
Proceedings of the International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2009
30 June, 1–3 July 2009.

Optimization of a Hyperspectral Image Processing Chain

Using Heterogeneous and GPU-Based Parallel Computing

Architectures

Antonio J. Plaza1, Javier Plaza1, Sergio Sánchez1 and Abel Paz1

1 Department of Technology of Computers and Communications, University of
Extremadura, Avda. de la Universidad s/n, E-10071 Cáceres, Spain

emails: aplaza@unex.es, jplaza@unex.es, dante84@unex.es, apazga@unex.es

Abstract

Hyperspectral imaging is a new technique in remote sensing that generates hun-
dreds of images, at different wavelength channels, for the same area on the surface
of the Earth. In recent years, several efforts have been directed towards the in-
corporation of high-performance computing systems and architectures into remote
sensing missions. With the aim of providing an overview of current and new trends
in the design of parallel and distributed systems for remote sensing applications,
this paper presents two solutions for efficient implementation of a hyperspectral
image processing chain based on mixed pixel analysis. The first solution is in-
tended for efficient exploitation of hyperspectral data after being transmitted to
Earth, and is tested on a heterogeneous network of workstations at University of
Maryland. The second solution is intended for on-board, real-time exploitation of
hyperspectral data, and is tested on an NVidia graphics processing unit (GPU).
Combined, the two discussed approaches integrate a system with different levels
of priority in processing of the hyperspectral data, which can be tuned depending
on the specific requirements of the application scenario. The proposed implemen-
tations are evaluated using hyperspectral data collected by the Airborne Visible
Infra-Red Imaging Spectrometer (AVIRIS) operated by NASA/JPL.

Key words: hyperspectral imaging, high performance computing, heterogeneous
parallel computing, commodity graphics hardware, mixed pixel analysis.

1 Introduction

Hyperspectral imaging is concerned with the measurement, analysis, and interpretation
of spectra acquired from a given scene (or specific object) at a short, medium or long
distance by an airborne or satellite sensor [1]. For instance, NASA is continuously
gathering hyperspectral data with Earth-observing sensors such as JPL’s Airborne

Hyperspectral Processing Using Heterogeneous and GPU-Based Architectures

Figure 1: The concept of hyperspectral imaging.

Visible-Infrared Imaging Spectrometer (AVIRIS) [2], able to record the visible and
near-infrared spectrum (wavelength region from 0.4 to 2.5 micrometers) of the reflected
light of an area 2 to 12 kilometers wide and several kilometers long using 224 spectral
bands. The resulting hyperspectral data cube is a stack of images (see Fig. 1) in which
each pixel (vector) has an associated spectral signature or fingerprint that uniquely
characterizes the underlying objects, and the resulting data volume typically comprises
several GBs per flight.

The wealth of spatial and spectral information provided by hyperspectral instru-
ments has opened ground-breaking perspectives in many application domains, includ-
ing environmental modeling and assessment, target detection for military and de-
fense/security purposes, urban planning and management studies, risk/hazard preven-
tion and response including wild land fire tracking, biological threat detection, monitor-
ing of oil spills and other types of chemical contamination [3]. Most of the above-cited
applications require analysis algorithms able to provide a response in (near) real-time,
which is an ambitious goal since the price paid for the rich information available from
hyperspectral sensors is the enormous amounts of data that they generate.

The utilization of high performance computing (HPC) systems has become more
and more widespread in hyperspectral imaging applications [4]. Although most paral-
lel techniques and systems for image information processing employed by NASA and
other institutions during the last decade have chiefly been homogeneous in nature [5],
a recent trend in the design of HPC systems for data-intensive problems is to utilize
highly heterogeneous computing resources [6]. As shown in previous work [7, 8], net-
works of heterogeneous computing resources can realize a very high level of aggregate
performance in hyperspectral imaging applications. Although remote sensing data pro-

Antonio J. Plaza, Javier Plaza, Sergio Sánchez and Abel Paz

cessing algorithms map nicely to heterogeneous networks of computers, these systems
are generally expensive and difficult to adapt to on-board data processing scenarios, in
which low-weight and low-power integrated components are essential to reduce mission
payload and obtain analysis results in real-time, i.e., at the same time as the data
is collected by the sensor. In this regard, an exciting new development in the field of
commodity computing is the emergence of commodity graphic processing units (GPUs),
which can bridge the gap towards on-board processing of remotely sensed data [9].

The main purpose of this paper is to describe the two components (ground and
on-board) of an integrated parallel system for efficient processing of remotely sensed
hyperspectral data. These two solutions provide different levels of priority in remote
sensing data processing, with the ground segment being mainly oriented to information
extraction from data sets already transmitted to Earth, while the on-board system can
be applied for real-time data processing in time-critical applications. As a case study,
we focus on efficient implementation of a standard hyperspectral image processing
chain, available into Kodak’s Research Systems ENVI software1 which is one of the
most widely used remote sensing software packages. The remainder of the paper is
organized as follows. Section 2 describes the hyperspectral processing chain used as
a representative case study in this work. Section 3 develops parallel implementations
of the hyperspectral processing chain. Section 4 provides an experimental comparison
of the proposed implementations using several architectures, including a heterogeneous
network of workstations at University of Maryland and an NVidia GeForce 8800 GTX
GPU. Section 5 concludes the paper with some remarks and hints future research lines.

2 Hyperspectral image processing chain

2.1 Problem formulation

Let us assume that a hyperspectral scene with N bands is denoted by F, in which
a pixel of the scene is represented by a vector fi = [fi1, fi2, · · · , fin] ∈ ℜN , where ℜ
denotes the set of real numbers in which the pixel’s spectral response fik at sensor
channels k = 1, . . . , N is included. Under the linear mixture model assumption, each
pixel vector in the original scene can be modeled using the following expression [10]:

fi =

E∑

e=1

ee · aee + n, (1)

where ee denotes the spectral response of a pure spectral signature (endmember [11]
in hyperspectral imaging terminology), aee is a scalar value designating the fractional
abundance of the endmember ee, E is the total number of endmembers, and n is a
noise vector. The use of spectral endmembers allows one to deal with the problem of
mixed pixels, which arise when the spatial resolution of the sensor is not high enough
to separate different materials. For instance, it is likely that the pixel labeled as ‘veg-
etation’ in Fig. 1 actually comprises a mixture of vegetation and soil. In this case,

1ITT Visual Information Solutions, ENVI User’s Guide. Online: http://www.ittvis.com.

Hyperspectral Processing Using Heterogeneous and GPU-Based Architectures

the measured spectrum can be decomposed into a linear combination of pure spectral
endmembers of soil and vegetation, weighted by abundance fractions that indicate the
proportion of each endmember in the mixed pixel. The solution of the linear spectral
mixture problem described in (1) relies on the correct determination of a set {ee}

E
e=1

of endmembers and their correspondent abundance fractions {aee}
E
e=1 at each pixel fi.

2.2 Spectral unmixing methodology

A standard approach to decompose mixed pixels in hyperspectral images is linear spec-
tral unmixing, which comprises the following stages. Firstly, a set of spectral end-
members are extracted from the input data set. For this purpose, we have considered a
standard algorithm in the literature: the pixel purity index (PPI) algorithm [12]. Then,
the fractional abundances of such endmembers in each pixel of the scene is obtained
using an inversion process [10]. The inputs to the hyperspectral processing chain con-
sidered in this work are a hyperspectral image cube F with N spectral bands and T

pixel vectors; the number of endmembers to be extracted, E, a maximum number of
projections, K ; a cut-off threshold value, vc, used to select as final endmembers only
those pixels that have been selected as extreme pixels at least vc times throughout the
process; and a threshold angle, va, used to discard redundant endmembers. The chain
can be summarized by the following steps:

1. Skewer generation. Produce a set of K randomly generated unit vectors, denoted
by {skewerj}

K
j=1.

2. Extreme projections. For each skewerj , all sample pixel vectors fi in the original
data set F are projected onto skewerj via products of |fi ·skewerj | to find sample
vectors at its extreme (maximum and minimum) projections, forming an extrema
set for skewerj which is denoted by Sextrema(skewerj).

3. Calculation of pixel purity scores. Define an indicator function of a set S, denoted
by IS(fi), to denote membership of an element fi to that particular set as IS(fi) =
1 if fi ∈ S. Using the indicator function above, calculate the number of times
that given pixel has been selected as extreme using the following equation:

Ntimes(fi) =
K∑

j=1

ISextrema(skewerj)(fi) (2)

4. Endmember selection. Find the pixels with value of Ntimes(fi) above vc and form
a unique set of E endmembers {ee}

E
e=1 by calculating the spectral angle distance

(SAD) for all possible endmember pairs and discarding those which result in an
angle value below va. SAD is invariant to multiplicative scalings that may arise
due to differences in illumination and sensor observation angle [10]. The SAD
between endmember ei and endmember ej is defined as follows:

SAD(ei, ej) = cos−1 ei · ej

‖ei‖ · ‖ej‖
(3)

Antonio J. Plaza, Javier Plaza, Sergio Sánchez and Abel Paz

5. Spectral unmixing. For each sample pixel vector fi in F, a set of abundance
fractions specified by {ae1 , ae2, · · · , aeE

} is obtained using the set of endmembers
{ee}

E
e=1, so that each fi can be expressed as a linear combination of endmembers

as fi = e1 · ae1 + e2 · ae2 + · · · + eE · aeE
, thus solving the mixture problem.

3 Parallel implementations

3.1 Heterogeneous parallel implementation

Let us assume that a heterogeneous network can be modeled as a complete graph where
each node models a computing resource pi weighted by its relative cycle-time wi [6].
Each edge in the graph models a communication link weighted by its relative capacity.
In the following, we assume for simplicity that all communication links have the same
capacity, thus relating our study to a partially heterogeneous network. With the above
assumptions in mind, processor pi should accomplish a share of αi × W of the total
workload, denoted by W , to be performed by a certain algorithm, with αi ≥ 0 for
1 ≤ i ≤ P and

∑P
i=1 αi = 1. With the above definitions in mind, the heterogeneous

parallel implementation can be summarized as follows:

1. Obtain necessary information about the heterogeneous system, including the
number of available processors P , each processor’s identification number {pi}

P
i=1,

and processor cycle-times {wi}
P
i=1.

2. Let V denote the total volume of data in the original hyperspectral image F.
Processor psi will be assigned a certain share αi × V of the input volume, where
αi ≥ 0 for 1 ≤ i ≤ P and

∑P
i=1 αi = 1. In order to obtain the value of αi for

processor pi, calculate αi = (1/wi)∑P
j=1(1/wj)

.

3. Once the set {αi}
P
i=1 has been obtained, a further objective is to produce P

spatial-domain partitions of the input hyperspectral data set. To do so, we first
obtain a partitioning of the hyperspectral data set so that the number of entire
pixel vectors allocated to each processor pi is proportional to its associated value
of αi. Then, we refine the initial partitioning taking into account the local memory
associated to each processor [8].

4. Skewer generation. Generate K random unit vectors {skewerj}
K
j=1 in parallel,

and broadcast the entire set of skewers to all the workers.

5. Extreme projections. For each skewerj , project all the sample pixel vectors at
each local partition p onto skewerj to find sample vectors at its extreme projec-

tions, and form an extrema set for skewerj which is denoted by S
(p)
extrema(skewerj).

Now calculate the number of times each pixel vector f
(p)
i in the local partition is

selected as extreme using the following expression:

Hyperspectral Processing Using Heterogeneous and GPU-Based Architectures

N
(p)
times(f

(l)
i) =

K∑

j=1

I
S

(p)
extrema(skewerj)

(f
(l)
i) (4)

6. Candidate selection. Each worker now sends the number of times each pixel vector
in the local partition has been selected as extreme to the master, which forms a
final matrix of pixel purity indices Ntimes by combining all the individual matrices

N
(p)
times provided by the workers.

7. Endmember selection. The master selects those pixels with Ntimes(fi) > vc and
forms a unique set {ee}

E
e=1 by calculating the SAD for all possible pixel vector

pairs and discarding those pixels which result in angle values below va.

8. Spectral unmixing. For each sample pixel vector fi in F, obtain (in embarrasingly
parallel fashion) the set of abundance fractions specified by {ae1 , ae2 , · · · , aeE

}, so
that each fi can now be expressed as a linear combination of the set of endmembers
{ee}

E
e=1, weighted by their corresponding fractional abundances.

3.2 GPU-based parallel implementation

The first issue that needs to be addressed is how to map a hyperspectral image onto
the memory of the GPU. Since the size of hyperspectral images usually exceeds the
capacity of such memory, we split them into multiple spatial-domain partitions, so that
each partition incorporates all the spectral information on a localized spatial region
and is composed of spatially adjacent pixel vectors. In order to accommodate the
partitions onto the GPU memory, each partition is further subdivided into 4-band tiles
(called spatial-domain tiles), which are arranged in different areas of a 2-D texture.
Such partitioning allows us to map four consecutive spectral bands onto the RGBA
color channels of a texture (memory) element. Apart from the tiles, we also allocate
additional memory to hold other information, such as the skewers and intermediate dot
products, norms, and SAD-based distances.

Figure 2 shows a flowchart describing our GPU-based implementation. The data
partitioning stage performs the spatial-domain decomposition of the original hyperspec-
tral image F. In the stream uploading stage, the spatial-domain partitions are uploaded
as a set of tiles onto the GPU memory. The skewer generation stage provides K skewers,
using NVidia’s parallel implementation of the Mersenne twister pseudo-random number
generator on the GPU [13]. The remaining stages comprise the following kernels:

• Extreme projections. The tiles are input streams to this stage, which obtains all
the dot products necessary to compute the required projections. Since streams
are actually tiles, the implementation of this stage is based on a multi-pass kernel
that implements an element-wise multiply and add operation, thus producing four
partial inner products stored in the RGBA channels of a texture element.

• Candidate selection. This kernel uses as inputs the projection values generated
in the previous stage, and produces a stream for each pixel fi, containing the

Antonio J. Plaza, Javier Plaza, Sergio Sánchez and Abel Paz

Figure 2: Flowchart of the proposed stream-based GPU implementation.

relative coordinates of the pixels with maximum and minimum distance after the
projection onto each skewer. A complementary kernel is then used to identify
those pixels which have been selected at least vc times during the process.

• Endmember selection. For each endmember candidate, this kernel computes the
cumulative SAD with all the other candidates. It is based on a single-pass kernel
that computes the SAD between two pixel vectors using the dot products and
norms produced by the previous stage. A complementary kernel is then used to
discard those candidates with cumulative SAD scores below va, thus producing a
final set of spectrally unique endmembers {ee}

E
e=1.

• Spectral unmixing. Finally, this kernel uses as inputs the final endmembers se-
lected in the previous stage and produces the endmember fractional abundances
for each pixel fi, thus solving the mixture problem. In order to achieve this, the
kernel multiplies each fi by (MT

M)−1
M

T, where M = {ee}
E
e=1 and the super-

script “T” denotes a matrix transpose operation.

4 Experimental results

4.1 Parallel computing systems

Two parallel computing systems have been used in experiments. The first one is a
heterogeneous network consisting of 16 different workstations which has been used to
evaluate the proposed heterogeneous implementation. Table 1 shows the properties of

Hyperspectral Processing Using Heterogeneous and GPU-Based Architectures

Table 1: Specifications of heterogeneous computing nodes.
Processor Architecture Cycle-time Memory Cache
number overview (seconds/Mflop) (MB) (KB)

p1 Intel Pentium 4 0.0058 2048 1024
p2, p5, p8 Intel Xeon 0.0102 1024 512

p3 AMD Athlon 0.0026 7748 512
p4, p6, p7, p9 Intel Xeon 0.0072 1024 1024

p10 UltraSparc-5 0.0451 512 2048
p11 − p16 AMD Athlon 0.0131 2048 1024

the 16 heterogeneous workstations, which are interconnected using the same homoge-
neous communication network with capacity c = 26.64 milliseconds. Although this is
a simple architecture, it is also a quite typical and realistic one as well.

The GPU-based experiments were performed on a 2006-model HP xw8400 work-
station based on dual Quad-Core Intel Xeon processor E5345 running at 2.33 GHz with
1.333 MHz bus speed and 3 GB RAM. The computer was equipped with an NVidia
GeForce 8800 GTX with 16 multiprocessors, each composed of 8 SIMD processors op-
erating at 1350 Mhz. Each multiprocessor has 8192 registers, a 16 KB parallel data
cache of fast shared memory, and access to 768 MB of global memory. The processing
chain was implemented using NVidia’s Compute Unified Device Architecture (CUDA).

4.2 Hyperspectral data

A well-known hyperspectral data set collected over the Cuprite mining district in
Nevada was used in experiments to evaluate the algorithms in the context of a real
mineral mapping application. The data set2 consists of 1939 × 677 pixels and 224
bands in the wavelength range 0.4–2.5 µm (574 MB in size). The Cuprite site has
been extensively mapped by the U.S. Geological Survey (USGS), and there is extensive
ground-truth information available, including a library of mineral signatures collected
on the field3. Fig. 3(a) shows the spectral band at 587 nm wavelength of the AVIRIS
scene. The spectra of USGS ground minerals are also displayed in Figs. 3(b-c).

4.3 Performance evaluation

Table 2 shows the SAD-based spectral similarity scores obtained after comparing the
ten USGS library spectra with the corresponding endmembers extracted by the original
chain in Kodak’s Research Systems ENVI software, version 4.5, and the two parallel
implementations of the processing chain (heterogeneous and GPU). It is important to
emphasize that smaller SAD values indicate higher spectral similarity. As shown by
Table 2, the spectral similarity scores with regards to the reference USGS signatures
were very satisfactory. In all cases, we empirically set parameter vc (threshold value)
to the mean of Ntimes scores obtained after K = 104 iterations, while we set va = 0.01
(threshold angle to remove redundant endmembers) according to previous work [11].

2Available online from http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3Available online from http://speclab.cr.usgs.gov/spectral-lib.html

Antonio J. Plaza, Javier Plaza, Sergio Sánchez and Abel Paz

Figure 3: (a) A portion of the AVIRIS scene over Cuprite mining district. (b-c) Ground-
truth mineral spectra provided by USGS.

Table 3 shows the performance gain of the heterogeneous implementation with
regards to the sequential version of the processing chain as the number of processors
was increased. Here, we assumed that processor p3 (the fastest) was always the master
and varied the number of slaves. The construction of speedup plots in heterogeneous
environments is not straightforward, mainly because the workers do not have the same
relative speed, and therefore the order in which they are added to plot the speedup
curve needs to be further analyzed. We have tested three different ordering strategies:

1. Strategy #1. First, we used an ordering strategy in which new processors were
added according to their numbering in Table 1, i.e., the first case study tested
(labeled as “2 CPUs” in Table 3) consisted of using p3 as the master and p0 as the
slave; the second case (labeled as “3 CPUs”) consisted of using p3 as the master
and {p0, p1} as slaves, and so on, until a final case (labeled as “15 CPUs”) was
tested, based on using p3 as the master and all remaining 15 processors as slaves.

2. Strategy #2. Second, we used an ordering strategy based on the relative speed
of processors in Table 1, i.e., the first case study tested (labeled as “2 CPUs” in
Table 3) consisted of using processor p3 as the master and processor p10 (i.e., the
one with lowest relative speed) as the slave, and so on.

Hyperspectral Processing Using Heterogeneous and GPU-Based Architectures

Table 2: SAD spectral similarity scores between the endmembers extracted by different
implementations of the hyperspectral processing chain and USGS reference signatures.

USGS mineral ENVI Heterogeneous GPU-based
Alunite 0.084 0.084 0.084
Buddingtonite 0.071 0.075 0.071
Calcite 0.099 0.099 0.091
Chlorite 0.065 0.065 0.065
Jarosite 0.091 0.091 0.093
Kaolinite 0.136 0.136 0.145
Montmorillonite 0.106 0.112 0.106
Muscovite 0.092 0.092 0.092
Nontronite 0.099 0.102 0.102
Pyrophillite 0.094 0.094 0.097

Table 3: Speedups achieved by the proposed parallel heterogeneous implementation on
the heterogeneous network.

CPUs Strategy #1 Strategy #2 Strategy #3
2 1.93 1.90 1.87
3 2.91 2.92 2.88
4 3.88 3.89 3.67
5 4.83 4.89 4.72
6 5.84 5.81 5.74
7 6.75 6.83 6.55
8 7.63 7.76 7.61
9 8.81 8.74 7.65
10 9.57 9.68 9.53
11 10.62 10.65 10.44
12 11.43 11.55 11.41
13 12.25 12.42 12.36
14 13.16 13.32 13.29
15 14.22 14.25 14.22
16 15.19 15.22 15.16

3. Strategy #3. Finally, we also used a random ordering strategy, i.e., the first case
study tested (labeled as “2 CPUs” in Table 3) consisted of using processor p3

as the master and a different processor, selected randomly among the remaining
processors, as the slave, until all remaining processors were exhausted.

As shown by Table 3, the three ordering strategies tested provided almost linear
performance increase (regardless of the relative speed of the nodes). Although the
proposed implementation scales well in heterogeneous environments, there are several
restrictions in order to incorporate this type of platform for on-board processing in
remote sensing missions. To address this issue, we compare the performance of a fully
optimized CPU implementation and the GPU implementation by measuring the execu-
tion time as a function of the image size. Table 4 shows the execution times measured
for different image sizes by the CPU and GPU-based implementations, respectively,
where the largest image size in the table (574 MB) corresponds to the full hyperspec-
tral scene (1939× 677 pixels and 224 bands) whereas the others correspond to cropped
portions of the same image. The C function clock() was used for timing the CPU im-
plementation and the CUDA timer was used for the GPU implementation. The time

Antonio J. Plaza, Javier Plaza, Sergio Sánchez and Abel Paz

Table 4: Processing time (seconds) for the CPU and GPU-based implementations.
Size (MB) Processing time (CPU) Processing time (GPU)

68 81.53 2.88
136 162.75 5.93
205 244.22 8.25
273 325.21 10.90
410 489.69 16.24
574 685.45 22.62

measurement was started right after the hyperspectral image file was read to the CPU
memory and stopped right after the results of the processing chain were obtained and
stored in the CPU memory. From Table 4, it can be seen that the full AVIRIS data
cube was processed in 22.62 seconds. This response is not strictly in real-time since the
cross-track line scan time in AVIRIS, a push-broom instrument [2], is quite fast (8.3
msec). This introduces the need to process the full image cube (1939 lines) in about 16
seconds to achieve real-time performance. Although the proposed implementation can
still be optimized, Table 4 indicates that the complexity of the implementation scales
linearly with the problem size, i.e. doubling the image size doubles the execution time.
The speedups achieved by the GPU implementation over the CPU one remained close
to 30 for all considered image sizes, which doubles the best speedup result reported for
the heterogeneous network in Table 3 at much lower cost (1 GPU vs 16 CPUs) and,
most importantly, with less restrictions in terms of power consumption and size, which
are very important when defining mission payload in remote sensing missions.

5 Conclusions and future research lines

Remote sensing missions require efficient processing systems able to cope with the ex-
tremely high dimensionality of the collected data without compromising mission pay-
load. In this paper, two innovative parallel implementations of a remotely sensed
hyperspectral image processing chain for mixed pixel characterization have been eval-
uated from the viewpoint of both algorithm accuracy and parallel performance. The
considered solutions include a heterogeneity-aware parallel implementation, developed
for effective information extraction from data sets already transmitted to Earth, and
a GPU-based implementation for on-board processing. Although both solutions are
complementary, the GPU-based one is more appealing for data analysis in time-critical
missions. Future work will comprise optimizing the GPU-based implementation and
pursuing implementations in other systems, such as NASA’s Discover supercomputer.

Acknowledgements

This research has been developed in the framework of the network “High Performance
Computing on Heterogeneous Parallel Architectures” (CAPAP-H), supported by the
Spanish Ministry of Science and Innovation (TIN2007-29664-E). Funding from HY-
PERCOMP/EODIX project (AYA2008-05965-C04-02) is also gratefully acknowledged.

Hyperspectral Processing Using Heterogeneous and GPU-Based Architectures

References

[1] A. F. H. Goetz, G. Vane, J. E. Solomon and B. N. Rock, Imaging spec-
trometry for Earth remote sensing, Science (1985) 1147–1153.

[2] R.O. Green et al., Imaging spectroscopy and the airborne visible/infrared imag-
ing spectrometer (AVIRIS), Remote Sensing of Environment (1998) 227–248.

[3] D. A. Landgrebe, Signal theory methods in multispectral remote sensing, Wiley,
Hoboken, NJ, 2003.

[4] A. Plaza and C.-I Chang, High performance computing in remote sensing, CRC
Press, Boca Raton, FL, 2007.

[5] A. Plaza and C.-I Chang, Clusters versus FPGA for parallel processing of
hyperspectral imagery, International Journal of High Performance Computing Ap-
plications (2008) 366–385.

[6] A. Lastovetsky, Parallel computing on heterogeneous networks, Wiley, Hobo-
ken, NJ, 2003.

[7] A. Plaza, J. Plaza and D. Valencia, Impact of platform heterogeneity on
the design of parallel algorithms for morphological processing of high–dimensional
image data, Journal of Supercomputing (2007) 81–107.

[8] A. Plaza, Parallel techniques for information extraction from hyperspectral im-
agery using heterogeneous networks of workstations, Journal of Parallel and Dis-
tributed Computing (2008) 93–111.

[9] J. Setoain, M. Prieto, C. Tenllado and F. Tirado, GPU for parallel on-
board hyperspectral image processing, International Journal of High Performance
Computing Applications (2008) 424–437.

[10] C.-I Chang, Hyperspectral imaging: techniques for spectral detection and classi-
fication, Kluwer, New York, 2003.

[11] A. Plaza, P. Martinez, R. Perez and J. Plaza, A quantitative and compar-
ative analysis of endmember extraction algorithms from hyperspectral data, IEEE
Transactions on Geoscience and Remote Sensing (2004) 650–663.

[12] J. W. Boardman, Automating spectral unmixing of AVIRIS data using convex
geometry concepts, Proceedings of the Fourth Annual NASA/JPL Airborne Earth
Science Workshop (1993) 11–14.

[13] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudorandom number generator, ACM Transactions on
Modeling and Computer Simulation (1998) 3–30.

