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Abstract

Heterogeneous networks of workstations have rapidly
become a cost-effective computing solution in many appli-
cation areas. This paper develops several highly innova-
tive parallel algorithms for target detection in hyperspec-
tral imagery, considered to be a crucial goal in remote
sensing-based homeland security and defense applications.
In order to illustrate parallel performance, we consider four
(partially and fully) heterogeneous networks of worksta-
tions distributed among different locations at University of
Maryland, and also a massively parallel Beowulf cluster at
NASA’s Goddard Space Flight Center. Experimental results
indicate that heterogeneous networks can be used as a vi-
able low-cost alternative to homogeneous parallel systems
in many on-going and planned remote sensing missions.

1. Introduction

Hyperspectral imagers such as the NASA Jet Propulsion
Laboratory’s Airborne Visible Infra-Red Imaging Spec-
trometer (AVIRIS) [6] are now able to record the visible and
near-infrared spectrum (wavelength region from 0.4 to 2.5
micrometers) of the reflected light of an area 2 to 12 kilo-
meters wide and several kilometers long using 224 spectral
bands [3]. The resulting ‘image cube’ is a stack of images
in which each pixel (vector) has an associated spectral sig-
nature or ‘fingerprint’ that uniquely characterizes the un-
derlying objects. The resulting data volume typically com-
prises several GBs per flight. Such wealth of spectral in-
formation provided by last-generation sensors has opened
ground-breaking perspectives in many applications, includ-
ing target detection for military and defense/security de-
ployment. In particular, algorithms for detecting (moving
or static) targets often require timely responses for swift de-
cisions, which depend upon high computing performance
of algorithm analysis [3]. Despite the growing interest in

hyperspectral imaging research, only a few parallel hyper-
spectral algorithms exist in the open literature [7, 8, 5, 15].
However, with the recent explosion in the amount and di-
mensionality of hyperspectral imagery, parallel processing
is expected to become a requirement in most remote sensing
missions [19].

In this paper, we take a necessary first step towards the
comparison of target detection algorithms implemented on
parallel platforms. Although a few dedicated supercomput-
ers have been employed by NASA and other institutions for
this purpose, most of them are fully homogeneous in nature
[4]. Quite opposite, a current trend in scientific and engi-
neering applications is to utilize highly heterogeneous, dis-
tributed platforms which can benefit from local (user) com-
puting resources. In particular, heterogeneous networks of
workstations (NOWs) enable the use of existing resources
[9]. Furthermore, such NOWs provide incremental scala-
bility of hardware components. In other words, well-tuned
parallel programs can be easily scaled to large configura-
tions because additional workstations can always be added
to a heterogeneous NOW. Also, these systems provide a
high-degree of performance isolation, i.e., they allow an-
alyzing parallel performance on a node-by-node basis. Fi-
nally, the technological evolution currently allows hetero-
geneous NOWs to support a variety of different workloads,
including parallel, sequential and interactive jobs, as well
as scalable computation-intensive applications. In particu-
lar, heterogeneous computing greatly benefits from previ-
ous work in dynamic, resource-aware task scheduling and
load balancing in distributed platforms, including Grid sys-
tems [20, 2, 1].

The remainder of the paper is structured as follows. Sec-
tion 2 outlines several considerations for the design of par-
allel target detection algorithms. Section 3 introduces new
heterogeneous algorithms for this purpose. Section 4 as-
sesses the performance of the parallel algorithms by com-
paring their accuracy and parallel properties using several
heterogeneous and homogeneous platforms. Finally, sec-
tion 5 concludes with some remarks.
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2. Parallel algorithm design

2.1 Optimization problem

A fully heterogeneous NOWs can be modeled as a com-
plete graph G = (P,E), where each node models a comput-
ing resource pi weighted by its relative cycle-time wi. Each
edge in the graph models a communication link weighted
by its relative capacity, where cij denotes the maximum ca-
pacity of the slowest link in the path of physical communi-
cation links from pi to pj (we assume that the system has
symmetric costs, i.e., cij = cji. With the above assump-
tions in mind [11], processor pi should accomplish a share
of αi · W of the total workload, denoted by W , to be per-
formed by a certain algorithm, with αi ≥ 0 for 1 ≤ i ≤ P
and

∑P
i=1 αi = 1. Taking into account the standard opti-

mization problem above, an abstract view of our proposed
hyperspectral image processing framework can be simply
given in the form of a client-server architecture, in which a
server processor is responsible for the efficient distribution
of work among the P nodes, the clients operate with the
spectral signatures contained in a local partition, and some
communications may also take place.

2.2 Data partitioning strategies

In a data-driven application environment such as the one
described above, it is important to define efficient data parti-
tioning strategies [18]. Two standard approaches have been
traditionally considered for this purpose in remote sensing
applications [15]:

• Spectral-domain partitioning. This approach subdi-
vides the multi-channel remotely sensed image into
small cells or sub-volumes made up of contiguous
spectral wavelengths.

• Spatial-domain partitioning. This approach breaks the
multi-channel image into slices made up of one or sev-
eral contiguous spectral bands.

In this work, we adopt a hybrid strategy, in which the data is
partitioned into blocks made up of spatially adjacent pixel
vectors which retain the full spectral content associated to
them. This approach has several advantages [13]. First and
foremost, the application of a hybrid partitioning provides a
natural approach for low-level image processing, as it gen-
erally involves a kernel which is repeatedly applied to small
set of neighboring pixels within the image data structure
[18]. A second major reason has to do with the cost of inter-
processor communication.

In order to balance the load of the processors in the het-
erogeneous environment, each processor should execute an
amount of work that is proportional to its speed. Therefore,

two major goals of our partitioning algorithm are: i) to ob-
tain an appropriate set of workload fractions {αi}P

i=1 that
best fit the heterogeneous environment, and ii) to translate
the chosen set of values into a suitable decomposition of the
input data, taking into account the properties of the hetero-
geneous system. To accomplish the above goals, we use a
workload estimation algorithm (WEA) that assumes that the
workload of each processor pi must be directly proportional
to its local memory and inversely proportional to its cycle-
time wi. The algorithm performs the following operations:

1. Obtain necessary information about the heterogeneous
system, including the number of available processors
P , each processor’s identification number {pi}P

i=1,
and processor cycle-times {αi}P

i=1.

2. Set αi = � (P/wi)∑ P
i=1(1/wi)

� for all i ∈ {1, · · · , P}. In

other words, this step first approximates the {αi}P
i=1

so that the amount of work assigned to each processor
is proportional to its speed and αi · wi ≈ const for all
processors.

3. Iteratively increment some αi until the set of {αi}P
i=1

best approximates the total workload to be completed,
W , i.e., for m =

∑P
i=1 αi to W , find k ∈ {1, · · · , P}

so that wk · (αk + 1) = min{wi · (αi + 1)}P
i=1, and

then set αk = αk + 1.

4. Once the set {αi}P
i=1 has been obtained, a further ob-

jective is to produce P partitions of the input hyper-
spectral data set. To do so, we proceed as follows:

• Obtain a first partitioning of the hyperspectral
data set so that the number of rows in each parti-
tion is proportional to the values of {αi}P

i=1.

• Refine the initial partitioning taking into account
the local memory associated to each processor.

3. Parallel target detection algorithms

Four parallel target detection algorithms are described
in this section: parallel automated generation process
(P-ATGP), parallel unsupervised fully constrained least
squares (P-UFCLS) algorithm, parallel iterative error anal-
ysis (P-IEA) algorithm, and a parallel anomaly detector (P-
RXD). The inputs to all discussed algorithms are a hyper-
spectral image cube F with N dimensions, where F(x, y)
denotes the pixel vector at spatial coordinates (x, y), and a
maximum number of targets to be detected, t. The output in
all cases is a set of target pixels {t(1), t(2), · · · , t(t)}.

3.1 P-ATGP

The ATGP algorithm [17] finds a set of spectrally distinct
target pixels vectors using orthogonal subspace projections
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in the spectral domain. Below, we provide a step-by-step
description of our parallel version of this algorithm, specif-
ically adapted to heterogeneous environments:

1. Using the WEA algorithm, the master divides the orig-
inal image cube F into P heterogeneous partitions.
Then, the master sends the partitions to the workers.

2. Each worker finds the brightest pixel in its local par-
tition using t(1)i = arg{max(x,y)F(x, y)T · F(x, y)},
where the superscript T denotes the vector transpose
operation and i = 1, 2, · · · , P . Each worker then
sends the spatial locations of the pixel identified as the
brightest ones in its local partition back to the master.

3. Once all the workers have completed their parts, the
master finds the brightest pixel of the input scene, t(1),
by applying the argmax operator in step 2 to all the
pixels at the spatial locations provided by the work-
ers, and selecting the one that results in the maximum
score. Then, the master sets U = t(1) and broadcasts
this matrix to all workers.

4. Each worker finds (in parallel) the pixel in its lo-
cal partition with the maximum orthogonal projec-
tion relative to the pixel vectors in U, using a
projector given by P⊥

U = I − U(UT U)−1UT ,
where U is the identity matrix. The orthog-
onal space projector P⊥

U is now applied to all
pixel vectors in each local partition to obtain
t
(2)
i = argmax(x,y){(P⊥

U F(x, y))T (P⊥
U F(x, y))}.

Each worker then sends the spatial location of the re-
sulting local pixels to the master node.

5. The master now finds a second target pixel, t(2), by
applying P⊥

U to the pixel vectors at the spatial loca-
tions provided by the workers, and selecting the one
which results in the maximum score. The master now
sets U = {t(1), t(2)} and broadcasts this matrix to all
workers.

6. Repeat from step 4 until a set of t target pixels,
{t(1), t(2), · · · , t(t)}, are extracted from the input data.

3.2 P-UFCLS

The UFCLS algorithm [3] generates a set of t targets us-
ing the concept of least square-based error minimization.
Our parallel version of UFCLS (called P-UFCLS) assumes
that P processors are available and uses a master-slave im-
plementation, in which a master processor coordinates the
activities carried out by P worker processors. The algo-
rithm uses the following steps:

1. Execute steps 1-3 of the P-ATGP algorithm to obtain
t(1), the brightest pixel of the input scene, and broad-
cast U = t(1) to all the workers.

2. Each worker forms a local error image E(i) by calcu-
lating the least squares-based error for each pixel vec-
tor in the input data represented in terms of a fully con-
strained linear mixture of all the spectra in U.

3. Each worker then finds the pixel F(x, y) in the local
partition with the largest associated score in the error
image E(i). The spatial coordinates of this pixel (and
its associated error score) are sent back to the master.

4. The master obtains a second target t(2) by selecting the
pixel vector with largest associated error score from
the pixel vectors at the spatial locations provided by
the workers and broadcasts U = {t(1), t(2)} to the
workers.

5. Repeat from step 4 to incorporate a new target pixel
t(3), t(4), · · · , t(t) to U until a set of t target pixels have
been extracted.

3.3 P-IEA

The IEA algorithm [12] is similar to the UFCLS in the
sense that both of them make use of least square-based er-
ror minimization to search for possible targets. While the
P-UFCLS algorithm finds a pixel with the largest vector
length to be used as its initial pixel to start the algorithm,
the P-IEA calculates (in parallel) the sample mean vector
for initialization. It should be noted that this choice does not
necessarily have to be better than the brightest pixel used
by P-UFCLS; it is simply a different initialization parame-
ter. As a result, the only input parameter is the number of
targets to be extracted, and the spectral signatures returned
by the algorithm correspond to real pixel vectors in the data
cube.

3.4 P-RXD

Finally, we provide a parallel version of an anomaly de-
tection algorithm originally proposed by Reed and Xiaoli
[16] and referred to as RXD, which has also been widely
used for target detection purposes. It finds target pixels
which are spectrally distinct from their neighboring pixels.
Our parallel algorithm is given by the following steps:

1. Divide the original image cube F into P partitions us-
ing the WEA algorithm.

2. The master calculates the N-dimensional mean vector
m concurrently, where each component is the average
of the pixel values of each spectral band of the unique
set. This vector is formed once all the processors finish
their parts. At the same time, the master also calculates
the sample spectral covariance matrix K concurrently
as the average of all the individual matrices produced
by the workers using their respective portions.
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3. Using the above information, each worker applies (lo-
cally) a so-called RXD filter given by the well-known
Mahalanobis distance [3] to all the pixel vectors in
the local partition as follows: δ(RXD)(F(x, y)) =
(F(x, y) − m)T K−1(F(x, y) − m).

4. The master now selects the t pixel vectors with higher
associated value of δ(RXD), and uses them to form a
final set of targets {t(1), t(2), · · · , t(t)}.

4. Experimental results

4.1 Parallel computing architectures

The parallel computing architectures used in this study
comprise four NOWs distributed among different loca-
tions at University of Maryland and the Thunderhead Be-
owulf cluster at NASA’s Goddard Space Flight Center
(see http://thunderhead.gsfc.nasa.gov). The NOWs were
custom-designed in order to approximate a recently pro-
posed framework for evaluation of heterogeneous parallel
algorithms [10], which relies on the assumption that a het-
erogeneous algorithm cannot be executed on a heteroge-
neous network faster than its homogeneous version on the
equivalent homogeneous network. In [10], a homogeneous
computing environment is considered equivalent to the het-
erogeneous one in light of the three following principles:

1. Both environments should have exactly the same num-
ber of processors.

2. The speed of each processor in the homogeneous envi-
ronment should be equal to the average speed of pro-
cessors in the heterogeneous environment.

3. The aggregate communication characteristics of the
homogeneous environment should be the same as
those of the heterogeneous environment.

With the above three principles in mind, a heterogeneous
algorithm may be considered optimal if its efficiency on a
heterogeneous network is the same as that evidenced by its
homogeneous version on the equivalent homogeneous net-
work. This allows using the parallel performance achieved
by the homogeneous version as a benchmark for assess-
ing the parallel efficiency of the heterogeneous algorithm.
The four considered networks are considered approximately
equivalent under the above framework. Their description
follows:

• Fully heterogeneous network. Consists of 16 differ-
ent workstations, and four communication segments.
Table 1 shows the properties of the 16 heterogeneous
workstations, where processors {pi}4

i=1 are attached to

Table 2. Capacity of communication links
(in time in milliseconds to transfer a one-
megabit message).

Processor p1 − p4 p5 − p8 p9 − p10 p11 − p16
p1 − p4 19.26 48.31 96.62 154.76
p5 − p8 48.31 17.65 48.31 106.45
p9 − p10 96.62 48.31 16.38 58.14
p11 − p16 154.76 106.45 58.14 14.05

communication segment s1, processors {pi}8
i=5 com-

municate through s2, processors {pi}10
i=9 are intercon-

nected via s3, and processors {pi}16
i=11 share the com-

munication segment s4. The communication links be-
tween the different segments {sj}4

j=1 only support se-
rial communication. For illustrative purposes, Table 2
also shows the capacity of all point-to-point commu-
nications in the heterogeneous network, expressed as
the time in milliseconds to transfer a one-megabit mes-
sage between each processor pair (pi, pj) in the het-
erogeneous system. As noted, the communication net-
work of the fully heterogeneous network consists of
four relatively fast homogeneous communication seg-
ments, interconnected by three slower communication
links with capacities c(1,2) = 29.05, c(2,3) = 48.31,
c(3,4) = 58.14 in milliseconds, respectively. Although
this is a simple architecture, it is also a quite typical
and realistic one as well.

• Fully homogeneous network. Consists of 16 identi-
cal Linux workstations with processor cycle-time of
w = 0.0131 seconds per megaflop, interconnected via
a homogeneous communication network where the ca-
pacity of links is c = 26.64 milliseconds.

• Partially heterogeneous network. Formed by the set of
16 heterogeneous workstations in Table 1 but intercon-
nected using the same homogeneous communication
network with capacity c = 26.64 milliseconds.

• Partially homogeneous network. Formed by 16 identi-
cal Linux workstations with cycle-time of w = 0.0131
seconds per megaflop, but interconnected using the
heterogeneous network shown in Table 2.

In order to test the proposed algorithms on a larger-scale
parallel platform, we have also experimented with Thun-
derhead, a 256-node Beowulf cluster at NASA’s Goddard
Space Flight Center. This system is composed of 256 dual
2.4 GHz Intel Xeon nodes, each with 1 GB of main mem-
ory, 80 GB of disk space and 512 KB of cache, intercon-
nected via 2 GHz optical fibre Myrinet. The total peak per-
formance of the system is 2457.6 Gflops. The operating
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Table 1. Specifications of heterogeneous processors.
Processor Architecture Cycle-time (secs/megaflop) Main memory (MB) Cache (KB)

p1 Free BSD – i386 Intel Pentium 4 0.0058 2048 1024
p2, p5, p8 Linux – Intel Xeon 0.0102 1024 512

p3 Linux – AMD Athlon 0.0026 7748 512
p4, p6, p7, p9 Linux – Intel Xeon 0.0072 1024 1024

p10 SunOS – SUNW UltraSparc-5 0.0451 512 2048
p11 − p16 Linux – AMD Athlon 0.0131 2048 1024

system used at the time of measurements was Linux Red-
Hat 8.0, and MPICH was the message-passing library used.

4.2 Hyperspectral data

The image scene used for experiments in this work was
collected by the AVIRIS instrument, which was flown by
NASA’s Jet Propulsion Laboratory over the World Trade
Center (WTC) area in New York City on September 16,
2001, just five days after the terrorist attacks that collapsed
the two main towers and other buildings in the WTC com-
plex. The full data set selected for experiments consists of
2133x512 pixels, 224 spectral bands and a total size of (ap-
proximately) 1 GB. The spatial resolution is 1.7 meters per
pixel. Fig. 1 shows a false color composite of the data
set selected for experiments using the 1682, 1107 and 655
nm channels, displayed as red, green and blue, respectively.
Vegetated areas appear green in Fig. 1, while burned areas
appear dark gray. Smoke coming from the WTC area (in the
red rectangle) and going down to south Manhattan appears
bright blue due to high spectral reflectance in the 655 nm
channel.

In this work, we use a U.S. Geological Survey thermal
map (available online: http://pubs.usgs.gov/of/2001/ofr-01-
0429/hotspot.key.tgif.gif) which shows the target locations
of the thermal hot spots at the WTC area, displayed as bright
red, orange and yellow spots in Fig. 1. The map is centered
at the region where the towers collapsed, and the tempera-
tures range from 700F to 1300F. This thermal map will be
used in this work as ground-truth to validate the target de-
tection accuracy of the proposed parallel algorithms.

4.3 Performance evaluation

Before empirically investigating the parallel perfor-
mance of the proposed heterogeneous parallel algorithms,
we first evaluate their target detection accuracy in the con-
text of the considered application. Table 3 shows the spec-
tral angle distance (SAD) [3] between the most similar tar-
get pixels detected by P-ATGP, P-UFCLS, P-IEA and P-
RXD and the pixel vectors at the known target positions
(labeled from ‘A’ to ‘H’ in Fig. 1). In all cases, the number
of target pixels to be detected, t, was set to 18 after calcu-
lating the intrinsic dimensionality of the data. It is worth
noting that the SAD between two pixel vectors at different

Table 3. Spectral similarity between target
pixels and known ground targets.

Hot P-ATGP P-UFCLS P-IEA P-RXD
spot (1263) (916) (948) (1392)
‘A’ 0.002 0.123 0.126 0.004
‘B’ 0.001 0.005 0.005 0.008
‘C’ 0.005 0.012 0.021 0.003
‘D’ 0.003 0.002 0.005 0.012
‘E’ 0.008 0.026 0.031 0.021
‘F’ 0.001 0.169 0.169 0.008
‘G’ 0.001 0.001 0.009 0.011

spatial locations, say F(x, y) and F(x′, y′), was calculated
using the following expression: SAD(F(x, y), F(x′, y′)) =
cos−1[(F(x, y) · F(x′, y′))/(‖F(x, y)‖ · ‖F(x′, y′)‖). The
lower the SAD score, the more similar the two pixel vectors
are. As shown by Table 3, the P-ATGP extracted targets
were almost identical, spectrally, to the known ground-truth
targets. A similar comment applies to P-RXD, although
some of the targets extracted by this algorithm showed less
spectral similarity with regards to the ground-truth in Fig.
1. Finally, both the P-UFCLS and P-IEA could not accu-
rately detect several target pixels, including the one labeled
as ‘F’ which corresponds to a thermal hot spot with high
(700F) temperature. For illustrative purposes, Table 3 also
gives processing times in seconds for the sequential ver-
sions (implemented using the GNU-C/C++ compiler in its
4.0 version) of the algorithms above on a single processor of
the Thunderhead Beowulf cluster. The table reveals that P-
ATGP was slightly faster than P-UFCLS and P-IEA on the
considered mono-processor environment, while the P-RXD
was the most computationally expensive algorithm, mainly
due to covariance matrix calculations. In all cases, process-
ing times were quite significant, with more than fifteen min-
utes of computation for the considered problem size.

In order to improve computational performance, we
tested the parallel heterogeneous versions above on the five
considered parallel platforms. The algorithms were imple-
mented using C++ with calls to message passing interface
(MPI). We made use of MPI derived datatypes to directly
scatter hyperspectral data structures, which may be stored
non-contiguously in memory, in a single communication
step. To investigate their parallel properties, the algorithms
were first tested by timing the parallel versions on the four
considered NOWs. Table 4 shows the measured execution
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Figure 1. AVIRIS hyperspectral (left) and location of fires in the World Trade Center area (right).

times for the proposed parallel heterogeneous algorithms
and their respective homogeneous versions. It is impor-
tant to emphasize that the homogeneous versions were ob-
tained by simply replacing step 3 of the WEA algorithm
with αi = P/W for all i ∈ {1, 2, · · · , P}. In the table, we
denote the homogeneous versions by using ‘H-’ instead of
‘P-’ to distinguish them from the standard, parallel hetero-
geneous versions.

As expected, the execution times reported on Table 4
show that the heterogeneous algorithms were able to adapt
much better to fully (or partially) heterogeneous environ-
ments than the homogeneous versions, which only per-
formed satisfactorily on the fully homogeneous network.
One can see that the heterogeneous algorithms were always
several times faster than their homogeneous counterparts in
the fully heterogeneous NOW, and also in both the partially
homogeneous and the partially heterogeneous networks. On
the other hand, the homogeneous algorithms only slightly
outperformed their heterogeneous counterparts in the fully
homogeneous NOW.

Table 4 also indicates that the performance of the het-
erogeneous algorithms on the fully heterogeneous platform
was almost the same as that evidenced by the equivalent
homogeneous algorithms on the fully homogeneous NOW.
This indicated that the proposed heterogeneous algorithms
were always close to the optimal heterogeneous modifica-
tion of the basic homogeneous ones. On the other hand, the
homogeneous algorithms performed much better on the par-
tially homogeneous network (made up of processors with
the same cycle-times) than on the partially heterogeneous
network. This fact reveals that processor heterogeneity has
a more significant impact on algorithm performance than
network heterogeneity, a fact that is not surprising given our
adopted strategy for data partitioning in the design of par-
allel heterogeneous algorithms. Finally, Table 4 shows that
the homogeneous versions only slightly outperformed the

heterogeneous algorithms in the fully homogeneous NOW.
This clearly demonstrates the flexibility of the proposed het-
erogeneous algorithms, which were able to adapt efficiently
to the four considered environments.

To further explore the parallel properties of the consid-
ered algorithms in more detail, an in-depth analysis of com-
putation and communication times achieved by the differ-
ent methods is also highly desirable. For that purpose, Ta-
ble 5 shows the total time spent by the tested algorithms in
communications and computations in the four considered
networks, where two types of computation times were ana-
lyzed, namely, sequential (those performed by the root node
with no other parallel tasks active in the system, labeled as
SEQ in the table) and parallel (the rest of computations, i.e.,
those performed by the root node and/or the workers in par-
allel, labeled as PAR in the table). The latter includes the
times in which the workers remain idle.

It can be seen from Table 5 that, among all consid-
ered heterogeneous parallel algorithms, SEQ scores were
particularly significant for the P-UFCLS and P-IEA algo-
rithms. This is mainly due to the fact that these algo-
rithms involve several steps based on sequential computa-
tions. SEQ scores were also relevant for the P-ATGP and
P-RXD, which involve several gather/scatter operations fol-
lowed by compute-intensive orthogonal space projections
and covariance computations at the master, which need to
be completed in sequential fashion before a new parallel
operation can be accomplished by the workers. Finally, it
can also be seen from Table 5 that the cost of parallel (PAR)
computations dominated that of communications (COM) in
all the considered parallel algorithms. In particular, the ra-
tio of PAR to COM scores achieved by the homogeneous al-
gorithms executed on the (fully or partially) heterogeneous
network was very high, but this is mainly due to a less effi-
cient workload distribution among the heterogeneous work-
ers. Therefore, a study of load balance is highly required to
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Table 4. Execution times (seconds) of heterogeneous algorithms and their homogeneous versions.
Algorithm Fully heterogeneous Fully homogeneous Partially heterogeneous Partially homogeneous
P-ATGP 84 89 87 88
H-ATGP 667 81 638 374
P-UFCLS 51 56 55 56
H-UFCLS 506 50 497 253
P-IEA 54 59 60 63
H-IEA 524 51 538 263
P-RXD 104 112 107 109
H-RXD 724 101 702 421

fully substantiate the parallel properties of the considered
algorithms.

To analyze the issue of load balance in more detail, Ta-
ble 6 shows the imbalance scores achieved by the parallel
algorithms on the four considered networks. The imbalance
is defined as D = Rmax/Rmin, where Rmax and Rmin are
the maxima and minima processor run times, respectively.
Therefore, perfect balance is achieved when D = 1. In
the table, we display the imbalance considering all proces-
sors, Dall, and also considering all processors but the root,
Dminus. As we can see from Table 6, only the P-ATGP was
able to provide values of Dall close to 1 in all considered
networks, with P-RXD being able to produce results which
are also relatively close to 1. Further, the P-ATGP provided
almost the same results for both Dall and Dminus while, for
the other tested methods, load balance was generally better
when the root processor was not included. While the ho-
mogeneous algorithms executed on the (fully or partially)
heterogeneous networks provided the highest values of Dall

and Dminus (and hence the highest imbalance), the hetero-
geneous algorithms executed on the homogeneous network
resulted in values of Dminus which were close to 1. It is our
belief that the (relatively high) unbalance scores measured
for the P-UFCLS and P-IEA algorithms, in particular, when
these are executed on the fully heterogeneous network, are
not due to memory considerations or to an inefficient al-
location of data chunks to heterogeneous resources, but to
the impact of communications. Our future research will in-
clude considerations about the heterogeneous communica-
tion network in the data partitioning algorithm [14].

Taking into account the results presented above, and with
the ultimate goal of exploring issues of scalability, we have
also compared the performance of the parallel target de-
tection algorithms on NASA’s Thunderhead Beowulf clus-
ter. For that purpose, Fig. 2 plots the speedups achieved
by multi-processor runs of the heterogeneous parallel al-
gorithms over their corresponding single-processor runs on
Thunderhead. It can be seen from Fig. 2 that P-ATGP
scaled significantly better than both P-UFCLS and P-IEA,
and only slightly better than P-RXD. This has to do with the
high number of sequential computations involved in both P-
UFCLS and P-IEA. For instance, using 256 processors, all
algorithms were able to complete their calculations in only

6 or 7 seconds. The above results represent significant im-
provements over the single-processor versions of the same
algorithms, which can take up to several minutes of compu-
tation for the considered problem.

Figure 2. Scalability of heterogeneous paral-
lel algorithms on Thunderhead.

5. Conclusions

This paper described several innovative parallel algo-
rithms for target detection in hyperspectral data sets. As
a case study of specific issues involved in the exploitation
of heterogeneous computing systems for remote sensing
applications, we provided a detailed discussion on the ef-
fects that platform heterogeneity has on degrading paral-
lel performance of target detection algorithms. The eval-
uation strategy conducted in this work was based on ex-
perimentally assessing heterogeneous algorithms by com-
paring their efficiency on (fully or partially) heterogeneous
networks of workstations with the efficiency achieved by
their homogeneous versions on equally powerful homoge-
neous networks. Experimental results indicate that het-
erogeneous networks represent a source of computational
power that is both accessible and applicable to obtaining
results quickly enough and with high reliability in many
on-going and planned Earth observing and planetary explo-
ration missions.
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Table 5. Communication (COM), sequential computation (SEQ) and parallel computation (PAR) times.

Fully heterogeneous Fully homogeneous Partially heterogeneous Partially homogeneous
COM SEQ PAR COM SEQ PAR COM SEQ PAR COM SEQ PAR

P-ATGP 7 19 58 11 16 62 8 18 61 8 20 60
H-ATGP 14 19 634 6 16 59 9 18 611 12 20 342
P-UFCLS 4 27 20 7 24 25 6 27 22 8 26 22
H-UFCLS 9 27 470 3 24 23 5 27 465 13 26 214
P-IEA 9 33 12 13 28 18 10 29 21 10 28 25
H-IEA 17 33 474 7 28 16 9 29 500 11 28 226
P-RXD 9 18 77 13 19 90 10 21 76 10 22 77
H-RXD 17 22 685 7 18 76 9 19 674 13 23 485

Table 6. Load balancing rates for the heterogeneous algorithms and their homogeneous versions.
Fully heterogeneous Fully homogeneous Partially heterogeneous Partially homogeneous
Dall Dminus Dall Dminus Dall Dminus Dall Dminus

P-ATGP 1.19 1.05 1.16 1.03 1.24 1.06 1.22 1.03
H-ATGP 1.62 1.23 1.20 1.06 1.67 1.26 1.41 1.05
P-UFCLS 1.49 1.06 1.51 1.05 1.69 1.06 1.54 1.08
H-UFCLS 1.68 1.25 1.54 1.11 1.75 1.34 1.77 1.09
P-IEA 1.69 1.08 1.54 1.07 1.77 1.08 1.59 1.10
H-IEA 1.82 1.29 1.58 1.15 1.86 1.41 1.82 1.11
P-RXD 1.20 1.05 1.17 1.04 1.25 1.06 1.23 1.05
H-RXD 1.64 1.25 1.19 1.07 1.65 1.29 1.44 1.06
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