
Distributed Computing for Efficient Hyperspectral Imaging Using Fully
Heterogeneous Networks of Workstations

Antonio Plaza, Javier Plaza and David Valencia
Department of Computer Science, University of Extremadura

Avda. de la Universidad s/n, E-10071 Cáceres, SPAIN
aplaza@unex.es

Abstract

Hyperspectral imaging is a new technique which
has become increasingly important in many remote
sensing applications, including automatic target
recognition for military and defense/security
deployment, risk/hazard prevention and response
including wild land fire tracking, biological threat
detection, monitoring of oil spills and other types of
chemical contamination, etc. Hyperspectral imaging
applications generate massive volumes of data and
require timely responses for swift decisions which
depend upon high computing performance of
algorithm analysis. Although most currently available
parallel processing strategies for hyperspectral image
analysis assume homogeneity in the computing
platform, heterogeneous networks of workstations
represent a very promising cost-effective solution
expected to play a major role in the design of high-
performance computing platforms for many on-going
and planned remote sensing missions. This paper
explores innovative techniques for mapping
hyperspectral analysis algorithms onto heterogeneous
networks of workstations available at NASA’s Goddard
Space Flight Center and University of Maryland.
Experimental results reveal that heterogeneous
networks of workstations represent a source of
computational power that is both accessible and
applicable in hyperspectral imaging studies.

1. Introduction

The incorporation of hyperspectral sensors to
airborne and satellite platforms is producing a nearly
continual stream of high-dimensional data, and this
explosion in the amount of collected information has
rapidly introduced new processing challenges. The
concept of hyperspectral imaging [1] was first

introduced when NASA’s Jet Propulsion Laboratory
Airborne Visible-Infrared Imaging Spectrometer
(AVIRIS) [2] was developed. This imager covers the
wavelength region from 0.4 to 2.5 μm using 224
spectral channels, at a nominal spectral resolution of 10
nm (see Fig. 1). As a result, each pixel is given by a
vector of values and called “pixel vector.” The
automation of techniques for transforming collected
data into scientific understanding is critical for space-
based Earth science and planetary exploration. For
instance, NASA is continuously gathering imagery data
with Earth-observing sensors [3], with more than 850
GB of hyperspectral data collected and sent to Earth on
a daily basis, and this expected high data volume would
demand fast and efficient means for storage,
transmission, and analysis.

To address the computational need introduced by
hyperspectral imaging applications, several efforts have
been directed towards the incorporation of high-
performance computing models in remote sensing
missions [4-7], especially with the advent of relatively
cheap Beowulf clusters [3]. The new processing power
offered by such commodity systems has been employed
in information extraction and mining from very large
data archives [8, 9]. However, the homogeneous nature
of systems for image information processing employed
by NASA and other institutions during the last decade
is soon to be replaced by large-scale, heterogeneous
computing resources. Heterogeneous networks of
workstations [10] can realize a very high level of
aggregate performance [3, 11], and it is expected that
these systems will soon represent a tool of choice for
the scientific community devoted to high-dimensional
image analysis in remote sensing and other fields. Due
to the homogeneous nature of currently available
techniques and systems for parallel and distributed
computing in hyperspectral imaging studies, significant
opportunities to exploit heterogeneous computing
practices are available in this emerging new area.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Figure 1. Concept of hyperspectral imaging using NASA Jet Propulsion Laboratory’s AVIRIS sensor.

In this paper, we explore techniques for mapping
hyperspectral image analysis algorithms onto
heterogeneous networks of computers. The paper is
structured as follows. Section 2 briefly describes a
hyperspectral data processing chain that will serve as
our case study throughout the paper. Section 3
develops a parallel version of the considered approach,
specifically designed to be run on distributed,
heterogeneous platforms. In Section 4, we assess the
parallel performance of the considered parallel
methodology by drawing comparisons between its
efficiency on a heterogeneous network of workstations
with the efficiency evidenced by its homogeneous
version on a homogeneous network with the same
aggregate performance as the heterogeneous one.
Performance data on Thunderhead, a (homogeneous)
massively parallel Beowulf cluster at NASA’s Goddard
Space Flight Center are also given for comparison.
Finally, Section 5 highlights the main conclusions of
this research.

2. Hyperspectral data processing chain

This section describes a commonly accepted
hyperspectral data processing chain that will be used as
a case study for the development of parallel algorithms.
It consists of the following stages [2]. Firstly, the
dimensionality of the input data is reduced prior to data
processing. The principal component transform (PCT)

is often used to summarize and decorrelate the images
by reducing redundancy and packing the residual
information into a small set of images, termed principal
components. PCT is a highly compute-intensive
algorithm amenable to parallel implementation [12,
13]. Secondly, pure spectral signatures (often called
endmembers in hyperspectral analysis) are extracted
from the dimensionally reduced data set. The goal of
using endmembers is to deal with the problem of mixed
pixels, which arise when the spatial resolution of the
sensor is not high enough to separate different
materials. For instance, it is very likely that the pixel
vector labeled as “vegetation” in Fig. 1 would actually
comprise a mixture of vegetation and soil, or different
types of soil and vegetation canopies. To deal with this
problem, linear spectral unmixing has been used to
decompose the measured spectrum of a mixed pixel
into a linear combination of endmembers weighted by a
set of abundance fractions that indicate the proportion
of each endmember present in the mixed pixel [14].
One of the most successful algorithms for endmember
extraction in the literature has been the N-FINDR
method [15]. After a PCT-based dimensional
reduction, the method selects a random set of pixel
vectors from the input data and calculates their
corresponding volume. In order to refine the initial
volume estimate, a trial volume is calculated for every
pixel vector in each endmember position by replacing
that endmember and recalculating the volume. If the

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

replacement results in a volume increase, the pixel
vector replaces the endmember. This procedure is
repeated until there are no replacements of
endmembers left. Both the identification of image
endmembers and the subsequent unmixing process are
computationally demanding problems. However, very
few research efforts devoted to the design of parallel
implementations exist in the open literature. This paper
takes a necessary first step toward the comparison of
strategies for parallel hyperspectral image analysis.

3. Parallel algorithms

This section describes the parallel algorithms that
will be compared in this study. Before introducing the
algorithm descriptions, which are based on the
techniques introduced in the previous section, we must
first discuss strategies for data partitioning in the
considered application. In the considered application,
two types of partitioning can be exploited: spectral-
domain partitioning and spatial-domain partitioning.
Spectral-domain partitioning subdivides the volume
into small cells or sub-volumes made up of contiguous
spectral bands, and assigns one or more sub-volumes to
each processor. Quite opposite, spatial-domain
partitioning keeps the spectral identity of each pixel
vector and assigns groups of spatially correlated full
pixel vectors to each processor. With the former model,
each pixel vector may be split amongst several
processors and the communication cost for the
computations based on spectral signatures would be
increased. This is due to the fact that the hyperspectral
data processing chain described in the previous section
utilizes the information provided by each pixel vector
as a whole. This has a significant impact on the design
of data partitioning strategies for parallelization. In
order to exploit parallelism as much as possible, a
spatial-domain partitioning approach was adopted in
our framework, i.e., the data is always partitioned in a
way that the same pixel vector is never split among
different processors. As a result, all the considered
parallel algorithms are designed under the assumption
that each pixel vector is uniquely represented by its
associated spectral signature. Next, we provide a
pseudo-code description of the three parallel
algorithms considering in this study, which fall into the
categories of dimensionality reduction, endmember
extraction and linear spectral unmixing.

3.1. Parallel dimensionality reduction

Inputs: N-D data cube F , Number of endmembers, E.
Output: E-D data cube G .

1. Let ip denote a processor in the heterogeneous
network, and let iw denote its relative cycle-time.
Similarly, let V be the total volume of data in F .
Processor ip will be assigned a certain share

Vi ⋅ of the input volume, where 0≥i for

Pi ≤≤1 and ∑ = =P
i i1 1 . In order to obtain the

value of i for processor ip , calculate

() ()()∑ =⋅= p
1j jii ww 111 and use the calculated

values of i to generate a set of P spatial-domain
heterogeneous partitions of F .

2. Calculate the N-D mean vector f concurrently,
where each component is the average of the pixel
values of each spectral band of the input data. This
vector is formed at the master once all the
processors have finish their parts.

3. Broadcast vector f to all workers, so that each
worker computes the covariance component using
its local partition and forms a covariance sum,
which is sent to the master.

4. Calculate the covariance matrix sequentially at the
master as the average of all the matrices calculated
in step 3.

5. Obtain a transformation matrix T by calculating
and sorting the eigenvectors of the covariance
matrix according to their eigenvalues, which
provide a measure of their variances. As a result,
the spectral content is forced into the front
components. Since the degree of data dependency
of the calculation is high and its complexity is
related to the number of spectral bands rather than
the image size, this step is done sequentially at the
master.

6. Transform each N-D pixel vector in the original
image by []ffTg -),(),(yxyx ⋅= . This step is done
in parallel, where all workers transform their
respective data partitions. The results are sent to
the master, which retains the first E components of
the resulting data cube G .

3.2. Parallel endmember extraction

Input: E-D cube G .

Output: set of E final endmembers { }E
ee 1=e .

1. The master selects a random set of E initial pixel

vectors { }E
ee 1

)0(
=e randomly, and then finds

),,,()0()0(
2

)0(
1 EV eee � , i.e., the volume of the simplex

defined by { }E
ee 1

)0(
=e , as follows:

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

()!1

...
1...11

det

),,,(
00

2
0

1)0()0(
2

)0(
1 −

⎥
⎦

⎤
⎢
⎣

⎡

=
E

V
)(

E
)()(

E

eee
eee �

2. The workers calculate the volume of E simplexes,
()),,,()0()0(

2, EyxV eeg � ,…, ()),,,(,)0(
2

)0(
1 yxV gee �

in parallel, each of which is formed by replacing
one endmember)0(

ee with the sample vector
()yx,g . Each worker performs replacements using

pixels in its local partition, obtained using step 1 of
the algorithm in section 3.1.

If none of these E recalculated volumes is greater than

),,,()0()0(
2

)0(
1 EV eee � , then no endmember in { }E

ee 1
)0(

=e is
replaced. Otherwise, the master replaces the
endmember which is absent in the largest volume
among the E simplexes with the vector ()yx,g . Let
such endmember be denoted by)0(

le . A new set of
endmembers is produced sequentially at the master by
letting =)1(

le ()yx,g and)0()1(
ee ee = for le ≠ . Repeat

from step 2 until no replacements occur.

3.3. Parallel spectral unmixing

Input: N-D data cube F , Set of endmembers { }E
ee 1=e .

Output: Set of fractional abundances (){ }E
ee yxa 1, = for

each pixel vector ()yx,f .
1. Divide the original data cube F into P

heterogeneous partitions using step 1 of the
parallel dimensionality reduction algorithm in
section 3.1, where P is the number of workers.

2. Broadcast the set { }E
ee 1=e to all the workers.

3. For each pixel ()yx,f in the local partition, obtain
a set of abundance fractions specified by

()yxa ,1 , ()yxa ,2 ,…, ()yxaE , using { }E
ee 1=e , so that

() () () ()yxayxayxayx EE ,,,, 2211 ⋅+⋅⋅⋅+⋅+⋅= eeef
[2, 14].

4. The master collects all the individual sets of

fractional abundances ()(){ }E
e

i
e yxa 1, = calculated for

the pixels at every individual partition i, with
Pi ,,1 ⋅⋅⋅= , and forms a final set of fractional

abundances designated by

(){ } () (){ }E
e

i
e

P

i

E
ee yxayxa 1

1
1 ,, =

=
= = � .

As a final note, we emphasize that the proposed
parallel hyperspectral analysis framework consists of a
sequence of three steps, i.e., dimensionality reduction,

endmember extraction and spectral unmixing, each of
which is implemented in parallel. Performance data for
the three considered parallel algorithms are given in the
following section.

4. Experimental results

This section provides an assessment of the
effectiveness of the parallel algorithms described in
section 3. The section is organized as follows. First, we
describe a framework for assessment of heterogeneous
algorithms introduced by Lastovetsky and Reddy [16],
and provide an overview of the heterogeneous and
homogeneous networks used in this work for evaluation
purposes. Second, we briefly describe the hyperspectral
data set used in experiments. Performance data are
given in the last sub-section.

4.1. Network description

Following a recent study [16], we assess the
proposed heterogeneous algorithms using the basic
postulate that they cannot be executed on a
heterogeneous network faster than its homogeneous
prototype on the equivalent homogeneous network. Let
us assume that a heterogeneous network consists of
{ }P

iip 1= heterogeneous workstations with different
cycle-times iw , which span m communication

segments { }m
jjs

1=
, where ()jc denotes the

communication speed of segment js . Similarly, let
()jp be the number of processors that belong to js ,

and let ()j
tw be the speed of the t-th processor

connected to js , where ()jpt ,,1 ⋅⋅⋅= . Finally, let ()kjc ,

be the speed of the communication link between
segments js and ks , with mkj ,,1, ⋅⋅⋅= . According to
[16], the above network can be considered equivalent
to a homogeneous network made up of { }P

iiq 1=

processors with constant cycle-time w and
interconnected through a homogeneous network with
communication speed c if and only if the following
expressions are satisfied:

() () ()()[] () () ()

() 21

21 1 1
,

1

−

⋅⋅+−⋅
=

∑ ∑∑ = +==

pp

cppppc
c

m
j

m
jk

kjkjjjm
j

j

()()

p

w
w

m
j

p
t

j
t

j

∑ ∑= == 1 1 ,

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

where the first expression states that the average speed
of point-to-point communications between processors
{ }P

iip 1= in the heterogeneous network should be equal
to the speed of point-to-point communications between
processors { }P

iiq 1= in the homogeneous network, with
both networks having the same number of processors.
On the other hand, the second expression simply states
that the aggregate performance of processors { }P

iip 1=

should be equal to the aggregate performance of
processors { }P

iiq 1= . We have configured two networks
of workstations (one homogeneous and the other one
heterogeneous) that satisfy the above constraints to
serve as sample networks for testing the performance of
parallel heterogeneous hyperspectral imaging
algorithms. The first network is composed of 16
identical Linux workstations with processor cycle-time

0131.0=w seconds per megaflop, interconnected via a
homogeneous network with capacity 64.26=c
milliseconds. The second network consists of 16
different SGI, Solaris and Linux workstations, and four
communication segments. Table 1 shows the cycle-
times of the heterogeneous processors in seconds per
megaflop. It can be seen from the table that processors
{ }4

1=iip are attached to segment 1s , processors { }8
5=iip

are attached to 2s , processors { }10
9=iip are attached to

3s , and processors { }16
11=iip are attached to 4s . The

communication links between the different segments
only support serial communication. For illustrative
purposes, Table 2 shows the capacity of all point-to-
point communications in milliseconds to transfer a one-
megabit message between each processor pair ()ji pp ,

in the heterogeneous system. As it can be deducted
from Table 2, the communication network of the
heterogeneous platform consists of four relatively fast
homogeneous communication segments interconnected
by three slower communication links with capacities

() 05.291,2 =c , () 31.482,3 =c and () 14.583,4 =c
milliseconds, respectively. Although this is a simple
architecture, it is also a quite typical and realistic one
as well.

4.2. Hyperspectral data description

The parallel algorithm in section 3 was applied to a
hyperspectral scene collected by the AVIRIS
hyperspectral image over the Jasper Ridge Biological
Preserve (JRBP) in California (see Fig. 2). This scene
was selected for experiments due to the availability of
ground-truth image endmembers for this scene. The

dataset, acquired on April 1998, consists of 512x614
pixels and 224 spectral bands, with a nominal ground
resolution of 20 m, spectral resolution of 10 nm, and
16-bit radiometric resolution. The total size of the
image data set is 137 MB. In a previous study of
surface materials over JRBP, image endmembers and
their corresponding abundance fractions were derived
from the scene above based on extensive ground
studies [17]. A library of spectral signatures associated
to the main constituent materials at JRBP was used in
experiments (see Fig. 3). These signatures,
corresponding to soil, forest, grass, chaparral
vegetation and water, along with their abundance
fractions available from previous studies [17], will be
used as reference in order to validate the accuracy of
the proposed hyperspectral data processing chain.

Figure 2. Spectral band at 903 nm of an AVIRIS
image collected over Jasper Ridge, California.

4.3. Performance data

Before analyzing the parallel properties of the
considered algorithms, implemented using MPI, we
discuss their accuracy in the context of hyperspectral
imaging applications. Table 3 tabulates the spectral
similarity scores obtained after comparing the five
reference spectra in Fig. 3 with the corresponding
endmembers extracted by the proposed parallel
endmember extraction algorithm in section 3.2. The
closer these values are to zero, the better the results.
This table also reports (in bold typeface) the root mean
square error (RMSE) between the abundances in
percentage estimated by using the parallel spectral
unmixing algorithm in section 3.3 in combination with
the endmembers provided by the parallel endmember
extraction method. As shown in the table, the error
scores were low for the five materials considered, with
an average error in abundance estimation of less than
5% and a set of final endmembers which are very
similar, spectrally, to the reference signatures in Fig. 3.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

0.0072 0.0102 0.0206 0.0072 0.0102 0.0058 0.0072 0.0102 0.0072 0.0451 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131

Table 1. Processor cycle-times (in seconds per megaflop) for the heterogeneous cluster.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P2 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P3 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P4 19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76

P5 48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P6 48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P7 48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P8 48.31 48.31 48.31 48.31 17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45

P9 96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38 58.14 58.14 58.14 58.14 58.14 58.14

P10 96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38 58.14 58.14 58.14 58.14 58.14 58.14

P11 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P12 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P13 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P14 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P15 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

P16 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05

Table 2. Capacity of links (measured in terms of the time in milliseconds to transfer a one-megabit message) for
the heterogeneous cluster.

Parallel
algorithm

SAM-Endmember
extraction

RMSE-Spectral
unmixing

Soil (s1) 0.007 5%
Forest (s2) 0.005 3%
Dry grass (s3) 0.009 4%
Chaparral (s4) 0.007 6%
Lake water (s5) 0.006 2%

Table 3. SAM-based similarity scores for the parallel
endmember extraction algorithm and RMSE-based
abundance estimation errors (in percentage) for the
parallel spectral unmixing algorithm.

It should be noted that the full data analysis process
took several hours of computation in a last-generation
desktop computer with AMD processor at 2 GHz and 1
GB of RAM memory. To investigate the parallel
properties of the proposed parallel heterogeneous
algorithms using the AVIRIS scene in Fig. 2, their
performance was tested by timing the programs using
the heterogeneous network of workstations and its
equivalent homogeneous network, where Table 4
shows the measured execution times. As expected, the
times reported show that heterogeneous algorithms
were able to adapt better to the heterogeneous
environment than their homogeneous versions.

s1 s2 s3 s4 s5

Figure 3. Reference spectral signatures: soil (s1),
forest (s2), grass (s1), chaparral vegetation (s4) and
water (s5).

The homogeneous versions of the parallel
algorithms were simply obtained by replacing the
heterogeneous data partitioning operation in the three
considered versions by a much more simple operation
in which spatial-domain partitions are obtained by
using to constant values of Pi 1=α for all { }Pi ,,1 ⋅⋅⋅∈ ,
where w is the cycle-time for all processors in the
homogeneous network.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Heterogeneous network Homogeneous network

Algorithm Execution time Speedup Execution time Speedup
Dimensionality reduction (homogeneous) 614 116
Dimensionality reduction (heterogeneous) 116 5.29 124 1.06

Endmember extraction (homogeneous) 209 41
Endmember extraction (heterogeneous) 43 4.86 44 1.07

Spectral unmixing (homogeneous) 1123 114
Spectral unmixing (heterogeneous) 121 9.28 122 1.07

Table 4. Execution times and speedups achieved by the parallel algorithms executed on the heterogeneous cluster over
and their homogeneous versions executed on the homogeneous cluster.

For the sake of comparison, Table 4 also shows the
speedup of the heterogeneous algorithms over their
respective homogeneous versions on the same
heterogeneous platform. The speedup was simply
calculated as the execution time of the homogeneous
algorithm divided by the execution time of the
heterogeneous algorithm. One can see that the
heterogeneous dimensionality reduction and
endmember extraction algorithms were about five times
faster than their respective homogeneous versions,
while the heterogeneous spectral unmixing algorithm
was more than nine times faster than its homogeneous
version in the heterogeneous cluster. Similarly, Table 4
shows a comparison of the execution times of the
heterogeneous algorithms and their homogeneous
versions on the homogeneous platform, along with the
speedup of the homogeneous algorithms over the
heterogeneous ones on the same homogeneous
platform. As can be seen in Table 4, the homogeneous
versions only slightly outperformed the heterogeneous
algorithms in the homogeneous network. The speedup
factors reported in the table were low and very similar
for all tested methods, which reveals that the
performance of heterogeneous algorithms was almost
the same as that evidenced by homogeneous algorithms
when they were run in the same homogeneous network.
This demonstrates the flexibility of the proposed
heterogeneous algorithms, which were able to adapt
efficiently to both the homogeneous and heterogeneous
network.

Interestingly, after comparing the execution times of
heterogeneous algorithms performed on the
heterogeneous network with those achieved by their
homogeneous versions on the homogeneous network
(see Table 4), we noticed that the heterogeneous
algorithms achieved essentially the same speed as their
homogeneous versions, but each on its network. This
also indicated that the proposed heterogeneous
algorithms were very close to the optimal
heterogeneous modifications of the basic homogeneous
ones. To fully validate the above remark, we have also
compared the performance of the proposed
heterogeneous algorithms (and their homogeneous

counterparts) on Thunderhead, a (homogeneous)
Beowulf cluster at NASA’s Goddard Space Flight
Center to explore code scalability issues [18].

0

32

64

96

128

160

192

224

256

0 32 64 96 128 160 192 224 256
Number of CPUs

Sp
ee

d
u

p

P-Dimensionality H-Dimensionality
P-Endmember H-Endmember
P-Unmixing H-Unmixing
Linear

Figure 4. Scalability of the parallel algorithms on
NASA’s Thunderhead system.

Thunderhead is currently composed of 256 dual 2.4
GHz Intel Xeon nodes, each with 1 GB of memory and
80 GB of main memory. The total peak performance of
the system is 2457.6 GFlops. Fig. 4 plots the speedups
achieved by multi-processor runs of the considered
algorithms over their corresponding single-processor
runs on the Thunderhead system. As Fig. 4 shows, the
scalability of all heterogeneous algorithms (denoted by
"P-") was almost the same as that evidenced by their
homogeneous versions (denoted by "H-"), with the
parallel spectral unmixing algorithm showing almost
perfect scalability. This is not surprising, given their
very straightforward parallelization strategy as
compared to the adopted framework to implement the
dimensionality reduction and endmember extraction
algorithms in parallel, which introduce additional data
dependencies. The total processing time of the full
heterogeneous data processing chain implemented in
parallel and applied to the AVIRIS data set in Fig. 2
was below 10 seconds when 256 processors were used,
and below 50 seconds when only 36 processors were
used. This indicates that the heterogeneous algorithms
were able to obtain highly accurate hyperspectral
analysis results (in light of Table 3), but also quickly
enough for practical use. To conclude this paper, we

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

must emphasize that, despite the computational power
offered by Thunderhead, the current trend in remote
sensing studies is to exploit highly heterogeneous,
massively parallel computing platforms able to operate
in large-scale distributed environments. As evidenced
by experimental results in this work, standard
homogeneous parallel algorithms often cannot
efficiently adapt to such systems, while carefully
designed heterogeneous algorithms offer a relatively
simple, platform-independent and scalable solution.
We feel that the applicability of the proposed approach
extends beyond remote sensing applications. This is
particularly true for the domains of signal processing
and linear algebra applications, which include similar
patterns of communication and calculation.

5. Conclusions

Distributed computing on heterogeneous networks is
a paradigm which is soon to be adopted to satisfy the
extreme computational requirements of most Earth-
observing and planetary applications. The
incorporation of such heterogeneous systems requires
carefully design and implementation of new parallel
techniques and algorithms for efficient information
extraction from imagery data, in particular, taking into
account that latest-generation sensor systems are
currently producing a nearly continual stream of very
high-dimensional data. This paper has explored the
impact of platform heterogeneity on the design of
parallel algorithms for hyperspectral analysis, designed
to be run on fully heterogeneous networks of
workstations. The strategy adopted in this work was to
experimentally assess heterogeneous algorithms by
comparing their efficiency on a fully heterogeneous
network of workstations with the efficiency achieved
by their homogeneous versions on an equally powerful
homogeneous network. Our experimental results
revealed important algorithmic aspects that may be of
great importance for designing and adapting existing
high-performance hyperspectral imaging applications
(developed in the context of homogeneous computing
platforms) to highly heterogeneous environments,
which are currently the tool of choice in many remote
sensing and Earth exploration missions.

References

[1] R. O. Green et al., “Imaging spectroscopy and the
airborne visible/infrared imaging spectrometer,” Remote
Sensing of Environment, vol. 65 pp. 227–248, 1998.

[2] C.-I Chang, Hyperspectral imaging: Techniques for
spectral detection and classification, Kluwer: NY, 2003.

[3] J. Dorband, J. Palencia and U. Ranawake, “Commodity
computing clusters at Goddard Space Flight Center,”
Journal of Space Communication, vol. 1, 2003.

[4] G. Aloisio, M. Cafaro, “Dynamic earth observation
system,” Parallel Comp., vol. 29, pp. 1357–1362, 2003.

[5] L. Chen, I. Fujishiro and K. Nakajima, “Optimizing
parallel performance of unstructured volume rendering
for the Earth Simulator,” Parallel Comp, vol. 29, pp.
355–371, 2003.

[6] P. Wang, K. Y. Liu, T. Cwik and R.O. Green,
“MODTRAN on supercomputers and parallel
computers,” Parallel Comp., vol. 28, pp. 53–64, 2002.

[7] K. A. Hawick, P. D. Coddington and H. A. James,
“Distributed frameworks and parallel algorithms for
processing large-scale geographic data,” Parallel Comp.,
vol. 29, pp. 1297–1333, 2003.

[8] J. Le Moigne, W. J. Campbell and R. F. Cromp, “An
automated parallel image registration technique of
multiple source remote sensing data,” IEEE Trans,
Geosci. Remote Sensing, vol. 40, pp. 1849-1864, 2004.

[9] J. C. Tilton, “Method for implementation of recursive
hierarchical segmentation on parallel computers,” U.S.
Patent no. 09/839147 (pending published:
http://www.fuentek.com/technologies/rhseg.htm).

[10] A. Lastovetsky, Parallel computing on heterogeneous
networks, Wiley-Interscience: Hoboken, NJ, 2003.

[11] R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson,
M. Levenhagen, A. B. Maccabe and R. Riesen,
“Massively parallel computing using commodity
components,” Parallel Comp., vol. 26, pp. 243–266,
2000.

[12] T. El-Ghazawi, S. Kaewpijit and J. Le Moigne, “Parallel
and adaptive reduction of hyperspectral data to intrinsic
dimensionality,” Proc. 3rd IEEE Intl. Conf. on Cluster
Computing (Cluster’01), pp. 102-112, 2001.

[13] T. Achalakul and S. Taylor, “A distributed spectral-
screening PCT algorithm,” Journal of Parallel and
Distributed Computing, vol. 63, pp. 373–384, 2003.

[14] A. Plaza, P. Martínez, R. Pérez and J. Plaza, “A
quantitative and comparative analysis of endmember
extraction algorithms from hyperspectral data,” IEEE
Trans. Geosci. Remote Sensing, vol. 42, pp. 650–663,
2004.

 [15] M.E. Winter, “N-FINDR: An algorithm for fast
autonomous spectral endmember determination in
hyperspectral data,” Proc. of SPIE Imaging Spectrometry
Conference, vol. 3753, pp. 266–277, 1999.

[16] A. Lastovetsky and R. Reddy, “On performance analysis
of heterogeneous parallel algorithms,” Parallel Comp.,
vol. 30, pp. 1195–1216, 2004.

[17] M. Garcia and S. L. Ustin, “Detection of interannual
vegetation responses to climatic variability using
AVIRIS data in a coastal savanna in California,” IEEE
Trans. Geosci. Remote Sensing, vol. 39, pp. 1480–1490,
2001.

[18] A. Plaza, D. Valencia, J. Plaza and P. Martínez,
“Commodity cluster-based parallel processing of
hyperspectral imagery,” Journal of Parallel and
Distributed Computing, vol. 66, pp. 345–358, 2006.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

