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ABSTRACT

We have explored in this paper a framework to test in a quan-

titative manner the stability of different endmember extrac-

tion and spectral unmixing algorithms based on the concept

of Consensus Clustering. The idea is to investigate if the

sensibility of those algorithms to the number of endmembers

can be used to estimate this parameter itself. Preliminary re-

sults on synthetic data reveal that the proposed scheme, which

can be implemented efficiently in parallel, can compete with

state-of-the-art schemes.

1. INTRODUCTION

A general approach to unmix hyperspectral data consists of

two main steps:

1. Endmember extraction. This step identifies a collec-

tion of hidden pure spectra (the endmembers) from the

hyperspectral scene. Many proposals exist in the liter-

ature. Among the most popular ones we highlight N-

FINDR, the Simplex Growing Algorithm (SGA), the

Pixel Purity Index (PPI), the Vertex Component Analy-

sis (VCA) or the Automatic Target Generation Process

(ATGP) [1].

2. Estimation of fractional abundances. This step finds

the fractional abundances that indicate the proportion

of each endmember material in the mixed pixels. Es-

sentially, there are two kind of methods: linear tech-

niques such as Linear Spectral Unmixing (LSU) [2]

and non-linear ones such as neural-based approaches

including Multi-layer Perceptron (MLP) [3].

Endmember extraction is one of the challenging steps in

this process and has received considerable attention in recent

years. From a viewpoint of algorithm design, three major is-

sues determine its performance [2]:

1. The learning rules that drive the searching process.

Most algorithms implicitly or explicitly assume that

pure pixels are present in the data to speed up this

process, and use different criteria when searching for

those pure pixels. Two major criteria are multidimen-

sional geometry-based simplex volume maximization

and pixel spectral signature similarity [4]. A promising

scheme based on the Non-Negative Matrix Factoriza-

tion without the pure-pixel assumption was recently

proposed in [5].

2. The stopping criteria of the process. Most popular

endmember extraction algorithms, such as the afore-

mentioned methods, use as stopping criteria the number

of endmembers to be searched. This predefined param-

eter must be estimated beforehand and becomes critical

for performance. If it becomes too low, then not all de-

sired endmembers will be extracted –specifically, those

being weak endmembers–, or, conversely if it becomes

too high, some extracted endmembers may turn out to

be mixed signatures [2]. A popular approach is to resort

to the Virtual Dimensionality (VD) proposed in [6].

3. The initial conditions use by the algorithm. Many al-

gorithms use a random restart but a proper initial selec-

tion of the endmembers can be very beneficial [2].

Research efforts have mainly focused on the first issue [7,

5, 8, 4] but both the stopping criteria and the initial condi-

tions also have a significant impact on performance [2]. In

this research, we introduce a new framework for the estima-

tion of the number of endmembers that integrates itself with

the unmixing step in a closed loop. Our approach is based

on Consensus Clustering [9], a methodology proposed in the

context of gene expression data analysis to represent the con-

sensus across multiple runs of a clustering algorithm. It has

been use effectively to determine the number of clusters in the

data and to assess the stability of the discovered clusters [10].

For the sake of introducing this methodology in the hy-

perspectral processing chain, we have focused on a single

endmember extraction algorithm (N-FINDR) and one unmix-

ing algorithm (MLP). The effectiveness of this combination

is promising but we have to admit that its computational cost

is high. However, the methodology is embarrassingly parallel

and its execution cost can be drastically reduced on any high-

performance computing platforms such as clusters, multicore

processors, graphics processing units (GPUs) or even Grids.



The rest of the paper is organized as follows. Section

2 briefly summarizes N-FINDR and MLP. The proposed

methodology is described in Section 3. We conclude with

some experimental results and remarks in Sections 4 and 5,

respectively.

2. PROCESSING CHAIN

This section describes the processing chain that will be used

in this work to illustrate the proposed consensus-based frame-

work. It comprises two steps: 1) endmember extraction using

the N-FINDR algorithm, and 2) abundance estimation using

an MLP neural network.

2.1. Endmember extraction

The original N-FINDR algorithm developed by Winter [11]

can be summarized by the following steps:

1. Feature reduction. Apply a dimensionality reduction

transformation such as the minimum noise fraction

(MNF) or the principal component analysis (PCA) [12]

to reduce the dimensionality of the data from N to p−1
bands, where p is an input parameter to the algorithm

(number of endmembers to be extracted).

2. Initialization. Let {E
(0)
1 , E

(0)
2 , · · · , E(0)

p } be a set of

endmembers randomly extracted from the input data.

3. Volume calculation. At iteration k ≥ 0, calculate the

volume defined by the current set of endmembers as

follows:
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4. Replacement. For each pixel vector r in the in-

put hyperspectral data, recalculate the volume by

testing the pixel in all p endmember positions, i.e.,

first calculate V (r, E
(k)
2 , · · · , E(k)

p ), then calculate

V (E
(k)
1 , r, · · · , E(k)

p ), and so on until calculating the

volume V (E
(k)
1 , E

(k)
2 , · · · , r). If none of the p recalcu-

lated volumes is greater than V (E
(k)
1 , E

(k)
2 , · · · , E(k)

p ),
then no endmember is replaced. Otherwise, the com-

bination with maximum volume is retained. Let us

assume that the endmember absent in the combina-

tion resulting in the maximum volume is denoted by

E
(k+1)
j . In this case, a new set of endmembers is pro-

duced by letting E
(k+1)
j = r and E

(k+1)
i = E

(k)
i for

i 6= j. The replacement step is repeated for all the pixel

vectors in the input data until all the pixels have been

exhausted.

Fig. 1. MLP neural network architecture

2.2. Abundance estimation

The neural architecture used in this work is shown in Fig. 1,

where each column of nodes is a layer and the leftmost layer

is the input layer. The second layer is the hidden layer, and

the third layer is the output layer. The neuron count at the

input layer, N , equals the number of spectral bands. The in-

put patterns are pixel vectors directly obtained from the input

data. The number of neurons at the output layer, p, equals

the number of spectral endmembers. It should be noted that

M , the number of hidden neurons, is generally fine-tuned de-

pending on the problem under consideration. Based on pre-

vious results in the literature and our own experimentation

[3], the considered architecture is based on one hidden layer

only, with the number of neurons empirically set to the square

root of the product of the number of input features and infor-

mation classes. The sigmoid function is used as the nonlinear

activation function. The MLP is trained using the well-known

back-propagation algorithm, where the endmembers obtained

from the endmember extraction stage are used as training pat-

terns with known fractional abundances.

3. CONSENSUS-BASED FRAMEWORK

Figure 2 graphically illustrates the proposed methodology.

We initially set a target range for the p parameter, which de-

notes the putative number of endmembers in the image. For

each value in this range, we perform different runs of the

endmember extraction method and the abundance estimation

algorithm. For each run, the pixel vectors of the image are

clustered into different classes after applying a winner takes

all criterion. Since N-FINDR exhibits a non-deterministic

behavior – for each run, a set of endmembers randomly ex-

tracted from the input data is used as initial condition –, these

classifications vary across multiple runs. For representing and

quantifying the agreement among them we use a consensus

matrix as introduced in [9].

A consensus matrix is an (T × T ) matrix –where T is the

total number of pixels in the hyperspectral scene– that stores,

for each pair of pixels, the proportion of classification runs

in which both pixels are clustered together. This matrix is

obtained by taking the average over the connectivity matrices
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Fig. 2. Consensus-based framework. The p parameter de-

notes the putative number of endmembers in the image. We

search across a given range of this parameter, looking for the

actual number of endmembers that achieves the most stable

classification.

of every run. The entries of a connectivity matrix are defined

as follows:

M(i, j) =

{

1, if both pixels belong to the same class

0, otherwise

Perfect consensus corresponds to a consensus matrix C

with all the entries equal to either 0 or 1, whereas any devia-

tion from this optimal scenario can be interpreted as a of lack

of stability of the putative classes. With this abstraction, the

problem of finding the number of endmembers in the image

translates into finding the number of endmembers that yield

the cleanest consensus matrix – ideally, a matrix containing

0’s and 1’s only –.

Different measures that try to quantify this cleanliness

have been introduced [9, 10]. A simple but effective approach

is to plot the histogram of consensus matrix indices: per-

fect consensus would translate into two clear bins centered at

0 and 1 respectively, whereas unstable classifications would

lead to an increase in the number of fractional entries in the

consensus matrix and would introduce secondary bins. Simi-

lar insights can be derived by inspection of the corresponding

empirical cumulative distribution (CDF) [9].

4. EXPERIMENTAL RESULTS

4.1. Hyperspectral data

We have constructed a synthetic hyperspectral data set to il-

lustrate the performance of the proposed consensus-based ap-

proach. A major advantage of using synthetic imagery is that

all the details of the simulated images are known under a com-

pletely controllable environment because they can be manip-

ulated individually and precisely. As a result, algorithm per-

formance can be examined objectively and impartially. The

reflectance spectra of nine U.S. Geological Survey (USGS)

ground-truth mineral spectra1: alunite, buddingtonite, calcite,

1Available online: http://speclab.cr.usgs.gov/spectral-lib.html

Fig. 3. Empirical CDFs corresponding to the entries of con-

sensus matrices C(p) for p = 4..9

kaolinite, chlorite, jarosite, montmorillonite and pyrophilite,

have been managed for computer simulations. These signa-

tures have been used to simulate a square synthetic image

scene with a size of 100 × 100 pixels. The four corner pixels

of the image were simulated by the pure spectral signatures of

alunite, buddingtonite, calcite, and kaolinite, with the center

pixel simulated by the pure signature of muscovite. The four

other pure signatures (chlorite, jarosite, montmorillonite, py-

rophilite) were placed halfway between a pair of any two cor-

ner pixels. The signature abundance decreased linearly from

the pure pixels. As a result, only nine pure pixels (endmem-

bers) are present in the simulated scene. Gaussian noise with a

10:1 signal-to-noise ratio (SNR), as defined in [6], was added

to the synthetic scene to simulate contributions from ambient

(clutter) and instrumental sources.

4.2. Consensus results

Once consensus matrices have been computed, our estima-

tion of the number of endmembers proceeds by inspection of

(1) the empirical CDFs’shape and (2) their progression as the

number of endmembers increases.

Figure 3 displays the empirical CDFs for values of p =
4 · · · 9. The predominance of 0’s and 1’s in those consensus

matrices affects the shape of these curves. They exhibit a

step around 0 –whose magnitude relates to the proportion of

0’s–, followed by a flat line reaching across the 0–1 range,

and finally a second step around 1. For 9 endmembers, the

shape of the curve closely approaches the ideal step function.

However, as we increase the number of endmembers past 9

(Figure 4), the CDF curves display a different shape, with

a gradual climb of values between 0 and 1, reflecting lack

of stability. Essentially, as we introduce additional classes,

there is an increase in the number of fractional entries in the

consensus matrix since they are inherently unstable.

The inspection of these curves properly reveals 9 end-

members in the target image, whereas VD only finds 8 (when



Fig. 4. Empirical CDFs corresponding to the entries of con-

sensus matrices C(p) for p = 10..14

PF was set to 0.1) or 7 endmembers (when the probability

of false alarm was set to 0.01 or smaller). Similar results

have been found with the same synthetic image introducing

higher or smaller signal-to-noise ratios. VD underestimated

the actual number of endmembers in these images and re-

quired noise to be present in the scenes in order to perform

the estimation. As opposed to the VD concept, the proposed

approach not only estimates the number of endmembers (even

in synthetic scenes without any noise) but it also provides the

actual endmembers along with their fractional abundance es-

timations in the scene. Although the results are encouraging,

further experiments with additional synthetic and real scenes

are required to substantiate the proposed approach in different

application domains

5. CONCLUSIONS

The ultimate goal of this research is to devise a feasible and

robust method that can set the stopping criteria – the number

of endmembers – from the data itself without a priori knowl-

edge about the underlying data distributions. While the pop-

ular VD method is quite efficient, it also suffers from several

issues. First, it depends on an input parameter – false alarm

probability – which has to be carefully set in advance in or-

der to obtain satisfactory results. Furthermore, VD may not

identify weak endmembers which correspond to anomalous

endmembers.

In order to address these issues, we have developed a

framework that exploits the sensibility of endmember ex-

traction and spectral unmixing algorithms to the number of

endmembers to estimate this parameter itself. Preliminary

results on synthetic data reveal that the proposed scheme can

compete with state-of-the-art schemes but its computational

cost is very high. Fortunately, this analysis is inherently

parallel and we could take advantage of the recent progress

in commodity high-performance hardware to mitigate this

problem. We plan to investigate the effectiveness of the

methodology in large studies using real hyperspectral data.
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