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AmsereAbstract-Hyperspectral image processing has been a very
active area in remote sensing and other application domains 0 1
in recent years. Despite the availability of a wide range of
advanced processing techniques for hyperspectral data analysis, 6l....
a great majority of available techniques for this purpose are 400830 1200 16NO 200 240
based on the consideration of spectral information separately SWl
from spatial information information, and thus the two types
of information are not treated simultaneously. In this paper, X_
we describe several innovative spatial/spectral techniques forcan { - O-....... _
hyperspectral image processing. The techniques described in this
work cover different aspects of hyperspectral image processing 400 8- 1200 1600 2000 2400
such as dimensionality reduction, feature extraction, and spectral
unmixing. The techniques addressed in this paper are based
on concepts inspired by mathematical morphology, a theory
that provides a remarkable framework to achieve the desired si
integration of spatial and spectral information. The proposed ngtieo2
techniques are experimentally validated using standard hyper-of aib 1200 s is200ira4fm
spectral data sets with ground-truth, and compared to traditional twa
approaches in the hyperspectral imaging literature, revealing I ..........

that the integration of spatial and spectral information can io
significantly improve the analysis of hyperspectral scenes when
conducted in simultaneous fashion. sk

Index Terms-Hyperspectral image processing, mathematical 400operation1600 2000 2400
morphology, signal processing, spectral unmixing, feature extrac- rs aie
tion, endmember extraction.

Fig. 1. The concept of hyperspectral imaging.
I. INTRODUCTION

Hyperspectral imaging is concerned with the measurement,
analysis, and interpretation of spectra acquired from a given shuffled without affecting the analysis [4]. However, one of the
scene (or specific object) at a short, medium or long dis- distinguishing properties of hyperspectral data, as collected by
tance by an airborne or satellite sensor [1]. The concept of available imaging spectrometers, is the multivariate informa-
hyperspectral imaging originated at NASAs Jet Propulsion tion coupled with a two-dimensional pictorial representation
Laboratory in California, which developed instruments such as amenable to image interpretation. Subsequently, there is a need
the Airborne Imaging Spectrometer (AIS), then called AVIRIS, to incorporate the image representation of the data in the
for Airborne Visible Infra-Red Imaging Spectrometer [2]. This development of appropriate application-oriented techniques for
system is now able to cover the wavelength region from 0.4 the understanding of hyperspectral data [5].
to 2.5 ,um using more than two hundred spectral channels, at In previous work, we have explored the application of
nominal spectral resolution of 10 nm. As a result, each pixel morphological operations to integrate both spatial and spectral
vector collected by a hyperspectral instrument can be seen as responses in hyperspectral data analysis [6]. One of the most
a spectral signature or fingerprint of the underlying materials widely used dimension reduction techniques in remote sensing
within the pixel (see Fig. 1). is the PCT [3], which computes orthogonal projections that
The special characteristics of hyperspectral datasets pose maximize the amount of data variance, and yields a dataset in a

different processing problems, which must be necessarily new uncorrelated coordinate system. This rotational transform
tackled under specific mathematical formalisms, such as di- is characterized by its global nature and, therefore, it might
mensionality reduction or spectral mixture analysis, or data not preserve all the information useful to obtain a good classi-
compression [3]. It should be noted, however, that most avail- fication [7]. In addition, the PCT relies on spectral properties
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spectral signature for a nominal pixel is invariably a mixture of se -,-
the signatures of the various materials found within the spatial
extent of the ground instantaneous field view. In hyperspectral

D

imagery, the number of spectral bands usually exceeds the D------
number of pure spectral components, called endmembers in
hyperspectral analysis terminology [9], and the unmixing )-
problem is cast in terms of an over-determined system of
equations in which, given the correct set of endmembers allows ,_
determination of the actual endmember abundance fractions
through a numerical inversion process. Since each observed
spectral signal is the result of an actual mixing process, the E on /
driving abundances must obey two constraints [10]. First,
all abundances must be non-negative. Second, the sum of
abundances for a given pixel must be unity. However, it is the m)zK
derivation and validation of the correct suite of endmembers

Fig. 2. Graphical interpretation of morphological erosion and dilation
that has remained a challenging and goal for the past years operations
[11].

In this paper, we develop new morphological techniques
for dimensionality reduction and spectral mixture analysis of the channels separately. An alternative (and perhaps more
hyperspectral data sets. The remainder of the paper is struc- appropriate) way to approach the problem of multichannel
tured as follows. Section II presents the proposed framework morphology is to treat the data at each pixel as a vector [14].
to extend mathematical morphology to hyperspectral images. Unfortunately, there is no unambiguous means of defining
Section III develops morphological techniques for dimension- the minimum and maximum values between two vectors of
ality reduction, endmember extraction and spectral unmixing. more than one dimension, and thus it is important to define
Section IV presents experimental results and comparisons to an appropriate arrangement of vectors in the selected vector
other standardized algorithms in the literature. Finally, Section space.
V concludes with some remarks and hints at plausible future In this chapter, we develop an application-driven vector
research. ordering technique based on a spectral purity-based criterion

[6], where each pixel vector is ordered according to its
II. EXTENDED MATHEMATICAL MORPHOLOGY spectral distance to other neighboring pixel vectors in the N-

Mathematical morphology is a theory for spatial structure dimensional data setf. More specifically, we adopt a distance-
analysis that was established by introducing fundamental op- based technique which utilizes a cumulative distance between
erators applied to two sets [12]. A set is processed by another one particular pixel vector f(x, y), where (x, y) indicates the
one having a carefully selected shape and size, known as the spatial coordinates, and all the pixel vectors in the spatial
structuring element (SE). The two basic operations of mathe- neighborhood given by a SE denoted by K as follows [7]:
matical morphology are erosion and dilation. These operators
can be graphically illustrated (in the context of greyscale CK(f(x, y)) E SAD(f(x, y),f(s, t)), (1)
morphology) by viewing the image data as an imaginary (s,t)CK
topographic relief in which the brighter the gray tone, the where SAD is the spectral angle distance [10]. The SAD
higher the corresponding elevation. With this assumption in between two pixel vectors f(x, y) and f(s, t) is given by the
mind, morphological operations can be interpreted as the result following expression:
of sliding a SE over the topographical relief, so that the SE
defines the new (dilated or eroded) scene based on its spatial (K y) f(s,t)
properties such as height or width (see Fig. 2). SAD(f(x, y),f(s, t)) =cos- fx,y) Ts,t) (2)

Extension of morphological operators to multichannel data K [ t
such as hyperspectral imagery with hundreds of spectral As a result,CKV(f(x, y)) is given by the sum of SAD scores
channels is not straightforward. A simple approach consists between f(, y) and every other pixel vector in the K-
in applying grayscale morphology techniques to each channel neighborhood. At this point, we need to be able to define
separately, an approach that has been called marginal mor- a maximum and an minimum given an arbitrary set of
phology in the literature [13]. However, the marginal approach vectors S {vl, v2,... , vp}, where k is the number of
is often unacceptable in remote sensing applications because, vectors in the set. This can be done by computing CK (S) =
when morphological techniques are applied independently to {CK (V1), CK(V2),.* , CK (V/C) } and selecting vi such that
each image channel, analysis techniques are subject to the CK(vi) is the minimum of CK (S), with 1 K i K k. In
well-known problem of false colors; that is, it is very likely similar fashion, we can select v; such that CK(Vj) is the
that new spectral constituents (not present in the original maximum of CK (S), with 1 < j < p. Based on the definitions
hyperspectral image) may be created as a result of processing above, the extended erosion f e K consists of selecting the
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A. Morphological dimensionality reduction

In this subsection, we develop a novel algorithm for mor-

FB16 ; * ; ; ,;phological feature extraction which integrates the spatial andspectra information in simultaneous fashion. To achieve is
ES00 l lI . w Xgoal, we apply sequences of extended opening by reconstruc-

tion operations using SE's of varying width (called morpholog-
ical profiles) [15]. This type of morphological sequences have
been applied in the past to characterize image structures in
grayscale remotely sensed image data [16]. In this subsection,

iwe extend this concept to feature extraction from hyperspectral
_ ~~~~~~~imagedata, with the goal to capture the spatial and spectral

information around each pixel vector through the combination
of spatial-spectral morphological operations for increasingly

3XSwS2aX 1Thj emaglarger spatial neighborhoods. It is important to emphasize that
the use of opening and closing operations is essential for

Fig. 3. Toy example illustrating extended morphological operations. spatial-spectral filtering [7]. With this type of operators, the
image features are either completely retained or completely
removed in accordance with the size and shape of the struc-

K-neighborhood pixel vector that produces the minimum CK turing element, thus allowing us to perform accurate image
value as follows [6]: filtering based on spatial-spectral content. The inputs to the

parallel algorithm, called MORPHDIM, are an N-dimensional
hyperspectral image cube, f, a maximum number of filtering

(f E K) (x, y) = argmint(s,t)CK{CK (f(X + s, y + t) (3) iterations, t, and a structuring element K with constant size of
3 x 3 pixels. The output is a transformed image cube, denoted

On the other hand, the extended dilation fe K selects the by g. The parallel algorithm is given by the following steps:
K-neighborhood pixel that produces the maximum value for 1) Compute an extended opening by reconstruction for each
CK as follows [6]: local pixel f(x, y) as (f o K)t(x, y) = mint.<{ (f o

K f) (x, y) }, with the basic operation SK (foK f) (x, Y)
6B B ... 6B (foK f) (x, y), i.e., 6B is applied t times, and

(fe K)(x, y) = argmax(st)CK{CK(f(X - s,Y -t)} (4) 6B(fo K f)(x, y) = min{[(f o K) e K](x, y),f(x, y)}.
2) Compute an extended closing by reconstruction for each

For illustrative purposes, Fig. 3 shows a graphical represen- local pixel f(x, y) as (f * K)t(x, y) = mint.<{ ,(f°
tation of the performance of these two basic operators using a KLf) (x, y) }, with the basic operation t (f Kf) (x, y)
toy example in which a synthetic hyperspectral image is used cB6B ... cB (f.KLf) (x, y), i.e., cB is applied t times, and
for demonstration. As can be seen in Fig. 3, morphological 6B (f* K f)(x, y) = min{[(f * K) E K](x, y),f(x, y)}.
dilation expands the spatial regions made up of pure pixel 3) Compute the derivative of the extended opening pro-
vectors in accordance with the spatial neighborhood defined file as follows: po {SAD[(f o K)I (x, y), (f o

by a 3x3 SE, while morphological erosion expands the regions K)A-1(x, y)]}, with A {1, 2,... , t}. Here, f(x, y)
made up of highly mixed pixel vectors in accordance with the (f o K)0 (x, y) for A = 0 by the definition of extended
same spatial neighborhood. In order to avoid changing the size opening by reconstruction.
and shape of the features in the image, a desirable feature for 4) Compute the derivative of the extended closing pro-
spatial filtering, extended morphological opening and closing file as shown below: pt= {SAD[(f * K)A(x, y), (f .
operations have also been defined, respectively, as follows: K)A-l(x,y)]}, with A {1, 2,... , t}. Here, f(x, y) =
(f o K) (x, y) = [(f E K) e K] (x, y), i.e., erosion followed by (fo K)0 (x, y) for A = 0 by the definition of extended
dilation, and (f.K)(x, y) [(fK) K](x, y), i.e., dilation closing by reconstruction.
followed by erosion [15]. 5) Form a (2t - 1)-dimensional morphological profile for

each local pixel f(x, y) by combining the derivatives of

III. MORPHOLOGICAL METHOD,S the extended opening and closing profiles as follows:
MP(x, y) = {p (x, y),pt(x, y)}. The resulting morpho-

In the following subsections, we develop novel algorithms logical profile can be seen as a spatial-spectral feature
for dimensionality reduction via feature extraction. endmem- vector for analysis purposes.
ber extraction and fractional abundance estimation in hyper-BM
spectral images which introduce an innovative component B orphological endmember extraction
with regards to standard techniques in the literature: the Most available endmember extraction approaches, including
incorporation of spatial information, popular and successful algorithms such as the PPI (available
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in Research Systems ENVI software) [17] or the N-FINDR centered at spatial coordinates (x, y). This is done by
(distributed by Technical Research Associates, Inc.) [18] have first calculating, for each pixel in the K-neighborhood,
been designed from a spectroscopic viewpoint and, thus, tend the SAD distance to each one of the endmembers in the
to neglect the existing spatial correlation between pixels. In set {ei}l=, and labeling the pixel as an instance of a
the following, we develop a novel algorithm which inte- certain endmember (candidate) by using the minimum
grates the spatial and spectral information in the endmember SAD score.
searching process. The algorithm, based on our previously 2) Then, a weight is assigned to each endmember candidate
developed automated morphological endmember extraction (the weight is inversely proportional to the minimum
(AMEE) algorithm [6], allows propagation of pure pixels SAD score reported for that candidate).
between subsequent iterations, as opposed to the previous 3) Finally, all endmember candidates in the K-
version of the algorithm. The inputs to the parallel algorithm, neighborhood are sorted by weight, and only those
called MORPHEE, are the full hyperspectral data cube f, with associated weights above tolerance threshold tsu
a structuring element K, a maximum number of algorithm are incorporated to the local endmember set which is
iterations 'max, and a number of endmembers to be extracted, finally used to unmix the pixel f(x, y) using standard
p. The output is an endmember set, {ei}>= , with q < p. A fully constrained linear spectral unmixing [10]. In other
step-by-step description of the algorithm follows: words, the abundance estimation is still performed

1) Set i = 1 and initialize a morphological eccentricity by using a fully constrained least squares technique
index [6], denoted by MEI(x, y) = 0, for each pixel [10], but the actual composition of the endmember set
f(x, y) in the local partition. used to perform the least squares estimation may vary

2) Move K through all the pixels of the local partition (for each particular pixel) depending on the spatial-
data, defining a local spatial search area around each spectral context around the pixel, as opposed to the
pixel f(x, y), and calculate the maximum and minimum traditional approach, in which the entire set of spectral
pixel vectors at each K-neighborhood using extended endmembers is always used to unmix each pixel. Let
morphological erosion and dilation. Then, update the us assume that the set of endmembers, obtained by the
MEI at each spatial location (x, y) using the following above procedure, is denoted by {ei}1=,, with 1 < I < q.
expression: The goal is to achieve a decomposition of the pixel

f(x, y) using the set of I endmembers above as follows:

MEI(x, y) = SAD[(f E) K)(x, y), (f@ K)(x, y)] (5) flx: y) = el a, (x, y) + e2 a2 (X, y) + + el al (x, y).
3) Set i = i + 1. If i = 1max, then return the MEI scores (6)

..hx i e arot master To achieve this goal, the pixel is multiplied byfor all the pixels in the local parhtiton to the masMrTM -1MwhrT e}1adtespr
.. . . ~(MTM) lMT where M = fej}1=l and the super-processor. Otherwise, replace the local partition with its '

dilation using K. This represents an optimization of the script 'T' denotes the matrix transpose operation. In

algorithm that propagates only the purest pixels at the the expression above, abundance sum-to-one and non-
* r rr . . ~~~~~~~~~~negativityconstraints are imposed, i.e., E 1ai(x, y)=local neighborhood to the following algorithm iteration. I-negaivityc ar i d .(x, y)

Then, go to step 2. land aiQv,y) .0 for all (,y).

C. Morphological spectral unmixing IV. EXPERIMENTAL RESULTS

To conclude this section, we outline a new algorithm for This section provides an assessment of the effectiveness of
fractional abundance estimation of a set of input endmembers. the proposed algorithms in the analysis of a real hyperspectral
This method integrates the spatial and the spectral information data set. The image data set used in experiments was collected
by considering a spatial neighborhood (defined by a mor- by NASA Jet Propulsion Laboratory's AVIRIS system over the
phological SE denoted by K) around each mixed pixel. This Cuprite mining district in Nevada was also used in experiments
method is similar to traditional approaches, in the sense that to evaluate the proposed parallel algorithms in the context of
it makes use of the standard fully constrained least squares a mineral mapping application. The data set (available from
technique [10] to estimate abundance fractions. But it differs http://avirisjpl.nasa.gov/html/aviris.freedata.html) consists of
from traditional methods in the fact that the endmember set 614 x 512 pixels and 224 bands in the wavelength range
used for each pixel is adaptively calculated based on the 0.4-2.5 ,um (137 MB in size). It is atmospherically corrected
spatial context. The inputs to the parallel method are the full and available in reflectance units (not in at-sensor radiance),
hyperspectral data cubef, a structuring element K, a tolerance thus allowing direct comparison of pixel vectors to ground
threshold tsu, and a set of endmembers {ei}q 1. The output is spectral signatures. The Cuprite site has been extensively
an abundance fraction estimation for each endmember in each mapped by the U.S. Geological Survey (USGS) in the last
pixel of the input data set. The algorithm, called MORPHSU, twenty years, and there is extensive ground-truth information
is based on the following steps: available, including a library of mineral signatures collected

1) Before unmixing a certain local pixel, say f(x, y), a on the field (see http://speclab.cr.usgs.gov/spectral-lib.html).
weight is assigned to the pixels in the K-neighborhood Fig. 4(a) shows the spectral band at 587 nm wavelength of
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the AVIRIS scene. The spectra of USGS ground minerals: in this application. As a result, it is not surprising that the
alunite, buddingtonite, calcite, kaolinite, muscovite [Fig. 4(b)], performance of PCT in this example was not as good as that
chlorite, jarosite, montmorillonite, nontronite, pyrophilite [Fig. exhibited by MORPHDIM, which is particularly tuned for the
4(c)] are also displayed. These selected spectral signatures integration of spatial and spectral information.
will be used in this work to evaluate endmember extraction We would like to emphasize that the proposed algorithms
accuracy. have also been evaluated from the viewpoint of their capacity
We have conducted a cross-validation of spectral unmixing to produce high-quality abundance estimations for geolog-

algorithms in the context of a mineral mapping application, ical features in the Cuprite mining district. This has been
using the well-known AVIRIS Cuprite data set in Fig. 4 for done by estimating the fractional abundance of endmem-
demonstration purposes. For comparative purposes, we used bers provided by PPI, N-FINDR and MORPHEE using the
the PPI and N-FINDR endmember algorithms to evaluate standard linear spectral unmixing (LSU) algorithm and the
the performance of the proposed MORPHEE endmember proposed MORPHSU algorithm for spatial-spectral abundance
extraction algorithm. Specifically, our experimentation in this estimation. In both cases, we tested unconstrained and fully
subsection comprised the following steps: constrained versions (i.e., with sum-to-one and non-negativity

restrictions) of the algorithms. Although ground-truth informa-
1) First, we run PPI and N-FINDR using their original con- tiontoned e frationAltabun c atsub-pixelleel' h~~~~~~~~~~~~ton on endmember fractional abundances at sub-pixel levels

figurations, i.e., using a dimension reduction technique is not available for the Cuprite data set (this type of reference
(the PCT in our experiments) to reduce the dimension- information is very difficult to be obtained in real-world
ality of the input data from N to q (with q 15), scenarios), our quantitative experiments demonstrated that the
obtaining a set of 15 spectral endmembers in both cases.

use of the unconstrained MORPHSU generally resulted in veryThis value was obtained using the VD concept in [19]. In few negative abundance estimations, while the constrained
order to establish a fair comparison of our MORPHEE... MORPSHU provided very similar results to those reported byalgorithm with the above two algorithms, we also used the unconstrained version of the same algorithm. In contrast, a
a reduced version of the original data cube (obtained by more significant fraction of negative abundances was obtained
the PCT in [20]) when running our algorithm.the CT i [20)whn runingour lgorthm.by the unconstrained LSU with regards to the constrained

2) Then, we repeated the previous experiment but this y t..heuncnsraned th a c orained' ~~~~~~~~~~~LSU.It should be noted that a common indicator of poor
time using MORPHDIM instead PCT to perform feature model fitting and/or inappropriate selection of endmembers is
extraction from the input hyperspectral scene. Here, estimation of negative abundance fractions by unconstrained
we used t = 8, resulting in 15 components, which is linear models
consistent with the dimensionality estimation provided liearimodels.

by the VDconcept. ~~~~~Summarizing, experimental results in this section revealby the VDconcept. that abundance estimation can be greatly improved by the
Table I shows the SAD values between the endmembers in incorporation of spatial context into the estimation. Standard

the final endmember set (extracted by different combinations techniques for fractional abundance determination in the liter-
of a dimensionality reduction algorithm followed by an end- ature have only resorted to the spectral-based techniques, and
member extraction algorithm) and the corresponding spectral therefore the use of spatial-spectral information in the unmix-
signatures in the USGS library. In order to display the results ing process (after a set of endmembers has been extracted)
in a more effective manner, we only report the SAD score may greatly assist in the overall estimation.
associated to the most similar spectral endmember (out of 15
endmembers obtained for each algorithm combination) with V. CONCLUSION
regards to its corresponding USGS signature. It is important In this work, we have discussed the role of joint spatial-
to emphasize that smaller SAD values indicate higher spectral spectral information (via specialized morphological process-
similarity. As shown by Table I, the MORPHDIM+MORPHEE ing) in the analysis of hyperspectral images. Specifically, we
combination resulted in the largest number of minimal SAD have explored the performance of spatial-spectral algorithms
values (displayed in bold typeface in the table) among all for dimensionality reduction, feature extraction, endmember
considered combinations. Quite opposite, all the combina- extraction and fractional abundance estimation in the context
tions which used MORPHDIM for feature extraction prior to of a real application domain, i.e., mapping of geological
endmember extraction generally produced endmembers which features, using a real hyperspectral data set collected over
were less similar, spectrally, with regards to reference USGS the Cuprite mining district in Nevada. Our experimental as-
signatures. This is indeed a very interesting result, which sessment of spatial-spectral algorithms in this application case
indicates that spatial information can be of great help in the study revealed important considerations about the properties
feature extraction task prior to endmember extraction and in and nature of such algorithms. The novel spatial-spectral
the subsequent endmember extraction process. This results techniques presented in this paper reflect the increasing sophis-
from the fact that geological features in the Cuprite mining tication of a field that is rapidly maturing at the intersection
district exhibit spatial correlation. Therefore, in this example of many different disciplines, including image and signal pro-
spatial information is important to complement spectral in- cessing, sensor design and instrumentation, and environmental
formation and discriminate between subtle mineral signatures modelling. As future work, we plan to implement the full suite
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Fig. 4. (a) AVIRIS scene over Cuprite mining district. (b-c) Ground-truth mineral spectra provided by USGS.

TABLE I
SAD-BASED SPECTRAL SIMILARITY SCORES BETWEEN THE USGS MINERAL SPECTRA AND THEIR CORRESPONDING ENDMEMBER PIXELS PRODUCED

BY SEVERAL COMBINATIONS OF A DIMENSIONALITY REDUCTION ALGORITHM FOLLOWED BY AN ENDMEMBER EXTRACTION ALGORITHM.

Feature extraction using MORPHDIM: Dimensionality reduction using PCT:
PPI MORPHEE N-FINDR PPI MORPHEE N-FINDR

Alunite 0.084 0.081 0.084 0.106 0.103 0.095
Buddingtonite 0.106 0.084 0.094 0.122 0.109 0.108
Calcite 0.105 0.105 0.110 0.120 0.112 0.110
Kaolinite 0.125 0.136 0.136 0.144 0.136 0.131
Muscovite 0.136 0.136 0.136 0.153 0.150 0.145
Chlorite 0.112 0.102 0.108 0.135 0.118 0.116
Jarosite 0.106 0.089 0.096 0.122 0.115 0.109
Montmorillonite 0.108 0.094 0.106 0.126 0.119 0.117
Nontronite 0.102 0.099 0.099 0.124 0.120 0.113
Pyrophilite 0.094 0.090 0.090 0.115 0.112 0.105

of spatial-spectral algorithms discussed in this chapter on high [8] Adams J B, Smith M 0, Johnson P E (1986) Spectral mixture modeling:
performance computing architectures in order to speed up their a new analysis of rock and soil types at the Viking Lander 1 site. Journal

of Geophysical Research 91:8098-8112computational performance. Some of the architectures that are [9] Plaza A, Martinez P, Perez R, Plaza J (2004) A quantitative and compar-
already being used for this purpose include clusters of comput- ative analysis of endmember extraction algorithms from hyperspectral
ers, heterogeneous networks of distributed workstations, field data. IEEE Trans. Geoscience and Remote Sensing 42:650-663

[10] Chang C I (2003) Hyperspectral imaging: techniques for spectralprogrammable gate arrays (FPGAs) and graphic processing detection and classification. Kluwer, New York
units (GPUs). [11] Plaza A, Chang C I (2006) Impact of initialization on design of

endmember extraction algorithms. IEEE Trans. Geoscience and Remote
Sensing 44:3397-3407
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