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ABSTRACT

Hyperspectral image processing has been a very active area in

remote sensing and other application domains in recent years.

Despite the availability of a wide range of advanced process-

ing techniques for hyperspectral data analysis, many tech-

niques for hyperspectral data classification are based on the

consideration of spectral information separately from spatial

information information, and thus the two types of informa-

tion are not treated simultaneously. In this paper, we develop

a new technique for joint spatial-spectral classification of hy-

perspectral image data which makes use of opening and clos-

ing by reconstruction, a kind of mathematical morphology

operations which are extended here to hyperspectral images.

A high performance parallel implementation of the proposed

technique is also developed to satisfy time-critical constraints

in remote sensing applications, using NASA’s Thunderhead

Beowulf cluster computer for demonstration purposes.

Index Terms— Hyperspectral imaging, mathematical

morphology, high performance computing.

1. INTRODUCTION

Many currently available techniques for hyperspectral image

processing treat the data not as images, but as unordered list-

ings of spectral measurements with no spatial arrangement.

The importance of analyzing spatial and spectral patterns si-

multaneously has been identified as a desired goal by many

scientists devoted to hyperspectral data analysis [1, 2]. This

type of processing has been approached in the past from var-

ious points of view. For instance, techniques have discussed

the refinement of results obtained by applying spectral-based

techniques to multispectral images (with tens of spectral

channels) through a second step based on spatial context.

Such contextual classification, extended also to hyperspectral

images, accounts for the tendency of certain ground cover

classes to occur more frequently in some contexts than in

others. This approach consists of two parts: the definition of

a pixel neighborhood (surrounding each pixel) and the perfor-

mance of a local operation so that the pixel may be changed

into the label mostly represented in the window that defines

the neighborhood. This operation separates spatial from spec-

tral information, and thus the two types of information are

not treated simultaneously.

In previous work, we have developed extended versions

of classic morphological operations [3] for hyperspectral

scenes which integrate the spatial and spectral information

[4]. Our extended morphological operations make use of a

vector-based approach in which each pixel vector in the scene

is ordered according to its spectral distance to other neigh-

boring pixel vectors in the N -dimensional data set. Based on

the ordering relation defined above, we can define extended

erosion and dilation operations, which respectively select the

pixel which is most spectrally similar and the pixel vector

which is most spectrally distinct to its neighboring pixels. In

order to avoid changing the size and shape of the features

in the image, a desirable feature for spatial/spectral filter-

ing, extended morphological opening and closing operations

have also been defined, respectively, as extended erosion fol-

lowed by extended dilation, and extended dilation followed

by extended erosion [4]. It should be noted that all extended

operators introduced so far are not reconstruction-based [3].

With morphological operations, it is highly desirable that the

image features are either completely retained or completely

removed in accordance with the size and shape of the struc-

turing element, thus allowing one to perform most accurate

classification based on spatial/spectral content.

In this paper, we develop a new parallel algorithm for the-

matic classification of hyperspectral images which has been

specifically developed to be efficiently executed on massively

parallel computing platforms. Parallelism is introduced as an

effective approach to deal with the computational cost of mor-

phological operations [5]. The algorithm integrates spatial

and spectral information by making use of extended open-

ing and closing by reconstruction operations, and then uses

a parallel neural classifier. The paper is structured as fol-

lows. Section 2 presents the proposed framework to extend

morphological opening and closing by reconstruction opera-

tions to hyperspectral images. Section 3 describes the parallel

implementations. Section 4 provides an experimental valida-

tion of the proposed technique using a hyperspectral data set

with extensive ground-truth. This section also includes per-

formance results on NASA’s Thunderhead massively parallel

cluster. Section 5 concludes with some remarks.
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2. EXTENDED MORPHOLOGICAL OPERATIONS

In order to introduce opening and closing by reconstruction

operations for a hyperspectral image F, we adopt a distance-

based technique which utilizes a cumulative distance between

one particular pixel vector F(x, y), where (x, y) indicates the

spatial coordinates, and all the pixel vectors in the spatial

neighborhood given by a SE denoted by K as follows [4]:

CK(F(x, y)) =
∑

(s,t)∈K

SAD(F(x, y), F(s, t)), (1)

where SAD is the spectral angle distance. As a result,

CK(F(x, y)) is given by the sum of SAD scores between

F(x, y) and every other pixel vector in the K-neighborhood.

At this point, we need to define a maximum and an mini-

mum given an arbitrary set of vectors S = {v1, v2, · · · , vp},

where k is the number of vectors in the set. This is done

by computing CK(S) = {CK(v1), CK(v2), · · · , CK(vk)}
and selecting vi such that CK(vi) is the minimum of CK(S),
with 1 ≤ i ≤ k. In similar fashion, we can select vj such that

CK(vj) is the maximum of CK(S), with 1 ≤ j ≤ p. Based

on the definitions above, the extended erosion F�K consists

of selecting the K-neighborhood pixel vector that produces

the minimum CK value as follows [4]:

(F�K)(x, y) = argmin(s,t)∈K{CK(F(x+ s, y + t)}. (2)

On the other hand, the extended dilation F⊕K selects the

K-neighborhood pixel that produces the maximum value for

CK as follows [4]:

(F⊕K)(x, y) = argmax(s,t)∈K{CK(F(x−s, y− t)}. (3)

Based on the above operations, extended morphological

opening and closing can be simply defined, respectively, as

follows: (F ◦ K)(x, y) = [(F � K) ⊕ K](x, y), i.e., erosion

followed by dilation, and (F•K)(x, y) = [(F⊕K)�K](x, y),
i.e., dilation followed by erosion [4]. Again, these operations

are not reconstruction-based. Our extended opening by recon-

struction for each local pixel F(x, y) is given by the following

expression:

(F ◦ K)t(x, y) = mint≤1{δt
K(F ◦ K|F)(x, y)}, (4)

where δt
K(F◦K|F)(x, y) = δBδB · · · δB(F◦K|F)(x, y), i.e.,

the operator δB is applied t times, and δB(F ◦ K|F)(x, y) =
min{[(F ◦ K) ⊕ K](x, y), F(x, y)}. Similarly, the extended

closing by reconstruction for each local pixel F(x, y) is cal-

culated as follows:

(F • K)t(x, y) = mint≤1{δt
K(F • K|F)(x, y)}, (5)

where δt
K(F•K|F)(x, y) = δBδB · · · δB(F•K|F)(x, y), i.e.,

the operator δB is applied t times, and δB(F • K|F)(x, y) =
min{[(F • K) � K](x, y), F(x, y)}.

With the extended opening and closing by reconstruction

operations in mind, we have developed a spatial-spectral fea-

ture extraction algorithm that replaces each hyperspectral im-

age pixel by a so-called extended morphological profile which

integrates the spatial and the spectral information. The algo-

rithm consists of the following steps:

1. Compute the derivative of the extended opening profile

as: p◦
t = {SAD[(F ◦ K)λ(x, y), (F ◦ K)λ−1(x, y)]},

with λ = {1, 2, · · · , t}. Here, F(x, y) = (F◦K)0(x, y)
for λ = 0.

2. Compute the derivative of the extended closing profile

as: p•
t = {SAD[(F • K)λ(x, y), (F • K)λ−1(x, y)]},

with λ = {1, 2, · · · , t}. Here, F(x, y) = (F•K)0(x, y)
for λ = 0.

3. Form a (2t−1)-dimensional profile for each local pixel

F(x, y) by combining the derivatives of the extended

opening and closing profiles as follows: MP(x, y) =
{p◦

t (x, y), p•
t (x, y)}. The resulting profile can be seen

as a spatial-spectral feature vector on which a subse-

quent classification procedure may be applied. In this

work, we have resorted to a parallel multi-layer percep-

tron (MLP) neural network classifier, as described in

the following subsection.

3. PARALLEL IMPLEMENTATIONS

In order to exploit parallelism as much as possible, we have

adopted a standard master-slave parallel processing paradigm

combined with spatial-domain partitioning for the parallel

implementation of morphological operations [5]. Spatial-

domain partitioning subdivides the original data volume into

slabs which are made up of (contiguous) pixel vector rows,

thus retaining the full spectral information associated to each

pixel vector at the same processor. In this type of processing,

additional inter-processor communications will be required

when the SE-based computation needs to be split amongst

several different processing when the SE is centered around a

pixel vector located in the border of one of the local partitions

resulting after spatial-domain decomposition, as illustrated by

Fig. 1(a). In this case, the computations for the pixel vector

at spatial coordinates (5, 3) in the original image, denoted by

F(5, 3), will need to originate from two processing elements

since this pixel becomes a border pixel after spatial-domain

partitioning. As a result, a communication overhead involv-

ing three N -dimensional pixel vectors (located in partition

#2) is required in order to complete the SE-based computa-

tion for the pixel vector F(5, 3) in partition #1. However, if an

overlap border is carefully added to partition #1 (consisting

of the entire first row of pixels allocated to partition #2), as

illustrated in Fig. 1(b), then boundary data no longer need to

be exchanged between neighboring processors.
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Fig. 1. (a) 3×3-pixel morphological computation split among

two processing elements. (b) Introduction of an overlap bor-

der to minimize inter-processor communication in a 3 × 3-

pixel computation.

With the above parallel framework in mind, three differ-

ent strategies have been tested for efficient implementation of

morphological operations. In all cases, the master processor

first partitions the data in the spatial domain and distributes

the partitions to the worker processors as described in Fig.

1(b). Once the workers finalize processing their parts, the

master gathers the individual (2t − 1)-dimensional profiles

provided by the workers and merges them into a new data

cube with 2t−1 components. This approach requires minimal

coordination between the master and the workers, namely, at

the beginning and ending of the parallel process, although it

is subject to a redundant computation overhead introduced by

the overlap borders used by the proposed data partitioning

strategy. In order to analyze this issue in more detail, three

different implementation strategies have been tested:

1. The first one (called MP-1) implements a standard data

partitioning operation followed by overlap border com-

munication for every hyperspectral pixel vector, thus

communicating small sets of pixels very often.

2. The second one (called MP-2) implements a standard

data partitioning operation followed by a special over-

lap communication which sends all border data before-

hand, but only once.

3. The third one (called MP-3) implements a special data

partitioning operation that also sends out the overlap

border data as part of the scatter operation itself.

Once morphological features have been extracted, a ro-

bust classification using a parallel MLP neural network with

backpropagation learning follows (see additional details in

[6]). The parallel classifier is trained with selected features

from the previous morphological feature extraction stage.

Two different partitioning strategies have been tested:

1. The first one (called exemplar partitioning) partitions

the training pattern data set so that each processor de-

termines the weight changes for a disjoint subset of the

training population and then changes are combined and

applied to the neural network at the end of each epoch.

Fig. 2. (a) Band at 639 nm of a DAIS 7915 hyperspectral

image over Pavia, Italy; (b) Ground-truth classes.

2. The second one (called hybrid partitioning) partitions

the hidden layer of the neural network using neuronal-
level parallelism, while parallelization of the weight

connections adopts synaptic-level parallelism.

4. EXPERIMENTAL RESULTS

The classification accuracy of the parallel classification algo-

rithm (comprising parallel morphological feature extraction

followed by parallel neural classification) has been tested us-

ing a hyperspectral data set collected by the DAIS 7915 sensor

over an area comprising several urban features in Pavia, Italy,

in which integration of spatial and spectral features is crucial.

Fig. 2(a) shows the band at 639 nm of the considered hyper-

spectral scene, while Fig. 2(b) shows the ground-truth map

with nine mutually-exclusive classes. The data set comprises

400×400 pixels, each with spatial resolution of 5 meters, and

a total of 40 spectral bands.

In order to test the accuracy of the proposed parallel mor-

phological/neural classifier, a random sample of less than 2%

of the ground truth pixels was used for training. Table 1

shows the individual and overall classification accuracies ob-

tained for each class using standard [4] and extended open-

ing/closing and reconstruction-based operations (with t = 5)

for feature extraction. The table also includes the accura-

cies obtained using the full spectral information and principal

component transform (PCT)-reduced features [2] as input to

the MLP neural classifier. As shown by Table 1, the accura-

cies were higher when reconstruction-based operations were

used due to a better use of spatial-spectral information.

On the other hand, a 256-processor Beowulf cluster

(Thunderhead) at NASA’s Goddard Space Flight Center1

has been used to validate the efficiency of the proposed

parallel algorithms. The Thunderhead cluster is currently

composed of 268 dual 2.4 Ghz Intel 4 Xeon nodes, each with

1 GB of memory and 80 GB of hard disk. Table 2 reports

the processing times (in seconds) and speedups achieved by

1http://thunderhead.gsfc.nasa.gov
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Table 1. Number of training/test samples and classification accuracies (%) achieved by different classifiers.
Ground-truth Training Test Spectral PCT-based Standard Reconstruction-based

class samples samples information features opening/closing opening/closing
Water 114 4176 87.30 91.90 92.55 100.00
Trees 101 2444 94.64 93.21 95.61 98.72

Asphalt 85 1614 97,79 95.43 97.33 98.88
Parking lot 59 229 83.82 94.28 94.87 71.77
Bitumen 65 629 86.11 86.38 90.45 98.68

Brick roofs 106 2132 83.69 84.21 92.12 99.37
Meadow 62 1183 88.88 89.45 88.95 92.61
Bare soil 74 1401 79.85 88.24 92.06 95.11
Shadows 52 181 89.64 93.45 94.11 96.19

Overall accuracy – – 88.65 86.21 92.53 96.16

Table 2. Processing times in seconds and speedups (in the parentheses) on NASA’s Thunderhead cluster.
Processors 4 16 36 64 100 144 196 256

MP-1 1177 (1.8) 339 (6.5) 146 (15.0) 81 (27.2) 53 (41.5) 42 (52.4) 37 (59.5) 36 (61.2)
MP-2 797 (2.5) 203 (10.0) 79 (25.8) 39 (52.3) 23 (88.73) 17 (120.0) 13 (157.0) 10 (204.1)
MP-3 826 (2.4) 215 (9.5) 88 (23.3) 45 (45.7) 27 (76.2) 20 () 16 (102.9) 12 (171.5)

Processors 2 4 8 16 32 64 128 256
Exemplar 1041 (1.9) 414 (4.8) 248 (8.1) 174 (11.5) 142 (14.1) 99 (20.2) 120 (16.7) 120 (16.7)

Hybrid 973 (1.6) 458 (3.5) 222 (7.2) 114 (14.0) 55 (29.2) 27 (59.5) 15 (107.1) 7 (229.5)

multi-processor runs with regards to single-processor runs of

the parallel algorithm on Thunderhead. The table reveals that

MP-2 partitioning and hybrid neural parallelism respectively

provided the best results for each stage. Using 256 Thunder-

head processors, the parallel classifier (based on MP-2 and

hybrid neural parallelism) was able to provide a highly ac-

curate classification of the considered hyperspectral scene in

only 17 seconds, which represents a significant improvement

over the serial implementation, which can take up to several

minutes for the considered problem size.

From the experimental results described in this section,

an important final observation is noteworthy: contrary to the

common perception that spatial-spectral algorithms involve

more complex operations than traditional, spectral-based

techniques, results in this paper indicate that spatial-spectral

techniques, when carefully designed and implemented, can

indeed be more pleasingly parallel than spectral-based tech-

niques, mainly because they can reduce sequential computa-

tions at the master and only involve minimal communication

between the parallel tasks, namely, at the beginning and

ending of such tasks.

5. CONCLUSIONS

In this paper, we have discussed the role of joint spatial-

spectral information (via specialized morphological process-

ing using extended opening and closing by reconstruction

operations) in the analysis of hyperspectral images. Our ex-

perimental assessment, conducted both from the viewpoint

of classification accuracy and parallel performance, revealed

important considerations about the properties and nature of

the proposed algorithms. Specifically, performance results

(measured on the Thunderhead system at NASA’s Goddard

Space Flight Center) indicate that the proposed parallel tech-

niques were able to provide adequate results in both the

quality of the solutions and the time to obtain them. As future

work, we plan to implement the parallel spatial-spectral algo-

rithms discussed in this work on alternative high performance

computing architectures, such field programmable gate ar-

rays (FPGAs) and graphic processing units (GPUs). These

platforms may allow us to fully accomplish the challenge of

real-time classification of hyperspectral image data.
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