
Parallel morphological neural networks for hyperspectral
image classification on fully heterogeneous and

homogeneous networks of workstations

Javier Plaza, Antonio Plaza, Rosa Pérez, and Pablo Martı́nez

Department of Technology of Computers and Communications,
University of Extremadura, Avda. de la Universidad s/n, E-10071 Cáceres, Spain

E-mail: {jplaza, aplaza, rosapere, pablomar}@unex.es

Hyperspectral imaging is a new technique in remote sensing which allows an airborne/satellite
sensor to collect hundreds of images (at different wavelength channels) for the same area on
the surface of the Earth. Most hyperspectral imaging applications require that a response is
provided quickly enough for practical use. In this paper, we develop a new parallel morpholog-
ical/neural algorithm for thematic classification of hyperspectral images which has been specif-
ically designed to be efficiently executed on fully heterogeneous computing platforms. The
algorithm integrates spatial and spectral information by making use of a special kind of paral-
lel morphological perceptrons specifically developed for this purpose. The performance of the
different implementation strategies adopted for the two main modules (morphological and neu-
ral) is tested in this work by using a collection of hyperspectral image data sets obtained from
real, application-oriented remote sensing missions. Performance tests are conducted in various
homogeneous/heterogeneous computing platforms, including two networks of workstations at
University of Maryland and a Beowulf cluster at NASA’s Goddard Space Flight Center.

1 Introduction

Hyperspectral imaging is an emerging research area concerned with the measurement,
analysis, and interpretation of spectra acquired from a given scene (or specific object) at a
short, medium or long distance by an airborne or satellite Earth observation sensor1. The
concept of hyperspectral imaging was first introduced when NASA’s Jet Propulsion Lab-
oratory (JPL) developed the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS)2.
This instrument covers the wavelength region from 0.4 to 2.5 µm using 224 narrow spec-
tral channels, at a nominal spectral resolution of 10 nm. As a result, a hyperspectral data
cube is typically a stack of hundreds of images collected at different wavelengths, in which
each pixel (vector) has an associated spectral signature or fingerprint that can be accu-
rately used to uniquely characterize underlying objects within the pixel. The resulting data
volume typically exceeds several gigabytes per flightline.

Most currently available techniques for hyperspectral image processing treat the data
cubes not as images, but as unordered listings of spectral measurements with no spatial
arrangement. In thematic classification applications, however, the exploitation of both
spatial and spectral information can be greatly beneficial and represents a highly innovative
contribution. While such integrated spatial/spectral developments hold great promise for
Earth science image analysis, they also introduce new processing challenges3, in particular,
in the context of time-critical applications such as environmental modeling and assessment,
target recognition for military and defense/security deployment, urban planning studies,
wild land fire tracking, biological threat detection, monitoring of oil spills and other types
of chemical contamination.

1



To address the computational needs introduced by advanced processing techniques in
such relevant applications, several efforts have been recently directed towards the incorpo-
ration of high performance computing in remote sensing missions, especially with the ad-
vent of relatively cheap Beowulf clusters4. Although most parallel techniques and systems
for image information processing employed by institutions such as NASA or the European
Space Agency during the last decade have been chiefly homogeneous in nature, a current
trend in the design of systems for analysis and interpretation of the massive volumes of
data provided by space-based Earth science and planetary exploration missions is to utilize
heterogeneous and distributed parallel platforms.

In this paper, we develop a new morphological/neural parallel algorithm for spa-
tial/spectral thematic classification of hyperspectral images which has been specifically
developed to be executed on fully heterogeneous networks of workstations. The algorithm
integrates spatial and spectral information by making use of a special kind of morpholog-
ical perceptrons. The remainder of the paper is structured as follows. Sec. 2 describes
related work in morphological/neural processing. Sec. 3 develops the proposed parallel
algorithm. Sec. 4 provides experimental comparisons with other parallel algorithms for
thematic classification of hyperspectral images. Experimental results are given from the
viewpoint of classification accuracy and parallel performance on a variety of homogeneous
and heterogeneous platforms. Finally, Sec. 5 concludes with some remarks.

2 Related work

Parallelization of low-level image processing algorithms, including morphological opera-
tions4, a special kind of nonlinear image filters which provide an excellent framework for
the integration of spatial and spectral information, has been the subject of several research
studies3. However, the development of parallel approaches dealing with multi-channel im-
agery in the context of remote sensing applications is limited to only a few studies in the
area of cluster-based and distributed computing5. In the latter case, the general approach
for the design of parallel implementations is based on the development of effective heuris-
tics for scheduling iterative task computations on the distributed platform. Quite opposite,
the development of parallel neural network-oriented methods in general remote sensing
applications has been quite popular. Previous research in this area has addressed the im-
pact of neural network partitioning and mapping onto specific parallel architectures such
as clusters of computers6, 7. However, only preliminary results have been reported in the
area of parallel implementations of neural network architectures for hyperspectral image
processing8. In the following section, we describe a novel parallel morphological/neural
supervised classification technique, which performs supervised classification of hyperspec-
tral images taking into account both the spectral and the spatial information contained in
the input hyperspectral data.

3 Parallel algorithm

This section describes a new parallel algorithm for analysis of remotely sensed hyperspec-
tral images. First, we formulate a general optimization problem in the context of fully het-
erogeneous networks, composed of different-speed processors that communicate through

2



links at different capacities9. This type of platform can be modeled as a complete graph
G = (P,E) where each heterogeneous processor pi is weighted by its relative speed wi.
Each edge in the graph models a communication link (e.g., from pi to pj) weighted by its
relative capacity c(i,j). With the above definitions in mind, processor pi will accomplish a
share of αi ×W of the total workload W , with αi ≥ 0 for 1 ≤ i ≤ P and

∑P
i=1 αi = 1.

An abstract view of our problem can be stated in the form of a client-server architecture,
in which the server is responsible for the distribution of work among the P nodes, and the
clients operate with the spatial and spectral information contained in a local partition.

3.1 Parallel morphological feature extraction

The parallel algorithm first performs parallel morphological feature extraction taking into
account the spatial and spectral information in simultaneous fashion. This algorithm con-
sists of moving a kernel (called structuring element in mathematical morphology termi-
nology) around each pixel vector, defining a spatial context around each spectral-based
elements and constructing a so-called morphological profile which can then be used for
classification purposes4.

Two types of partitioning can be adopted for the parallelization of spatial/spectral al-
gorithms such as the one addressed above4. Spectral-domain partitioning subdivides the
volume into small cells or sub-volumes made up of contiguous spectral bands, and as-
signs one or more sub-volumes to each processor. In this work, we adopt a spatial-domain
partitioning approach, in which the same pixel vector is never partitioned among several
processors to avoid additional inter-processor communications. In this case, the window-
based calculations made for each hyperspectral pixel may need to originate from several
processing elements when such elements are located at the border of the local data par-
titions. However, if redundant information such as an overlap border is added to each of
the adjacent partitions to avoid accesses outside the image domain, then boundary data to
be communicated between neighboring processors can be greatly minimized. Our imple-
mentation makes use of a constant structuring element with size of 3 × 3 pixels, which
is repeatedly iterated to increase the spatial context4, and therefore the total amount of
redundant information is minimized. Three different approaches have been tested in the
implementation of the overlapping scatter operation:

• The first one (called MP-1) implements a standard non-overlapping scatter operation
followed by overlap communication for every hyperspectral pixel vector, thus com-
municating small sets of pixels very often.

• The second one (called MP-2) implements a standard non-overlapping scatter op-
eration followed by a special overlap communication which sends all border data
beforehand, but only once.

• The third one (called MP-3) implements a special overlapping scatter operation that
also sends out the overlap border data as part of the scatter operation itself.

A pseudo-code of the proposed parallel algorithm, specifically tuned for heterogeneous
platforms, is given below. The inputs to the algorithm are an N -dimensional cube f ,
where N is the number of spectral bands, and a structuring element with 3× 3 pixel size.
The output is a set of morphological profiles for each pixel f(x, y).

3



1. Obtain information about the heterogeneous system, including the number of proces-
sors, P , the identification numbers, {pi}P

i=1, and processor speeds, {wi}P
i=1.

2. Using B and the information obtained in the previous step, determine the total volume
of information, R, that needs to be replicated from the original data volume, V in
accordance with the selected overlapping scatter communication strategy (MP-1, MP-
2 or MP-3), and let W = V + R.

3. Set αi = (1/wi) · (1/
∑p

j=1(1/wi)) for i ∈ {1 · · ·P}.

4. Use the resulting {αi}P
i=1 to obtain a set of P spatial-domain heterogeneous partitions

(with overlap borders) of W , and send each partition to processor pi, along with B.

5. Calculate (in parallel) the morphological profile, denoted by MP(x, y), for all the
pixels in the local data partitions at each heterogeneous processor.

6. The master collects all the individual results produced by the workers and merges
them together to produce the final output.

3.2 Parallel neural algorithm

The second stage of the parallel algorithm is based on a multi-layer perceptron (MLP) neu-
ral network with back-propagation learning. The network is trained with selected features
from the previous morphological feature extraction stage. This supervised approach has
been shown in previous work to be very robust for classification of hyperspectral imagery8.
Several mapping schemes for implementing the parallel MLP classifier on heterogeneous
networks have been tested:

• The first one (called exemplar partitioning) partitions the training pattern data set so
that each processor determines the weight changes for a disjoint subset of the training
population and then changes are combined and applied to the neural network at the
end of each epoch.

• The second strategy allows us to develop several combinations of neuronal-level as
well as synaptic-level parallelism which have been shown in previous work to signif-
icantly reduce the amount of inter-processor communications at each iteration8:

– In the case of neuronal-level parallelism (also called vertical partitioning), all
the incoming weights to the neurons local to each processor are computed by a
single processor.

– In synaptic-level parallelism, each workstation computes only the outgoing
weight connections of the neurons local to the processor.

– Finally, in the mixed neuronal/synaptic-level parallelism, the hidden layer of the
neural network is partitioned using neuronal-level parallelism, while paralleliza-
tion of the weight connections adopts synaptic-level parallelism7.

The two parallel classifiers tested in this work are the exemplar partitioning-based and
the one with mixed neuronal/synaptic-level parallelism, in which the hidden layer is parti-
tioned using neuronal level parallelism and weight connections are partitioned on the basis

4



of synaptic level parallelism. In the former, the same parallel neural architecture is simply
applied in parallel to different subsets of the training set, where the size in pixels of each
training set depends on the relative speed of the allocated processor. On the other hand, in
the latter approach the input and output layers of the same neural network are common to
all processors, while the hidden layer is partitioned so that each heterogeneous processor
receives a number of hidden neurons which depends on its relative speed. Since the fully
connected MLP network is partitioned into P partitions and then mapped onto P heteroge-
neous processors using the above framework, each processor is required to communicate
with every other processor to simulate the complete network.

A pseudo-code of the parallel back-propagation learning algorithm is given below. The
inputs to the algorithm are an N -dimensional data cube f , a number of classes to be de-
tected C, and a set of pixel vectors fj(x, y) used as training patterns. The output is a set of
per-pixel classification labels.

1. Apply steps 1-3 of the parallel morphological feature extraction algorithm to obtain a
set of values {αi}P

i=1 and use them to obtain a set of P heterogeneous partitions of the
hidden layer and map the resulting partitions among the P heterogeneous processors.

2. Parallel training. For each considered training pattern, the following three parallel
steps are executed:

(a) Parallel forward phase. In this phase, the activation value of the hidden neurons
local to the processors are calculated. For each input pattern, the activation value
for the hidden neurons is calculated using HP

i = ϕ(
∑N

j=1 ωij · fj(x, y)). Here,
the activation values and weight connections of neurons present in other proces-
sors are required to calculate the activation values of output neurons according
to OP

k = ϕ(
∑M/P

i=1 ωP
ki · HP

i ), with k = 1, 2, ..., C. In our implementation,
broadcasting the weights and activation values is circumvented by calculating
the partial sum of the activation values of the output neurons.

(b) Parallel error back-propagation. In this phase, each processor calculates the
error terms for the local hidden neurons. To do so, delta terms for the out-
put neurons are first calculated using (δo

k)P = (Ok − dk)P · ϕ
′
(·), with

i = 1, 2, ..., C. Then, error terms for the hidden layer are computed using
(δh

i )P =
∑P

k=1(ω
P
ki · (δo

k)P ) · ϕ′(·), with i = 1, 2, ..., N .

(c) Parallel weight update. In this phase, the weight connections between the input
and hidden layers are updated by ωij = ωij + ηP · (δh

i )P · fj(x, y). Similarly,
the weight connections between the hidden and output layers are updated using
the expression: ωP

ki = ωP
ki + ηP · (δo

k)P ·HP
i .

3. Classification. For each pixel vector in the input data cube f , calculate (in parallel)∑P
j=1 Oj

k, with k = 1, 2, ..., C. A classification label for each pixel is obtained using
the winner-take-all criterion commonly used in neural networks by finding the cumu-
lative sum with maximum value, say

∑P
j=1 Oj

k∗ , with the winning neuron represented

by k∗ = arg{max1≤k≤C

∑P
j=1 Oj

k}.

5



Table 1. Specifications of processors in a heterogeneous network at University of Maryland.

Processor Architecture Speed (MHz) Main memory (MB) Cache (KB)
p1 Free BSD – i386 Intel Pentium 4 2867 2048 1024

p2, p5, p8 Linux – Intel Xeon 1977 1024 512
p3 Linux – AMD Athlon 2457 7748 512

p4, p6, p7, p9 Linux – Intel Xeon 2783 1024 1024
p10 SunOS – SUNW UltraSparc-5 440 512 2048

p11 − p16 Linux – AMD Athlon 2457 2048 1024

4 Experimental results

4.1 Parallel computing platforms

The parallel platforms considered for evaluation purposes comprise two networks of work-
stations at University of Maryland and a Beowulf cluster at NASA’s Goddard Space Flight
Center, also in Maryland. Their detailed descriptions follow:

• Heterogeneous network. Consists of 16 heterogeneous workstations and four commu-
nication segments. Table 1 shows the properties of the 16 workstations, where pro-
cessors {pi}4i=1 are attached to communication segment s1, processors {pi}8i=5 com-
municate through s2, processors {pi}10i=9 are interconnected via s3, and processors
{pi}16i=11 share the communication segment s4. These segments are interconnected
by three slower communication links with capacities c(1,2) = 29.05, c(2,3) = 48.31,
c(3,4) = 58.14 in milliseconds, respectively. Although this is a simple architecture, it
is also a quite typical and realistic one as well.

• Homogeneous network. Consists of 16 identical Linux workstations {pi}16i=1 with
processor cycle-time of w = 0.0131 seconds per megaflop, interconnected via a com-
munication network where the capacity of all links is c = 26.64 milliseconds.

• Beowulf cluster. Consists of 268 dual Xeons resulting in a total peak performance
of 2.5728 Tflops (http://thunderhead.gsfc.nasa.gov). Each of the nodes has 1 GB of
main memory and 80 GB of local disk space.

4.2 Performance results

The hyperspectral data set used in experiments was collected by the ROSIS airbone imag-
ing spectrometer of the German Aerospace Agency (DLR). It was collected by a flight at
1500 meters altitude over the city of Pavia, Italy. The resulting scene has spatial resolu-
tion of 1.3 meters per pixel and 102 spectral bands. Fig. 1(a) shows the band at 639 nm,
which reveals a dense residential area on one side of the river, as well as open areas and
meadows on the other side. Fig. 1(b) shows ground-truth is available for several areas of
the scene. As reported in previous work, the proposed morphological/neural classifier was
able to provide classification results above 90% using only 578 out of 14655 ground-truth
samples for the training stage, thus outperforming other methodologies able to use only a
limited number of training samples to accurately classify the input hyperspectral image3.

The parallel performance of the proposed algorithm was first evaluated by timing the
different implementations tested for its two main modules (morphological and neural) us-
ing the two networks of workstations at University of Maryland. The execution times

6



Figure 1. (a) Hyperspectral scene of Pavia city, Italy, and (b) Land-cover ground classes.

Table 2. Execution times and load balancing rates (in the parentheses) for the different alternatives tested in the
implementation of the morphological and neural stages of the proposed parallel classifier.

Morphological stage Neural stage
Parallel platform MP-1 MP-2 MP-3 Exemplar Hybrid
Heterogeneous network 267 (1.13) 211 (1.02) 214 (1.03) 156 (1.04) 125 (1.02)
Homogeneous network 279 (1.15) 216 (1.03) 221 (1.04) 178 (1.03) 141 (1.01)

reported on Table 2 for the considered heterogeneous algorithms indicate that the het-
erogeneous implementations were able to adapt to both heterogeneous and homogeneous
computing environments. In order to measure load balance, Table 2 also shows (in the
parentheses) the imbalance scores achieved by the different stages of the parallel algo-
rithm on the two considered networks of workstations. The imbalance is simply defined
as D = Rmax/Rmin, where Rmax and Rmin are the maxima and minima processor
run times across all processors, respectively. Therefore, perfect balance is achieved when
D = 1. As we can see from Table 2, the proposed implementations were effective in terms
of load balance in all cases except for MP-1 which communicates pixels too often.

With the ultimate goal of exploring issues of scalability, Table 3 plots the processing
times (in seconds) and speedups achieved by multi-processor runs with regards to single-
processor runs of each considered algorithm on Thunderhead. The table reveals that MP-2
and hybrid neural parallelism respectively provided the best results for each stage. The
exemplar neural parallelism involved convergence problems resulting from the execution
of several neural classifiers in parallel. This introduced unstability in the speedups and
superlinear effects which were not present in the parallel hybrid approach (only one neural
classifier). Using 256 Thunderhead processors, the combined classifier (based on MP-2
feature extraction and hybrid neural parallelism) was able to provide a highly accurate
classification of the considered hyperspectral scene in only 17 seconds. This represents a
significant improvement over commonly used processing strategies for this kind of high-
dimensional data sets, which can take up several minutes for the considered problem size.

7



Table 3. Processing times in seconds and speedups (in the parentheses) achieved by multi-processor runs of the
considered parallel algorithms on the Thunderhead Beowulf cluster at NASA’s Goddard Space Flight Center.

4 16 36 64 100 144 196 256
MP-1 1177 (1.8) 339 (6.5) 146 (15.0) 81 (27.2) 53 (41.5) 42 (52.4) 37 (59.5) 36 (61.2)
MP-2 797 (2.5) 203 (10.0) 79 (25.8) 39 (52.3) 23 (88.73) 17 (120.0) 13 (157.0) 10 (204.1)
MP-3 826 (2.4) 215 (9.5) 88 (23.3) 45 (45.7) 27 (76.2) 20 () 16 (102.9) 12 (171.5)

2 4 8 16 32 64 128 256
Exmp. 1041 (1.9) 414 (4.8) 248 (8.1) 174 (11.5) 142 (14.1) 99 (20.2) 120 (16.7) 120 (16.7)

Hyb. 973 (1.6) 458 (3.5) 222 (7.2) 114 (14.0) 55 (29.2) 27 (59.5) 15 (107.1) 7 (229.5)

5 Conclusions

In this paper, we have developed a heterogeneous parallel method for classification of re-
motely sensed hyperspectral images using a combined morphological/neural methodology.
Different approaches have been evaluated for the implementation of the morphological
and neural stages, and performance results have been reported in the context of a com-
plex urban classification scenario, using both homogeneous and heterogeneous computing
platforms for validation. Experimental results anticipate that the combination of hetero-
geneous parallel architectures with parallel information extraction algorithm design may
introduce substantial changes in the systems currently used in remote sensing missions.

References

1. A. F. H. Goetz, G. Vane, J. E. Solomon and B. N. Rock, Imaging spectrometry for
Earth remote sensing, Science 228, 1147–1153 (1985).

2. R. O. Green, Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS), Remote Sensing of Environment 65, 227–248 (1998).

3. A. Plaza and C.-I Chang, High performance computing in remote sensing, Chapman
& Hall/CRC Press: Boca Raton, FL (2007).

4. A. Plaza, J. Plaza and D. Valencia, Impact of platform heterogeneity on the design
of parallel algorithms for morphological processing of high-dimensional image data,
Journal of Supercomputing 40, 81–107 (2007).

5. S. Tehranian, Y. Zhao, T. Harvey, A. Swaroop and K. Mckenzie, A robust frame-
work for real-time distributed processing of satellite data, Journal of Parallel and
Distributed Computing 66, 403–418 (2006).

6. V. Kumar, S. Shekhar and M. B. Amin, A scalable parallel formulation of the back-
propagation algorithm for hypercubes and related architectures, IEEE Transactions
on Parallel and Distributed Systems 5, 1073–1090 (1994).

7. S. Suresh, S. N. Omkar, and V. Mani, Parallel implementation of back-propagation
algorithm in networks of workstations, IEEE Transactions on Parallel and Distributed
Systems 16, 24–34 (2005).

8. J. Plaza, R. Perez, A. Plaza, P. Martinez and D. Valencia, Parallel morphologi-
cal/neural classification of remote sensing images using fully heterogeneous and
homogeneous commodity clusters, Proc. IEEE International Conference on Cluster
Computing, 475–482 (2006).

9. A. Lastovetsky, Parallel computing on heterogeneous networks, Wiley-Interscience:
Hoboken, NJ (2003).

8


