. E. Lefohn, and T. J. Purcell. A survey of general-
purpose computation on graphics hardware. In Eurograph-
ics 2005, State of the Art Reports, pages 21–51, Aug. 2005.

[10] A. Plaza, P. Martinez, R. Perez, and J. Plaza. Spatial/spectral
endmember extraction by multidimensional morphological
operations. IEEE Transactions on Geoscience and Remote
Sensing, 40(9):2025–2041, September 2002.

[11] A. Plaza, P. Martinez, J. Plaza, and R. Perez. Dimen-
sionality reduction and classification of hyperspectral im-
age data using sequences of extended morphological trans-
formations. IEEE Transactions on Geoscience and Remote
Sensing, 43(3):466–479, March 2005.

[12] A. Plaza, D. Valencia, J. Plaza, and P. Martinez. Commodity
cluster-based parallel processing of hyperspectral imagery.
Journal of Parallel and Distributed Computing, 66(3):345–
358, March 2006.

[13] P. Soille. Morphological Image Analysis: Principles and
Applications 2nd Ed. Springer, Berlin, 2003.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

Figure 4. Stream based AMC algorithm. The image is divided into a series of streams that go through
the algorithm stages.

(a) (b)

Figure 5. (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and
forest features of Indian Pines test site, Indiana. (b) Ground truth map with thirty mutually-exclusive
land-cover classes.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

