Efficient Multi-Band Texture Analysis for Remotely
Sensed Data Interpretation in Urban Areas

Javier Plaza, Antonio Plaza

Department of Computer Science, University of Extremadura
Avda. de la Universidad s/n, E-10071 Caceres, Spain

Email: {jplaza, aplaza} @unex.es

Abstract— Texture analysis is a long-standing and important
problem in image-based urban characterization. A variety of ap-
proaches and methods have been proposed in the past to deal with
urban texture segmentation and classification. However, texture
characterization is particularly complex when the image data
is composed of several spectral bands at different wavelengths,
as in the case of remotely sensed hyperspectral images, in which
hundreds of spectral bands are often available. Such images have
two domains which can be analyzed: the spectral domain and the
spatial domain. In this paper, we develop a joint spatial/spectral
classification approach for hyperspectral imagery which is shown
to perform effectively in highly complex urban environments.
Experimental results are provided using a hyperspectral scene
with extensive ground-truth, collected over the town of Pavia
in Italy. To address the high computational requirements of the
algorithm, we also develop a parallel implementation which is
tested in this work using a massively parallel supercomputer at
NASA’s Goddard Space Flight Center in Maryland.

I. INTRODUCTION

The integration of spatial and spectral responses in hy-
perspectral image analysis has been identified as a highly
desirable objective by the remote sensing community, in
particular for urban data analyses in which the high spec-
tral dimensionality of the data is often complemented by
very high spatial resolution [1], [2]. The need for joint spa-
tial/spectral approaches results from shortcomings of available
data processing techniques. For instance, previous research has
demonstrated that the high-dimensional data space spanned by
hyperspectral data sets is usually empty, indicating that the
data structure involved exists primarily in a subspace [3]. A
commonly used approach to reduce the dimensionality of the
data is the principal component transform (PCT). However,
this approach is characterized by its global nature and cannot
preserve subtle spectral differences required to obtain a good
discrimination of classes [4], [5]. Further, this approach relies
on spectral properties of the data alone, thus neglecting the
information related to the spatial arrangement of the pixels in
the scene. As a result, there 1s a need for feature extraction
techniques able to integrate the spatial and spectral information
available from the data simultancously [6]. In this contex,
texture information may assist in accurately characterizing
the data, although it is worth noting that most available
techniques to characterize multi-band texture are based on the
consideration of spectral information separately from spatial
information, and thus the two types of information are not
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treated simultaneously. By taking into account the complemen-
tary nature of spatial and spectral information in simultaneous
fashion, it may be possible to alleviate the problems related to
each of them taken separately and improve segmentation and
classification results in urban analysis scenarios.

While such integrated spatial/spectral developments hold
great promise in the field of remote sensing data analysis, they
introduce new processing challenges [7]. In particular, there
is a need for fast response in many hyperspectral imaging
oriented applications. For instance, real-time response is re-
quired in time-critical studies such as detection and monitoring
of fires in urban areas, or in target detection for military
purposes. The concept of Beowulf cluster was developed,
in part, to address such challenges. The goal was to create
parallel computing systems from commodity components to
satisfy specific requirements for the Earth and space sciences
community.

To address the need for cost-effective and innovative algo-
rithms in this emerging new area, this paper develops a novel
three-stage process for computationally efficient classification
of hyperspectral urban imagery. The process consists of the
following stages:

1) First, we quantize the spatial and the spectral informa-
tion contained in the hyperspectral urban data set (in
simultaneous fashion) by using mathematical morphol-
ogy [8] concepts. Morphology is a consolidated, spatial-
based image processing technique which has been shown
to be successful for characterization of urban areas. In
this work, we develop several vector-ordering strategies
to extend mathematical to multi-dimensional imagery
[9], and further propose a set of extended morphologi-
cal texture features, obtained from increasing series of
morphological opening and closing operations.

2) Second, we construct a training set based on morpholog-
ical features and use it to train a multi-layer perceptron
(MLP) neural network architecture which is effectively
trained [10] to discriminate among the considered urban
classes.

The remainder of the paper is organized as follows. Sec-
tion II describes the proposed methodology for morpholog-
ical/neural classification. In order to account for the heavy
computational load introduced by the proposed multi-band
texture analysis approach in hyperspectral urban analysis en-



vironments, Section I1I develops parallel processing support
for the two stages of the proposed algorithm. In section IV
the proposed approach is quantitatively and comparatively
assessed in the context of urban mapping applications by draw-
ing comparisons to other standard classification approaches,
using an urban data set (with extensive ground-truth) collected
over the town of Pavia, Italy, by the Digital Airborne Imaging
Spectrometer (DAIS 7915) in the framework of the EU Hy-
Sens campaign led by DLR. Performance data are measured
in a massively parallel Beowulf cluster called Thunderhead
and available at NASA’s Goddard Space Flight Center in
Maryland.

II. MORPHOLOGICAL/NEURAL CLASSIFICATION
In this section we describe a new methodology for the
classification of urban hyperspectral images. First, we briefly
introduce the similarity metric used in this work to perform
spectral matching. Then, a morphological feature extraction
algorithm based is presented. Finally, we describe the MLP
classifier used in this work.

A. Spectral similarity metric

Let us first denote by f a hyperspectral image defined
on an N-dimensional (N-D) space, where N is the number
of channels or spectral bands in the image. A widely used
technique to measure the similarity between spectral signatures
in the input data is the spectral angle mapper (SAM) [11],
which can be used to measure the spectral similarity between
two pixel vectors, f{x,y) and f(7, 7), i.e., two N-D vectors at
discrete spatial coordinates (x,y) and (i. j) € Z2, as follows:

flz,y) - £(i,5)
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B. Morphological feature extraction algorithn

SAM(f (2, y), f(i,5)) = cos™"
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The proposed feature extraction method is based on mathe-
matical morphology [8] and spectral matching concepts. The
goal is to impose an ordering relation (in terms of spectral
purity) in the set of pixel vectors lying within a spatial search
window (called structuring element) designed by B. This is
done by defining a cumulative distance between a pixel vector
f(z,y) and all the pixel vectors in the spatial neighborhood
given by B (B-neighborhood) as follows [9]: D g|f(z,y)]
>0 20 SAM(f (2, ), f(i, )], where (z,y) refers to spatial
coordinates in the B-neighborhood. From the above definitions,
two standard morphological operations called erosion and
dilation can be respectively defined as follows:
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Using the above operations, the opening filter is defined as
an erosion followed by a dilation:

(foB)(z,y) =[(f®C) @ Bl(z,y) “)

On the other hand, the closing filter is defined as a dilation
follwed by an erosion:

(f o B)(z,y) = [(f ® C) ® B](z,y) Q)

The composition of opening and closing operations is called
a spatial/spectral profile [6], which is defined as a vector
which stores the relative spectral variation for every step of
an increasing series. Let us denote by {(f o B)*(z,y)}, A =
{0, 1, ..., k}, the opening series at f(z,y), meaning that sev-
eral consecutive opening filters are applied using the same
window B. Similarly, let us denote by {(f  B)*(z,y)}, A =
{0,1,..., k}, the closing series at f(x,y). Then, the spa-
tial/spectral profile at f(x,y) is given by the following vector:

p(z,y) = {SAM((f o B)* (=, y), (f e B)* (z,9))}
U {SAM((f  B)* (z,),(f ¢ B)* (z,9))} (6)

Here, the step of the opening/closing series iteration at which
the spatial/spectral profile provides a maximum value gives an
intuitive idea of both the spectral and spatial distribution in the
B-neighborhood [6]. As a result, the profile can be used as a
feature vector on which the classification is performed using
a spatial/spectral criterion.

C. Multilayer perceptron classifier

In this section we describe a supervised classifier based
on a multi-layer perceptron (MLP) neural network with back-
propagation learning, which is trained with the spatial/spectral
features resulting from the morphological feature extraction al-
gorithms. This neural architecture has been shown in previous
work to be robust for classification of hyperspectral imagery
[10], but the use of morphological features as input features
for the classification represents a novel contribution.
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Fig. 1. MLP neural network topology.

The architecture adopted for the proposed MLP-based neu-
ral network classifier is shown in Iig. 1. The number of input
neurons equals the number of spectral bands acquired by the



sensor. However, in the case of PCT-based pre-processing
commonly adopted in hyperspectral analysis or our proposed
morphological feature extraction, the number of neurons at
the input layer equals the dimensionality of feature vectors
used for classification purposes. The second layer is the hidden
layer, in which the number of nodes, M, is usually estimated
empirically. Finally, the number of neurons at the output layer,
C, equals the number of distinct classes to be identified in the
input data. With the above architecture in mind, the standard
back-propagation learning algorithm used by the MLP neural
architecture in Fig. 1 can be outlined by the following steps:

1) Forward phase. Let the individual components of an in-
put pattern be denoted by f;(x,y), with 7 = 1,2, ..., N.
The output of the neurons at the hidden layer are
obtained as: H; — @(Z? y wij + fi(x,y)) with ¢ =
1.2,..., M, where () is the activation function and w;
is the weight associated to the connection between the
i-th input node and the j-th hidden node. The outputs of
the MLP are obtained using O = Q(Z:‘il wi - Hy),
with £ = 1,2, ..., C. Here, wy; 1s the weight associated
to the connection between the i-th hidden node and the
k-th output node.

2) Error back-propagation. In this stage, the differences
between the desired and obtained network outputs are
calculated and back-propagated. The delfa terms for
every node in the output layer are calculated using
0 = (Ox — di) - ¢'(-), with i = 1,2,...,C. Here,
@ (+) 1s the first derivative of the activation function.
Similarly, delta terms for the hidden nodes are obtained
using of Z; ((wri - 07) -(-)), with i = 1,2, ..., M.

3) Weight update. After the back-propagation step, all the
weights of the network need to be updated according
to the delta terms and to 7, a learning rate parameter.
This is done using wy; = wij + -0 - f;(z,y) and
wri = Wi + 107 - H;. Once this stage is accomplished,
another training pattern is presented to the network
and the procedure is repeated for all incoming training
patterns.

Once the back-propagation learning algorithm is finalized, a
classification stage follows, in which each input pixel vector is
classified using the weights is obtained by the network during
the training stage [10]. In this work, training of the neural
network is performed by selecting a random set of pixels from
the known ground-truth of the data. One of our future research
lines is directed towards the automatic selection of the most
useful training patterns for classification purposes.

ITI. PARALLEL IMPLEMENTATION

This section develops a parallel implementation of the
proposed morphological/neural classification technique which
has been specifically optimized for execution on massively
parallel, Beowulf-type commodity clusters. First, we describe
the parallel morphological feature extraction framework ad-
dressing the impact of communications in the parallel architec-
ture. The section concludes with an overview of the proposed

parallel framework for efficient execution of the MLP-based
algorithm with back-propagation learning.

A. Parallel morphological feature extraction

Two types of partitioning can be exploited in the paralleliza-
tion of spatial/spectral algorithms such as the morphological
feature extraction technique presented above [7]. In this work,
we adopt a spatial-domain partitioning approach due to several
reasons. First, the application of spatial-domain partitioning
is a natural approach for morphological image processing, as
many operations require the same function to be applied to a
small set of elements around each data element present in the
image data structure, as indicated in the previous subsection.
A second reason has to do with the cost of inter-processor
communication. In spectral-domain partitioning, the window
(structuring element)-based calculations made for each hy-
perspectral pixel need to originate from several processing
elements, in particular, when such elements are located at the
border of the local data partitions (see Fig. 2), thus requiring
intensive inter-processor communication.
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Fig. 2. Communication framework for the morphological feature extraction
algorithm.

To address the above issues, we have developed a data
replication-based strategy in which border data is replicated
rather than communicated between adjacent processors. This
strategy results in higher computational performance as shown
in previous work [7]. The inputs to the parallel algorithm are
an N-dimensional hyperspectral data cube f and a structuring
element B. The output is a set of morphological profiles for
each pixel. A pseudo-code of the parallel algorithm is given
below:

1) Obtain information about the parallel system, including
the number of processors, P, and each processors iden-
tification number, {p;} .

2) Using B and the information obtained in Step 1, deter-
mine the total volume of information, /2, that needs to be
replicated from the original data volume, V', according
to the data communication strategies outlined above, and
let the total workload W to be handled by the algorithm
be given by W =V + R,

3) Set &y = Pfuwy; for all i@ € {1,.., P}, where w;
is assumed to be the speed of all processors in the
homogeneous parallel cluster.



4) Form = F [ai to (V +R), find k € {1,.., P} so
that wy, - (o + 1) = minfw; - (o + 1)}, and set
ap = ap + 1.

5) Use the resulting {c;}7 | to obtain a set of P spatial-
domain partitions (with overlap borders) of W, and send
each partition to processor p;, along with B.

6) Calculate the morphological profiles p(x,y) for the
pixels in the local data partitions (in parallel) at each
processor in the parallel system.

7) Collect all the individual results and merge them to-
gether to produce the final output.

B. Farallel multi-layer perceptron classifier

The parallel MLP classifier developed in this work is based
on a hybrid partitioning scheme, in which the hidden layer
is partitioned using neuronal level parallelism and weight
connections are partitioned on the basis of synaptic level
parallelism [12]. As a result, the input and output neurons
are common to all processors, while the hidden layer is
partitioned so that each heterogeneous processor receives a
number of hidden neurons which depends on its relative speed.
Each processor stores the weight connections between the
neurons local to the processor. Since the fully connected MLP
network is partitioned into P partitions and then mapped
onto P heterogeneous processors using the above framework,
each processor is required to communicate with every other
processor to simulate the complete network. For this purpose,
each of the processors in the network executes the three phases
of the back-propagation learning algorithm described above.

The inputs to the parallel MLP algorithm are an N-
dimensional image cube f and a set of training patterns
filz,y). The output is a set of classification labels for each
image pixel. The algorithm can be summarized by the follow-
ing steps:

1) Obtain the number of nodes present in the cluster

architecture P which will be used to obtain a set of
P partitions of the hidden layer and map the resulting
partitions among the P processors (which also store the
full input and output layers along with all connections
involving local neurons).

2) Parallel training. For each considered training pattern,

the following three parallel steps are executed:

a) Parallel forward phase. In this phase, the activation
value of the hidden neurons local to the processors
are calculated. For each input pattern, the activation
value for the hidden neurons is calculated using
Hr L,:‘(Zj\ , wij - fi(z,y)). Here, the activation
values and weight connections of neurons present
in other processors are required to calculate the
activation values of output neurons according to
OF = p( M P WP HF), with k= 1,2, ..., C.In
our implementation, broadcasting the weights and
activation values is circumvented by calculating the
partial sum of the activation values of the output
neurons.

b) Farallel error back-propagation. In this phase,
each processor calculates the error terms for the
local hidden neurons. To do so, delta terms for the
output neurons are first calculated using (67)"
(O — di)F - @ (-), with i = 1,2,...,C. Then,
error terms for lhe hid(len layer are computed
using (67)F = P [ (wh - (69)F) - ¢ (), with
i=1,2,. ‘,N.

¢) Parallel weight update. In this phase, the weight
connections between the input and hidden layers
are updated by w;; = wi; +nf - (8 - fi(z,y).
Similarly, the weight connections between the hid-
den and output layers are updated using the ex-

( bo)!’ I ,ff’

3) Classification. For each pixel vector in Ih(. input data
cube f, calculate (in parallel) ZJ’ k with &
1.2,...,C. A classification label [()r Ld(,ll pixel can be
obtained using the winner-take-all criterion commonly
used in neural networks by ﬁndmcr the cumulative
sum with maximum value, say E 07,, with k* =

arg{max<x<c Zj L O3

ssion: wh
pression: wp; u,M } ?

IV. EXPERIMENTAL RESULTS

This section provides an assessment of the effectiveness
of the morphological/neural classification algorithm described
in Section II and its parallel implementation in Section III.
First, we describe the hyperspectral image data set used in
experiments. Then, we briefly describe the parallel computing
architecture used for computational assessment. The setion
concludes with a description of performance results for the
proposed methodology, both from the viewpoint of classifica-
tion accuracy and parallel efficiency.

A. Hyperspectral data

The image data set used in experiments was collected by
the DAIS 7915 airbone imaging spectrometer of DLR. It was
acquired at 1500 m flight altitude over the city of Pavia, Italy.
The scene has a spatial resolution of 5 meters and total size of
400 %400 pixels. Fig. 3(a) shows the image collected at 639 nm
by the DAIS 7915 imaging spectrometer [13], which reveals a
dense residential area on one side of the river, as well as open
areas and meadows on the other side. Ground-truth is available
for several areas of the scene (see Fig. 3(b)), comprising the
following land-cover classes: (1) water; (2) trees; (3) asphalt;
(4) parking lot; (5) bitumen; (6) brick roofs; (7) meadow; (8)
bare soil; (9) shadows. Following a previous research study
on this scene [60], we take into account only 40 spectral bands
of reflective energy, and thus skip thermal infrared and middle
infrared bands above 1958 mm because of low SNR in those
bands.

B. Parallel computing architecture

The parallel computing architecture used in this work to
illustrate performance of our parallel morphological/ neural
technique is a Beowulf cluster called Thunderhead and avail-
able at NASA's Goddard Space Flight Center in Maryland.



Fig. 3.

The system can be seen as an evolution of the HIVE (highly
parallel virtual environment) project, started in 1997 to build
a commodity cluster that was intended to be used by those
who had not built it. The idea was to have workstations
distributed among different locations and a large number of
compute nodes (the compute core) concentrated in one area.
The workstations would share the compute core as though it
was apart of each. The HIVE was also the first commodity
cluster to exceed a sustained 10 Gigaflop on a remote sensing
algorithm. Presently, Thunderhead comprises 256 dual 2.4
GHz Intel Xeon nodes, each with 1 GB of memory and 80 GB
of main memory. The total peak performance of the system is
2457.6 GFlops. Along with the 512-processor computer core,
Thunderhead has several nodes attached to the core with 2
Ghz optical fibre Myrinet.

C. Performance results

Before empirically investigating the performance of parallel
hyperspectral imaging algorithms, we first test the classifica-
tion accuracy of the proposed parallel morphological/neural
classifier using the Pavia data set in Fig. 3(a). A random
sample of 5% of the ground-truth pixels was first chosen from
each of the 9 land-cover classes in Fig. 3(b). Morphological
features were constructed for the selected training samples, and
the resulting features were used to train a back-propagation
MLP classifier with one hidden layer, where the number
of hidden neurons was selected empirically. The number of
hidden neurons was selected as the square root of the product
of the number of input features and information classes. The
trained classifier was then applied to the remaining 95% of
labeled pixels in the scene, yielding the classification result
depicted in Fig. 4.

For illustrative purposes, Table I shows the individual
and overall classification accuracies obtained for each of the
ground-truth classes. The table also includes the classification
accuracies obtained using the full spectral information and
PCT-reduced features as input to the MLP neural classifier. As
shown by the table, morphological input features substantially
improve individual and overall classification accuracies with
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(a) DAIS scene collected over the city of Pavia, Italy, and (b) Land-cover ground classes.
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Fig. 4. Classification using the proposed morphological/neural algorithm.

regards to PCT-based features and the full spectral informa-
tion. This is not surprising since morphological operations
use both spatial and spectral information as opposed to the
other methods which rely on spectral information alone. For
illustrative purposes, Table I also includes (in the parentheses)
the algorithm processing times in seconds for the different
approaches tested, measured on a single processor in the Thun-
derhead system. Experiments were performed using the GNU-
C/C++ compiler in its 4.0 version. As shown by Table I, the
computational cost was slightly higher when morphological
feature extraction was used.

To conclude this section, we investigate the properties of the
parallel algorithm by timing the program on the Thunderhead
Beowulf cluster, using 256 processor (the maximum number
of processors available to us at the time of experiments). The
measured execution times were in the order of 10 seconds
for the morphological feature extraction part of the algorithm
and about 50 seconds for the parallel MLP architecture. As
a result, the proposed classifier was able to provide a highly
accurate classification for the Pavia urban scene in about one
minute. In this regard, the measured processing times represent
a significant improvement over commonly used processing
strategies for this kind of high-dimensional data sets, which



TABLE 1
NUMBER OF TRAINING AND TEST SAMPLES AND CLASSIFICATION ACCURACIES (IN PERCENTAGE) ACHIEVED BY THE MORPHOLOGICAL/NEURAL

CLASSIFIER USING MORPHOLOGICAL FEATURES, PCT-BASED FEATURES AND THE ORIGINAL SPECTRAL INFORMATION (PROCESSING TIMES IN A SINGLE

THUNDERHEAD NODE ARE GIVEN IN THE PARENTHESES).

Class Training samples  Test samples  Spectral info (2981) PCT-based features (3256)  Morphological features (3679)
Water 114 4176 87.30 91.90 100
Trees 101 2 94.64 93.21 98.72
Asphalt 85 1614 97,79 95.43 98.88
Parking lot 59 229 83.82 94.28 7177
Bitumen 65 629 86.11 86.38 98.68
Brick roofs 106 2132 83.69 84.21 99.37
Meadow 62 1183 88.88 89.45 92.61
Bare soil 74 1401 79.85 88.24 95.11
Shadows 52 181 89.64 93.45 96.19
Overall accuracy - - 88.65 86.21 96.16

can take up to more than one hour of computation for the
considered problem size, as indicated by the single-processor
execution times reported on Table 1.

Overall, experimental results in our study reveal that the pro-
posed morphological/meural algorithm offers an accurate and
scalable classification framework for texture-based analysis of
urban hyperspectral images. Contrary to common perception
that spatial/spectral feature extraction and back-propagation
learning algorithms are too computationally demanding for
practical use, results in this paper demonstrate that such
approaches can provide accurate interpretation of complex,
urban environments while, at the same time, being amenable
for efficient parallel implementations, not only due to the
regularity of the computations involved in both algorithms, but
also because they can greatly benefit from the incorporation of
redundant information to reduce sequential computations and
involve minimal communication between the parallel tasks,
namely, at the beginning and ending of such tasks.

V. CONCLUSION

In this paper, we have presented an innovative morpho-
logical/neural algorithm for texture-based classification of
remotely sensed hyperspectral imagery collected over urban
areas. Morphological operations are shown to be useful in
order to preserve the relevant spatial/spectral information that
allows for the separation of classes. Further, the proposed
MLP neural architecture is shown to provide more accurate
classification results when trained with morphological features
instead of standard PCT-based features or the original spectral
information in the data. Finally, we have also provided a
parallel implementation of the proposed framework which has
been specifically designed for massively parallel homogeneous
platforms such as Beowulf clusters. Performance data in a
parallel commodity cluster at NASA's Goddard Space Flight
Center seem to indicate that the parallel algorithm is scalable
and computationally efficient, although further work is still
required to fully substantiate the above remarks.
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