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ABSTRACT - In this paper, we analyze the effectiveness of spectral mixture techniques in the generation of a 
cloud abundance mask. Two different mixture models are considered: linear and nonlinear. The linear model first 
identifies pure spectral constituents (endmembers) and then expresses mixed pixels as linear combination of 
endmembers. It is clear that there are naturally occurring situations where nonlinear mixture models can better 
describe the resultant mixed spectra for certain endmember distributions. In order to address this issue, we carry 
out comparisons among different implementations of the linear model (e.g., using a variety of endmember 
extraction algorithms and constraints in the linear inversion process) and a neural network-based nonlinear 
model, which utilizes a multi-layer perceptron (MLP) architecture with back-propagation learning. 

Experiments are conducted on a set of CHRIS/Proba Mode 1 acquisitions with 62 spectral bands in the visible 
and near-infrared spectral range and spatial resolution of 34 meters. Additionally, the method is validated with a 
database made up of simulated images with artificially generated clouds (mixed with other materials in both 
linear and nonlinear fashion). 

 
1 INTRODUCTION  

The presence of clouds in satellite spectral images 
prevents adequate characterization of land cover, and 
constitutes a very important source of errors which 
strongly affects estimation and retrieval of bio-
physical parameters (Simpson, 1999). As a result, 
accurate cloud masking represents both a challenge 
and a pre-processing requirement for the majority of 
techniques dealing with information extraction from 
remotely sensed data.  

Standard cloud masking algorithms in the litera-
ture generally provide a binary mask, i.e., they con-
sider each image pixel location as a pure entity with an 
associated discrete label that indicates whether the 
pixel is covered by a cloud or not (Di Vittorio, 2002). 
However, in hyperspectral analysis this approach is 
not appropriate. This is because, in multispectral 
imaging, the fine spectral resolution available can be 
used to overcome the so-called “mixture problem” by 
estimating the fractional abundance of materials at a 
sub-pixel level (this is particularly important in re-
motely sensed satellite data sets with relatively coarse 
spatial resolution) (Adams, 1985). By resorting to 
spectral mixture analysis-based techniques, it is 
possible to model additional application scenarios, 
e.g., when thin clouds, such as cirrus, partially cover a 
given pixel (with different degrees of transparency), or 
when thicker clouds do not entirely cover the pixel. In 
those cases, sub-pixel techniques such as those based 

on spectral unmixing can provide a more accurate 
characterization of detected clouds in terms of differ-
ent parameters (e.g., cloud type, height, sub-pixel 
coverage, etc.). These characteristics can provide a 
better description of the detected clouds in order to 
include this information in the climate models (Tian, 
1999). It is also noticeable that, in linear mixing 
models, the endmembers are assumed to be sitting 
side-by-side within the field of view of the imager, and 
the collection procedure does not consider secondary 
reflections and/or multiple scattering effects, which 
may be particularly relevant in the case of clouds.  

In this paper, we mainly analyze spectral mix-
ing techniques to generate synthetic images with cirrus 
clouds using both linear and nonlinear mixing. This 
simulated dataset allows evaluating the proposed 
methodology, and it makes up for the lack of ground 
truth data to validate the real image results. 

The paper is outlined as follows. Section 2 ex-
plains the employed real and simulated datasets. 
Section 3 describes the methodology. The results are 
presented in Section 4, and the conclusions are given 
in Section 5. Finally, we conclude with acknowledge-
ments and references. 

2 DATASET  

2.1 Real Dataset  

One image of the CHRIS (Compact High Resolution 
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Imaging Spectrometer) instrument on board of 
PROBA satellite has been considered in this study. 
CHRIS Mode 1 provides 62 spectral bands in the 
spectral range from 400 to 1050nm with a 34m spatial 
resolution (Barnsley, 2004, and PROBA/CHRIS web). 
The selected image is located in Hinton (Lat/Lon: 
53.14,-117.145), Canada, and was acquired on 2006-
07-11. The image presents two types of clouds, small 
cumulus and thin cirrus clouds (Fig.1).  

The satellite image has been preprocessed in 
order to reduce sensor noise and to obtain illumination 
independent data (TOA reflectance) (Chova, 2005). 

2.2 Simulated Dataset  

Synthetic images are generated using spectra extracted 
from the real CHRIS/PROBA image using the Itera-
tive Error Analysis (IEA) endmember extraction 
algorithm (Neville, 1999). We assume Gaussian 

distributions to generate the mixed spectra by using 
the full covariance matrix of each class. Two different 
mixing models are considered: 

 
Figure 1. Selected image with cumulus and thin 
cirrus clouds. Hinton (Canada). 

a) Linear mixing: In this model, the reflectance spec-
trum ρ is considered as a standard linear combination 
of the “pure” spectra or endmembers (si) of the materi-
als present in the pixel area, weighted by their frac-
tional abundance (αι). This linear mixing model 
(Adams, 1985 and Settle, 1993) is the most frequently 
used model for representing the mixed pixels from 
different endmembers and is expressed as: 
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where N is number of endmembers and ε is the al-
lowed error noise. 

The linear synthetic image is generated using the 
endmembers extracted by IEA algorithm (Fig.2) and 
the spatial distribution of the abundance generated for 
each endmember. 

b) Non linear mixing for clouds: There are many 
situations where nonlinear processes are present in the 
scene (endmember materials are mixed on spatial 
scales smaller that pixel size, multiple scattering, 
atmospheric absorptions, etc.). In this paper, we 
propose a nonlinear mixing model where the pixel 
surface reflectance is mixed with a cloud spectrum at 
different degrees of transparency (cloud transmittance, 
1-α·ρc). In this model, we take into account the multi-
ple scattering effects as is depicted in Fig. 3, which 
can be expressed as: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
⋅−⋅−+⋅=

cg
gccT ραρρραραρ 1

11 2
(2) 

where ρT is the apparent reflectance of the mixed 
pixel, ρc is cloud reflectance, and ρg is ground reflec-
tance. Note that, in this model, we have considered 
clear atmosphere and no cloud absorption. 
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Figure 2. Extracted endmembers by the Iterative Error 
Analysis algorithm. 
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Figure 3. Nonlinear mixing diagram. 
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3 METHODOLOGY  

3.1 Spectral Unmixing 

Spectral unmixing allows decomposing the measured 
mixed spectrum into a collection of constituent spectra 
or endmembers, and a set of corresponding abun-
dances that indicate the proportion of each endmember 
in the pixel. Spectral unmixing can be considered as 
two separate problems: first, the determination of the 
endmembers, and then the estimation of the abun-
dances. 

3.1.1 Endmember extraction algorithms 

In the literature, there are different approaches to 
determine the spectra of the different pure constituents 
in the image (Keshava, 2002 and Plaza, 2006). We 
have selected three different methods to extract the 
pure pixels from the image. 

a) ATGP: Automated Target Generation Process (Ren, 
2003, and Chang, 2003). 

b) IEA: Iterative Error Analysis (Neville, 1999). 

c) VCA: Vertex Component Analysis (Nascimento, 
2005). 

3.1.2 Linear Unmixing Model 

The fraction of each pixel in the linear spectral unmix-
ing is obtained by solving the inverse equation of the 
linear mixel model that is expressed as:  

TS ρεα ⋅=+ −1  (3) 

Additionally, we can impose that the linear unmixing 
is subjected to two constrains with full physical 
meaning. 

a) Fully Constrained Least Squares Unmixing 
(FCLSU): In FCLSU (Heinz, 2001), two intuitive 
restrictions are imposed to equation 3. 

• Abundance sum-to-one constraint: the abundance 
fractions of all the targets must sum one. 
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• Abundance non-negativity constraint: abundance 
fractions of all targets must be nonnegative (since 
they represent the abundance or contribution of re-
flectance spectral signatures). 

10 ≤≤ α  (5) 

1 

2 

N

1 

M

1 

2 

N

α1

α2

αN

β1 

β2 

βN 

Figure 4. Multilayer Perceptron Architecture. 
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Figure 5. Pure pixels selected by the three endmember methods (top) and Cloud Abundance Map obtained from FCLSU 
unmixing using the different endmember sets (bottom). 
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Figure 6. Simulated regions (1-Shadows, 2-Veg, 3-Soil, 
4-Soil and thin cloud, 5- Veg, 6- Shadows, 7-High 
Cloud, 8- High Cloud, 9-High Cloud, and 10- Cloud). 

b) Non-Negativity Constrained Least Squares Unmix-
ing (NNCLSU): In this approach, only the non-
negativity constrain is considered to account for the 
possibility of an incomplete set of endmembers. 

3.1.3 Nonlinear Unmixing Model 

In the case of nonlinear unmixing, a neural network 
(NN) is used as the nonlinear correction to the linear 
model. A multi-layer perceptron (MLP) NN is used as 
a subsequent processing step after the FCLSU unmix-
ing model (Plaza, 2005). 

The abundances provided by the FCLSU (α) are 
used as the inputs of the MLP network (Fig 4), and the 
outputs are the corrected abundances of the simulated 
images (β).  

In this paper, two MLP networks have been 
trained. One MLP-NN is trained using data from the 
linearly mixed image in order to compare it with the 
FCLSU, which should provide good abundance 
fractions without the NN correction step. Another 
MLP network is trained for the nonlinear image to 
improve the results under nonlinear effects. 

6 
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2 

4 Unmixing methods provide an output image with N 
bands showing the proportion of each endmember in 
each pixel, being N the number of endmembers. 

In order to obtain a cloud map from the abun-
dances, the endmembers corresponding to cloud 
covers have to be identified. The identification of the 
cloud endmembers is performed by the user taking 
into account the spectral signature, their abundance 
map, and their location. Finally, the cloud abundance 
map is obtained as the sum of all the abundance maps 
corresponding to cloud endmembers.  

4 RESULTS 

4.1 Real Data 

We have applied the three endmember extraction 
algorithms to the Hinton image, and we have obtained 
the pure spectra that are shown at the top of Fig. 5. 
The extraction algorithms methods are analyzed in 
different images for a thorough evaluation, and results 
show that a good selection of the endmembers is the 
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igure 7. RMSE between the estimated abundance and the real values for the simulated linear (top) and non linear 
bottom) images. Note that the colour scales are not the same. 
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most critical point in the unmixing process. In the case 
of clouds, more than one endmember of clouds are 
obtained for the same image. 

Then, the proportional abundances of each 
endmember are calculated by the FCLSU unmixing 
method, and finally, we sum the different cloud abun-
dances in order to obtain the final cloud abundance 
map (Fig. 5 bottom). For the case of this image, the 
IEA method seems to provide the best endmembers for 
cloud mapping, as it detects better the cirrus clouds. 

Results using the NNCLSU method are quite 
similar to FCLSU. 

4.2 Simulated Data 

The three unmixing algorithms introduced in section 3 
(FCLSU, NNCLSU and Neural Network) are applied 
to obtain the abundance map for each endmember. The 
unmixing accuracy is assessed in terms of the root 
mean square error (RMSE) and correlation coefficient 
(r) between the original and obtained abundances.  

Fig. 6 shows the map of the simulated regions 
and Fig. 7 the error images. We can observe that in 
both linear and nonlinear cases, the MLP reduces the 
error in the different classes, but not so much in the 
border areas, where non-linear effects are more impor-
tant. 

Table 1 shows results obtained with the three 
presented unmixing methods for both the linear and 
non linear simulated images. Assessment of the 
unmixing results is performed by computing the 
RMSE and correlation coefficient between the real and 
the unmixed abundances. In addition, we compute the 
errors between the real and estimated cloud abun-
dances (Cloud-RMSE), where the cloud-abundance is 
defined as the sum of the abundances of all the cloud-
endmembers. Even though the MLP-NN provides 
better results in the simulated image, it is not the case 
when we analyze only the errors in the cloud abun-
dances. From Table 1, three issues should be noticed: 

• Considering separately the abundances of all the 
endmembers (RMSE), the MLP-NN provides better 
results than the LSU methods since the training set 
helps to accurately estimate abundances of similar 
endmembers, and also corrects the non-linearity of 
the spectral mix. 

Simulated Image RMSE Cloud-
RMSE r Cloud-

r 

FCLSU 0.0751 0.0095 0.960 0.997 

NNCLSU 0.0759 0.0127 0.959 0.994 Linear 

MLP-NN 0.0522 0.0100 0.980 0.996 

FCLSU 0.1824 0.0184 0.727 0.986 

NNCLSU 0.1320 0.0209 0.863 0.991 Non 
Linear 

MLP-NN 0.1021 0.0128 0.920 0.994 

Table 1. RMSE and correlation coefficient (r) between 
the real and unmixed abundances, for all the endmem-
bers and only for cloud endmembers. 

• Considering only the abundance of the cloud end-
members (Cloud-RMSE), the FCLSU produces 
lower errors in the linear mixed image since the 
confusion between similar spectral endmembers 
does not affect to the combined cloud abundance. 
As in the previous case, the MLP-NN provides bet-
ter results for the non-linear mixing. 

• The RMSE obtained for NNCLSU is not compara-
ble with the other methods because its abundances 
are not required to sum one, while for the reference 
simulated images they do. 

5 CONCLUSIONS  

In this work, we have analyzed two linear and one 
nonlinear spectral unmixing techniques with 
CHRIS/PROBA images presenting cirrus clouds, and 
with synthetic images generated with both a linear and 
nonlinear mixing approaches. 

The main conclusions extracted from both ex-
periments are the following. 

Results showed that, for all the unmixing meth-
odologies, the final cloud abundance map is very 
sensitive to the endmember identification.  

When unmixing the linearly mixed synthetic image: 

• FCLSU and NNCSLU provide similar results. 

• MLP Neural Network reveals useful to reduce the 
impact of the variability within class due to the ad-
ditional information provided by the supervised 
training. 

When unmixing the non-linearly mixed image: 

• FCLSU and NNCSLU tend to favour the endmem-
ber with a greater similarity to the given spectrum, 
in detriment of other endmembers, thus reducing the 
accuracy in abundance. 

• MLP Neural Network reduces slightly the errors 
but the results are not as robust as expected, espe-
cially in those regions where non-linear mixing is 
more important. 

The approach of using the LSU as input to the 
NN for non-linear unmixing might not be adequate 
since it eliminates the second order mixture informa-
tion. Thus, better results could be obtained using 
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directly a set of spectral bands (or extracted features) 
as input patterns for the MLP Neural Network. 
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