
Distributed Computing for Efficient Hyperspectral Imaging Using Fully 
Heterogeneous Networks of Workstations 

Antonio Plaza, Javier Plaza and David Valencia 
Department of Computer Science, University of Extremadura 

Avda. de la Universidad s/n, E-10071 Cáceres, SPAIN 
aplaza@unex.es

Abstract 

Hyperspectral imaging is a new technique which 
has become increasingly important in many remote 
sensing applications, including automatic target 
recognition for military and defense/security 
deployment, risk/hazard prevention and response 
including wild land fire tracking, biological threat 
detection, monitoring of oil spills and other types of 
chemical contamination, etc. Hyperspectral imaging 
applications generate massive volumes of data and 
require timely responses for swift decisions which 
depend upon high computing performance of 
algorithm analysis. Although most currently available 
parallel processing strategies for hyperspectral image 
analysis assume homogeneity in the computing 
platform, heterogeneous networks of workstations 
represent a very promising cost-effective solution 
expected to play a major role in the design of high-
performance computing platforms for many on-going 
and planned remote sensing missions. This paper 
explores innovative techniques for mapping 
hyperspectral analysis algorithms onto heterogeneous 
networks of workstations available at NASA’s Goddard 
Space Flight Center and University of Maryland. 
Experimental results reveal that heterogeneous 
networks of workstations represent a source of 
computational power that is both accessible and 
applicable in hyperspectral imaging studies.  

1. Introduction 

The incorporation of hyperspectral sensors to 
airborne and satellite platforms is producing a nearly 
continual stream of high-dimensional data, and this 
explosion in the amount of collected information has 
rapidly introduced new processing challenges. The 
concept of hyperspectral imaging [1] was first 

introduced when NASA’s Jet Propulsion Laboratory 
Airborne Visible-Infrared Imaging Spectrometer 
(AVIRIS) [2] was developed. This imager covers the 
wavelength region from 0.4 to 2.5 μm using 224 
spectral channels, at a nominal spectral resolution of 10 
nm (see Fig. 1). As a result, each pixel is given by a 
vector of values and called “pixel vector.” The 
automation of techniques for transforming collected 
data into scientific understanding is critical for space-
based Earth science and planetary exploration. For 
instance, NASA is continuously gathering imagery data 
with Earth-observing sensors [3], with more than 850 
GB of hyperspectral data collected and sent to Earth on 
a daily basis, and this expected high data volume would 
demand fast and efficient means for storage, 
transmission, and analysis. 

To address the computational need introduced by 
hyperspectral imaging applications, several efforts have 
been directed towards the incorporation of high-
performance computing models in remote sensing 
missions [4-7], especially with the advent of relatively 
cheap Beowulf clusters [3]. The new processing power 
offered by such commodity systems has been employed 
in information extraction and mining from very large 
data archives [8, 9]. However, the homogeneous nature 
of systems for image information processing employed 
by NASA and other institutions during the last decade 
is soon to be replaced by large-scale, heterogeneous 
computing resources. Heterogeneous networks of 
workstations [10] can realize a very high level of 
aggregate performance [3, 11], and it is expected that 
these systems will soon represent a tool of choice for 
the scientific community devoted to high-dimensional 
image analysis in remote sensing and other fields. Due 
to the homogeneous nature of currently available 
techniques and systems for parallel and distributed 
computing in hyperspectral imaging studies, significant 
opportunities to exploit heterogeneous computing 
practices are available in this emerging new area. 
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Figure 1. Concept of hyperspectral imaging using NASA Jet Propulsion Laboratory’s AVIRIS sensor. 

In this paper, we explore techniques for mapping 
hyperspectral image analysis algorithms onto 
heterogeneous networks of computers. The paper is 
structured as follows. Section 2 briefly describes a 
hyperspectral data processing chain that will serve as 
our case study throughout the paper. Section 3 
develops a parallel version of the considered approach, 
specifically designed to be run on distributed, 
heterogeneous platforms. In Section 4, we assess the 
parallel performance of the considered parallel 
methodology by drawing comparisons between its 
efficiency on a heterogeneous network of workstations 
with the efficiency evidenced by its homogeneous 
version on a homogeneous network with the same 
aggregate performance as the heterogeneous one. 
Performance data on Thunderhead, a (homogeneous) 
massively parallel Beowulf cluster at NASA’s Goddard 
Space Flight Center are also given for comparison. 
Finally, Section 5 highlights the main conclusions of 
this research. 

2. Hyperspectral data processing chain 

This section describes a commonly accepted 
hyperspectral data processing chain that will be used as 
a case study for the development of parallel algorithms. 
It consists of the following stages [2]. Firstly, the 
dimensionality of the input data is reduced prior to data 
processing. The principal component transform (PCT) 

is often used to summarize and decorrelate the images 
by reducing redundancy and packing the residual 
information into a small set of images, termed principal 
components. PCT is a highly compute-intensive 
algorithm amenable to parallel implementation [12, 
13]. Secondly, pure spectral signatures (often called 
endmembers in hyperspectral analysis) are extracted 
from the dimensionally reduced data set. The goal of 
using endmembers is to deal with the problem of mixed 
pixels, which arise when the spatial resolution of the 
sensor is not high enough to separate different 
materials. For instance, it is very likely that the pixel 
vector labeled as “vegetation” in Fig. 1 would actually 
comprise a mixture of vegetation and soil, or different 
types of soil and vegetation canopies. To deal with this 
problem, linear spectral unmixing has been used to 
decompose the measured spectrum of a mixed pixel 
into a linear combination of endmembers weighted by a 
set of abundance fractions that indicate the proportion 
of each endmember present in the mixed pixel [14]. 
One of the most successful algorithms for endmember 
extraction in the literature has been the N-FINDR 
method [15]. After a PCT-based dimensional 
reduction, the method selects a random set of pixel 
vectors from the input data and calculates their 
corresponding volume. In order to refine the initial 
volume estimate, a trial volume is calculated for every 
pixel vector in each endmember position by replacing 
that endmember and recalculating the volume. If the 
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replacement results in a volume increase, the pixel 
vector replaces the endmember. This procedure is 
repeated until there are no replacements of 
endmembers left. Both the identification of image 
endmembers and the subsequent unmixing process are 
computationally demanding problems. However, very 
few research efforts devoted to the design of parallel 
implementations exist in the open literature. This paper 
takes a necessary first step toward the comparison of 
strategies for parallel hyperspectral image analysis. 

3. Parallel algorithms 

This section describes the parallel algorithms that 
will be compared in this study. Before introducing the 
algorithm descriptions, which are based on the 
techniques introduced in the previous section, we must 
first discuss strategies for data partitioning in the 
considered application. In the considered application, 
two types of partitioning can be exploited: spectral-
domain partitioning and spatial-domain partitioning. 
Spectral-domain partitioning subdivides the volume 
into small cells or sub-volumes made up of contiguous 
spectral bands, and assigns one or more sub-volumes to 
each processor. Quite opposite, spatial-domain 
partitioning keeps the spectral identity of each pixel 
vector and assigns groups of spatially correlated full 
pixel vectors to each processor. With the former model, 
each pixel vector may be split amongst several 
processors and the communication cost for the 
computations based on spectral signatures would be 
increased. This is due to the fact that the hyperspectral 
data processing chain described in the previous section 
utilizes the information provided by each pixel vector 
as a whole. This has a significant impact on the design 
of data partitioning strategies for parallelization. In 
order to exploit parallelism as much as possible, a 
spatial-domain partitioning approach was adopted in 
our framework, i.e., the data is always partitioned in a 
way that the same pixel vector is never split among 
different processors. As a result, all the considered 
parallel algorithms are designed under the assumption 
that each pixel vector is uniquely represented by its 
associated spectral signature. Next, we provide a 
pseudo-code description of the three parallel 
algorithms considering in this study, which fall into the 
categories of dimensionality reduction, endmember 
extraction and linear spectral unmixing. 

3.1. Parallel dimensionality reduction 

Inputs: N-D data cube F , Number of endmembers, E.
Output: E-D data cube G .

1. Let ip  denote a processor in the heterogeneous 
network, and let iw  denote its relative cycle-time. 
Similarly, let V be the total volume of data in F .
Processor ip  will be assigned a certain share 

Vi ⋅  of the input volume, where 0≥i  for 

Pi ≤≤1  and ∑ = =P
i i1 1 . In order to obtain the 

value of i  for processor ip , calculate 

( ) ( )( )∑ =⋅= p
1j jii ww 111  and use the calculated 

values of i  to generate a set of P spatial-domain 
heterogeneous partitions of F .

2. Calculate the N-D mean vector f  concurrently, 
where each component is the average of the pixel 
values of each spectral band of the input data. This 
vector is formed at the master once all the 
processors have finish their parts. 

3. Broadcast vector f  to all workers, so that each 
worker computes the covariance component using 
its local partition and forms a covariance sum, 
which is sent to the master. 

4. Calculate the covariance matrix sequentially at the 
master as the average of all the matrices calculated 
in step 3. 

5. Obtain a transformation matrix T  by calculating 
and sorting the eigenvectors of the covariance 
matrix according to their eigenvalues, which 
provide a measure of their variances. As a result, 
the spectral content is forced into the front 
components. Since the degree of data dependency 
of the calculation is high and its complexity is 
related to the number of spectral bands rather than 
the image size, this step is done sequentially at the 
master. 

6. Transform each N-D pixel vector in the original 
image by [ ]ffTg -),(),( yxyx ⋅= . This step is done 
in parallel, where all workers transform their 
respective data partitions. The results are sent to 
the master, which retains the first E components of 
the resulting data cube G .

3.2. Parallel endmember extraction 

Input: E-D cube G .

Output: set of E final endmembers { }E
ee 1=e .

1. The master selects a random set of E initial pixel 

vectors { }E
ee 1

)0(
=e  randomly, and then finds 

),,,( )0()0(
2

)0(
1 EV eee � , i.e., the volume of the simplex 

defined by { }E
ee 1

)0(
=e , as follows:  
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2. The workers calculate the volume of E simplexes, 
( ) ),,,( )0()0(

2, EyxV eeg � ,…, ( )),,,( ,)0(
2

)0(
1 yxV gee �

in parallel, each of which is formed by replacing 
one endmember )0(

ee  with the sample vector 
( )yx,g . Each worker performs replacements using 

pixels in its local partition, obtained using step 1 of 
the algorithm in section 3.1.  

If none of these E recalculated volumes is greater than 

),,,( )0()0(
2

)0(
1 EV eee � , then no endmember in { }E

ee 1
)0(

=e  is 
replaced. Otherwise, the master replaces the 
endmember which is absent in the largest volume 
among the E simplexes with the vector ( )yx,g . Let 
such endmember be denoted by )0(

le . A new set of 
endmembers is produced sequentially at the master by 
letting =)1(

le ( )yx,g  and )0()1(
ee ee =  for le ≠ . Repeat 

from step 2 until no replacements occur. 

3.3. Parallel spectral unmixing 

Input: N-D data cube F , Set of endmembers { }E
ee 1=e .

Output: Set of fractional abundances ( ){ }E
ee yxa 1, =  for 

each pixel vector ( )yx,f .
1. Divide the original data cube F  into P

heterogeneous partitions using step 1 of the 
parallel dimensionality reduction algorithm in 
section 3.1, where P is the number of workers.  

2. Broadcast the set { }E
ee 1=e  to all the workers. 

3. For each pixel ( )yx,f  in the local partition, obtain 
a set of abundance fractions specified by 

( )yxa ,1 , ( )yxa ,2 ,…, ( )yxaE ,  using { }E
ee 1=e , so that 

( ) ( ) ( ) ( )yxayxayxayx EE ,,,, 2211 ⋅+⋅⋅⋅+⋅+⋅= eeef
[2, 14]. 

4. The master collects all the individual sets of 

fractional abundances ( )( ){ }E
e

i
e yxa 1, =  calculated for 

the pixels at every individual partition i, with 
Pi ,,1 ⋅⋅⋅= , and forms a final set of fractional 

abundances designated by 

( ){ } ( ) ( ){ }E
e

i
e

P

i

E
ee yxayxa 1

1
1 ,, =

=
= = � .

As a final note, we emphasize that the proposed 
parallel hyperspectral analysis framework consists of a 
sequence of three steps, i.e., dimensionality reduction, 

endmember extraction and spectral unmixing, each of 
which is implemented in parallel. Performance data for 
the three considered parallel algorithms are given in the 
following section. 

4. Experimental results 

This section provides an assessment of the 
effectiveness of the parallel algorithms described in 
section 3. The section is organized as follows. First, we 
describe a framework for assessment of heterogeneous 
algorithms introduced by Lastovetsky and Reddy [16], 
and provide an overview of the heterogeneous and 
homogeneous networks used in this work for evaluation 
purposes. Second, we briefly describe the hyperspectral 
data set used in experiments. Performance data are 
given in the last sub-section. 

4.1. Network description 

Following a recent study [16], we assess the 
proposed heterogeneous algorithms using the basic 
postulate that they cannot be executed on a 
heterogeneous network faster than its homogeneous 
prototype on the equivalent homogeneous network. Let 
us assume that a heterogeneous network consists of 
{ }P

iip 1=  heterogeneous workstations with different 
cycle-times iw , which span m  communication 

segments { }m
jjs

1=
, where ( )jc  denotes the 

communication speed of segment js . Similarly, let 
( )jp  be the number of processors that belong to js ,

and let ( )j
tw  be the speed of the t-th processor 

connected to js , where ( )jpt ,,1 ⋅⋅⋅= . Finally, let ( )kjc ,

be the speed of the communication link between 
segments js  and ks , with mkj ,,1, ⋅⋅⋅= . According to 
[16], the above network can be considered equivalent 
to a homogeneous network made up of { }P

iiq 1=

processors with constant cycle-time w  and 
interconnected through a homogeneous network with 
communication speed c  if and only if the following 
expressions are satisfied: 

( ) ( ) ( )( )[ ] ( ) ( ) ( )

( ) 21

21 1 1
,

1

−

⋅⋅+−⋅
=

∑ ∑∑ = +==

pp

cppppc
c

m
j

m
jk

kjkjjjm
j

j

( )( )

p

w
w

m
j

p
t

j
t

j

∑ ∑= == 1 1 ,
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where the first expression states that the average speed 
of point-to-point communications between processors 
{ }P

iip 1=  in the heterogeneous network should be equal 
to the speed of point-to-point communications between 
processors { }P

iiq 1=  in the homogeneous network, with 
both networks having the same number of processors. 
On the other hand, the second expression simply states 
that the aggregate performance of processors { }P

iip 1=

should be equal to the aggregate performance of 
processors { }P

iiq 1= . We have configured two networks 
of workstations (one homogeneous and the other one 
heterogeneous) that satisfy the above constraints to 
serve as sample networks for testing the performance of 
parallel heterogeneous hyperspectral imaging 
algorithms. The first network is composed of 16 
identical Linux workstations with processor cycle-time 

0131.0=w  seconds per megaflop, interconnected via a 
homogeneous network with capacity 64.26=c
milliseconds. The second network consists of 16 
different SGI, Solaris and Linux workstations, and four 
communication segments. Table 1 shows the cycle-
times of the heterogeneous processors in seconds per 
megaflop. It can be seen from the table that processors 
{ }4

1=iip  are attached to segment 1s , processors { }8
5=iip

are attached to 2s , processors { }10
9=iip  are attached to 

3s , and processors { }16
11=iip  are attached to 4s . The 

communication links between the different segments 
only support serial communication. For illustrative 
purposes, Table 2 shows the capacity of all point-to-
point communications in milliseconds to transfer a one-
megabit message between each processor pair ( )ji pp ,

in the heterogeneous system. As it can be deducted 
from Table 2, the communication network of the 
heterogeneous platform consists of four relatively fast 
homogeneous communication segments interconnected 
by three slower communication links with capacities 

( ) 05.291,2 =c , ( ) 31.482,3 =c  and ( ) 14.583,4 =c
milliseconds, respectively. Although this is a simple 
architecture, it is also a quite typical and realistic one 
as well. 

4.2. Hyperspectral data description 

The parallel algorithm in section 3 was applied to a 
hyperspectral scene collected by the AVIRIS 
hyperspectral image over the Jasper Ridge Biological 
Preserve (JRBP) in California (see Fig. 2). This scene 
was selected for experiments due to the availability of 
ground-truth image endmembers for this scene. The 

dataset, acquired on April 1998, consists of 512x614 
pixels and 224 spectral bands, with a nominal ground 
resolution of 20 m, spectral resolution of 10 nm, and 
16-bit radiometric resolution. The total size of the 
image data set is 137 MB. In a previous study of 
surface materials over JRBP, image endmembers and 
their corresponding abundance fractions were derived 
from the scene above based on extensive ground 
studies [17]. A library of spectral signatures associated 
to the main constituent materials at JRBP was used in 
experiments (see Fig. 3). These signatures, 
corresponding to soil, forest, grass, chaparral 
vegetation and water, along with their abundance 
fractions available from previous studies [17], will be 
used as reference in order to validate the accuracy of 
the proposed hyperspectral data processing chain. 

Figure 2. Spectral band at 903 nm of an AVIRIS 
image collected over Jasper Ridge, California. 

4.3. Performance data 

Before analyzing the parallel properties of the 
considered algorithms, implemented using MPI, we 
discuss their accuracy in the context of hyperspectral 
imaging applications. Table 3 tabulates the spectral 
similarity scores obtained after comparing the five 
reference spectra in Fig. 3 with the corresponding 
endmembers extracted by the proposed parallel 
endmember extraction algorithm in section 3.2. The 
closer these values are to zero, the better the results. 
This table also reports (in bold typeface) the root mean 
square error (RMSE) between the abundances in 
percentage estimated by using the parallel spectral 
unmixing algorithm in section 3.3 in combination with 
the endmembers provided by the parallel endmember 
extraction method.  As shown in the table, the error 
scores were low for the five materials considered, with 
an average error in abundance estimation of less than 
5% and a set of final endmembers which are very 
similar, spectrally, to the reference signatures in Fig. 3. 
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

0.0072 0.0102 0.0206 0.0072 0.0102 0.0058 0.0072 0.0102 0.0072 0.0451 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131

Table 1. Processor cycle-times (in seconds per megaflop) for the heterogeneous cluster. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1  19.26 19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76 

P2 19.26  19.26 19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76 

P3 19.26 19.26  19.26 48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76 

P4 19.26 19.26 19.26  48.31 48.31 48.31 48.31 96.62 96.62 154.76 154.76 154.76 154.76 154.76 154.76 

P5 48.31 48.31 48.31 48.31  17.65 17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45 

P6 48.31 48.31 48.31 48.31 17.65  17.65 17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45 

P7 48.31 48.31 48.31 48.31 17.65 17.65  17.65 48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45 

P8 48.31 48.31 48.31 48.31 17.65 17.65 17.65  48.31 48.31 106.45 106.45 106.45 106.45 106.45 106.45 

P9 96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31  16.38 58.14 58.14 58.14 58.14 58.14 58.14 

P10 96.62 96.62 96.62 96.62 48.31 48.31 48.31 48.31 16.38  58.14 58.14 58.14 58.14 58.14 58.14 

P11 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14  14.05 14.05 14.05 14.05 14.05 

P12 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05  14.05 14.05 14.05 14.05 

P13 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05  14.05 14.05 14.05 

P14 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05  14.05 14.05 

P15 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05  14.05 

P16 154.76 154.76 154.76 154.76 106.45 106.45 106.45 106.45 58.14 58.14 14.05 14.05 14.05 14.05 14.05 

Table 2. Capacity of links (measured in terms of the time in milliseconds to transfer a one-megabit message) for 
the heterogeneous cluster. 

Parallel
algorithm 

SAM-Endmember 
extraction 

RMSE-Spectral  
unmixing 

Soil (s1) 0.007 5% 
Forest (s2) 0.005 3% 
Dry grass (s3) 0.009 4% 
Chaparral (s4) 0.007 6% 
Lake water (s5) 0.006 2% 

Table 3. SAM-based similarity scores for the parallel 
endmember extraction algorithm and RMSE-based 
abundance estimation errors (in percentage) for the 
parallel spectral unmixing algorithm. 

It should be noted that the full data analysis process 
took several hours of computation in a last-generation 
desktop computer with AMD processor at 2 GHz and 1 
GB of RAM memory. To investigate the parallel 
properties of the proposed parallel heterogeneous 
algorithms using the AVIRIS scene in Fig. 2, their 
performance was tested by timing the programs using 
the heterogeneous network of workstations and its 
equivalent homogeneous network, where Table 4 
shows the measured execution times. As expected, the 
times reported show that heterogeneous algorithms 
were able to adapt better to the heterogeneous 
environment than their homogeneous versions.  

s1 s2 s3 s4 s5

Figure 3. Reference spectral signatures: soil (s1),
forest (s2), grass (s1), chaparral vegetation (s4) and 
water (s5).

The homogeneous versions of the parallel 
algorithms were simply obtained by replacing the 
heterogeneous data partitioning operation in the three 
considered versions by a much more simple operation 
in which spatial-domain partitions are obtained by 
using to constant values of Pi 1=α  for all { }Pi ,,1 ⋅⋅⋅∈ ,
where w  is the cycle-time for all processors in the 
homogeneous network.  
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Heterogeneous network Homogeneous network 

Algorithm Execution time Speedup Execution time Speedup 
Dimensionality reduction (homogeneous) 614 116 
Dimensionality reduction (heterogeneous) 116 5.29 124 1.06

Endmember extraction (homogeneous) 209 41 
Endmember extraction (heterogeneous) 43 4.86 44 1.07

Spectral unmixing (homogeneous) 1123 114 
Spectral unmixing (heterogeneous) 121 9.28 122 1.07

Table 4. Execution times and speedups achieved by the parallel algorithms executed on the heterogeneous cluster over 
and their homogeneous versions executed on the homogeneous cluster. 

For the sake of comparison, Table 4 also shows the 
speedup of the heterogeneous algorithms over their 
respective homogeneous versions on the same 
heterogeneous platform. The speedup was simply 
calculated as the execution time of the homogeneous 
algorithm divided by the execution time of the 
heterogeneous algorithm. One can see that the 
heterogeneous dimensionality reduction and 
endmember extraction algorithms were about five times 
faster than their respective homogeneous versions, 
while the heterogeneous spectral unmixing algorithm 
was more than nine times faster than its homogeneous 
version in the heterogeneous cluster. Similarly, Table 4 
shows a comparison of the execution times of the 
heterogeneous algorithms and their homogeneous 
versions on the homogeneous platform, along with the 
speedup of the homogeneous algorithms over the 
heterogeneous ones on the same homogeneous 
platform. As can be seen in Table 4, the homogeneous 
versions only slightly outperformed the heterogeneous 
algorithms in the homogeneous network. The speedup 
factors reported in the table were low and very similar 
for all tested methods, which reveals that the 
performance of heterogeneous algorithms was almost 
the same as that evidenced by homogeneous algorithms 
when they were run in the same homogeneous network. 
This demonstrates the flexibility of the proposed 
heterogeneous algorithms, which were able to adapt 
efficiently to both the homogeneous and heterogeneous 
network. 

Interestingly, after comparing the execution times of 
heterogeneous algorithms performed on the 
heterogeneous network with those achieved by their 
homogeneous versions on the homogeneous network 
(see Table 4), we noticed that the heterogeneous 
algorithms achieved essentially the same speed as their 
homogeneous versions, but each on its network. This 
also indicated that the proposed heterogeneous 
algorithms were very close to the optimal 
heterogeneous modifications of the basic homogeneous 
ones. To fully validate the above remark, we have also 
compared the performance of the proposed 
heterogeneous algorithms (and their homogeneous 

counterparts) on Thunderhead, a (homogeneous) 
Beowulf cluster at NASA’s Goddard Space Flight 
Center to explore code scalability issues [18].  
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Figure 4. Scalability of the parallel algorithms on 
NASA’s Thunderhead system. 

Thunderhead is currently composed of 256 dual 2.4 
GHz Intel Xeon nodes, each with 1 GB of memory and 
80 GB of main memory. The total peak performance of 
the system is 2457.6 GFlops. Fig. 4 plots the speedups 
achieved by multi-processor runs of the considered 
algorithms over their corresponding single-processor 
runs on the Thunderhead system. As Fig. 4 shows, the 
scalability of all heterogeneous algorithms (denoted by 
"P-") was almost the same as that evidenced by their 
homogeneous versions (denoted by "H-"), with the 
parallel spectral unmixing algorithm showing almost 
perfect scalability. This is not surprising, given their 
very straightforward parallelization strategy as 
compared to the adopted framework to implement the 
dimensionality reduction and endmember extraction 
algorithms in parallel, which introduce additional data 
dependencies. The total processing time of the full 
heterogeneous data processing chain implemented in 
parallel and applied to the AVIRIS data set in Fig. 2 
was below 10 seconds when 256 processors were used, 
and below 50 seconds when only 36 processors were 
used. This indicates that the heterogeneous algorithms 
were able to obtain highly accurate hyperspectral 
analysis results (in light of Table 3), but also quickly 
enough for practical use. To conclude this paper, we 
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must emphasize that, despite the computational power 
offered by Thunderhead, the current trend in remote 
sensing studies is to exploit highly heterogeneous, 
massively parallel computing platforms able to operate 
in large-scale distributed environments. As evidenced 
by experimental results in this work, standard 
homogeneous parallel algorithms often cannot 
efficiently adapt to such systems, while carefully 
designed heterogeneous algorithms offer a relatively 
simple, platform-independent and scalable solution. 
We feel that the applicability of the proposed approach 
extends beyond remote sensing applications. This is 
particularly true for the domains of signal processing 
and linear algebra applications, which include similar 
patterns of communication and calculation. 

5. Conclusions 

Distributed computing on heterogeneous networks is 
a paradigm which is soon to be adopted to satisfy the 
extreme computational requirements of most Earth-
observing and planetary applications. The 
incorporation of such heterogeneous systems requires 
carefully design and implementation of new parallel 
techniques and algorithms for efficient information 
extraction from imagery data, in particular, taking into 
account that latest-generation sensor systems are 
currently producing a nearly continual stream of very 
high-dimensional data. This paper has explored the 
impact of platform heterogeneity on the design of 
parallel algorithms for hyperspectral analysis, designed 
to be run on fully heterogeneous networks of 
workstations. The strategy adopted in this work was to 
experimentally assess heterogeneous algorithms by 
comparing their efficiency on a fully heterogeneous 
network of workstations with the efficiency achieved 
by their homogeneous versions on an equally powerful 
homogeneous network. Our experimental results 
revealed important algorithmic aspects that may be of 
great importance for designing and adapting existing 
high-performance hyperspectral imaging applications 
(developed in the context of homogeneous computing 
platforms) to highly heterogeneous environments, 
which are currently the tool of choice in many remote 
sensing and Earth exploration missions. 
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