
INCORPORATION OF SPATIAL CONSTRAINTS INTO SPECTRAL MIXTURE ANALYSIS
OF REMOTELY SENSED HYPERSPECTRAL DATA

Antonio Plaza, Javier Plaza and Gabriel Martin

Department of Technology of Computers and Communications
University of Extremadura, Avda. de la Universidad sin, E-I0071 Caceres, SPAIN

E-mail: {aplaza.jplaza gamahcj councx.es

ABSTRACT
Spectral mixture analysis is an important technique to ana-
lyze remotely sensed hyperspectral data sets. This approach
involves the separation of a mixed pixel into its pure com-
ponents or endmember spectra, and the estimation of the
abundance value for each endmember. Several techniques
have been developed for extraction of spectral endmembers
and estimation of fractional abundances. However, an im-
portant issue that has not been yet fully accomplished is
the incorporation of spatial constraints into endmember ex-
traction and, particularly, fractional abundance estimation.
Another relevant topic is the use of nonlinear versus linear
mixture models, which can be unconstrained or constrained
in nature. Here, the constraints refer to non-negativity and
sum to unity of estimated fractional abundances for each
pixel vector. In this paper, we investigate the impact of in-
cluding spatial and abundance-related constraints in spectral
mixture analysis of remotely sensed hyperspectral data sets.
For this purpose, we discuss the advantages that can be ob-
tained after including spatial information in techniques for
endmember extraction and fractional abundance estimation,
using a database of synthetic hyperspectral scenes with ar-
tificial spatial patterns generated using fractals, and a real
hyperspectral scene collected by NASA's Airborne Visible
Infra-Red Imaging Spectrometer (AVIRIS).

1. INTRODUCTION

Spectral unmixing has been an alluring exploitation goal
since the earliest days of imaging spectroscopy [1]. No mat-
ter the spatial resolution, in natural environments, spectral
signatures in hyperspectral data are invariably a mixture of
the signatures of the various materials found within the spa-
tial extent of the ground instantaneous field view [2]. Due to
the high spectral dimensionality of the data, the number of
spectral bands usually exceeds the number of spectral mix-
ture components, and the unmixing problem is cast in terms
of an over-determined system of equations in which, given
a correct set of pure spectral signatures called endmembers
in the hyperspectral imaging literature [3].
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Since each observed hyperspectral signal is generally
the result of an actual mixing process, the driving abun-
dances are often required to satisfy two constraints. First,
all abundances must be non-negative. Second, the sum of
abundances for a given pixel must be unity [4]. However, it
is the derivation and validation of the correct suite of end-
members that has remained a challenging and elusive goal
for the past several years.

Several approaches have been developed for automatic
or semi-automatic endmember extraction, including the pixel
purity index (PPI) algorithm [5], the orthogonal subspace
projection (OSP) [6], the N-FINDR algorithm [7], or the it-
erative error analysis (lEA) algorithm [8], among others [3].
Although these methods have shown considerable promise,
they are exclusively based on the spectral information of
the data. However, most endmember extraction algorithms
could benefit from an integrated framework in which both
the spectral information and the spatial arrangement of pixel
vectors are taken into account. It should be noted that the
inclusion of spatial information in the spectral unmixing
problem is not limited to the endmember extraction stage.
Even after a suite of spectral endmembers has been derived
from the input data, the estimation of their fractional abun-
dances at sub-pixel levels can also take advantage of the
existing spatial autocorrelation among image features. Al-
though the information related with spatial context has been
widely used in full-pixel classification approaches [9], it has
been seldom used in sub-pixel analysis.

In this paper, we address this issue and further develop
a technique which incorporates the spatial information into
both endmember extraction and spectral unmixing. The pro-
posed technique relies on the linear mixture model, and can
be implemented by assuming that the abundances are either
constrained or unconstrained. This approach is compared
to other spectral-based approaches for spectral unmixing,
using both simulated and real hyperspectral data sets. To
conclude the paper, we briefly address the nonlinear spec-
tral unmixing problem using machine learning techniques,
and the impact of abundance constraints in this case.
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2. INCORPORATION OF SPATIAL INFORMATION
INTO SPECTRAL MIXTURE ANALSYIS

In this section, we develop an approach for endmember ex-
traction and spectral unmixing which incorporates spatial
constraints in both stages. The algorithm makes use of clas-
sic morphological operations of erosion and dilation [10],
which have been extended to hyperspectral data via the in-
troduction of an ordering relationship among pixel vectors
in the data. The main idea of the algorithm is to impose
an ordering relation in terms of spectral purity in the set of
pixels lying within a spatial search window (structuring el-
ement) around each image pixel vector. To do so, we first
define a cumulative distance between a particular pixel vec-
tor f(x, y), i.e., an N-dimensional vector at discrete spatial
coordinates (x, y), and all the pixel vectors in the spatial
neighborhood given by B (B-neighborhood) as follows:

By means of equation (3), SID is defined as follows:

With the above definitions in mind, a description of the
proposed endmember extraction and spectral unmixing al-
gorithm is given below. The algorithm, based on the auto-
mated morphological endmember extraction (AMEE) [10],
allows propagation of pure pixels between subsequent it-
erations, and also incorporates a spatial/spectral unmixing
stage which was not present in the previous version.

The inputs to the algorithm are the full hyperspectral
data cube f, a structuring element B (used to define the spa-
tial context around each image pixel), a maximum number
of algorithm iterations I m a x , and a number of endmembers
to be extracted, p. The output is an endmember set, {ei}{=1 '
with q ~ p. The algorithm consists of the following steps:

N N

M[fik] ==Pk == fik/Lfil' M[fjk] ==Pk == fjk/Lfjz
Z=l Z=l

(2)
Using the above definitions, the self-information pro-

vided byI, for band 1is given by Ii (fj) == -log qz. We can
further define the entropy offj with respect to ], by:

where (i, j) are the spatial coordinates of the pixels in the
B-neighborhood discrete domain, represented by Z2(B),
and Dist is a pointwise distance measure between two N-
dimensional vectors. In this work, we use the spectral infor-
mation divergence (SID) as the baseline distnace measure.
The SID is based on the concept of divergence, and ob-
tains the discrepancy of probabilistic behaviors between two
spectral signatures designated byt, == [fi1, fi2, ..., fin] and
f j == [fj1' fj2' ..., fjn]. Here it is important to emphasize
that the term 'spectral signature' does not necessarily imply
'pixel vector'. Subsequently, the spatial coordinates (x, y)
have been omitted from the two spectral signatures above
to simplify our formulation, although the following argu-
ment would be the same if two pixel vectors were consid-
ered. If we assume that the two signatures above are made
up of non-negative entries (which is a reasonable assump-
tion in imaging spectroscopy data), then two probabilistic
measures can be respectively defined as follows:

DB(f(x,y)) == L Dist(f(x,y),f(i,j)),
(i,j)EZ2(B)

(1)
1. Set i == 1 and initialize a morphological eccentricity

index MEI(x, y) == 0 for each pixelf(x, y).

2. Move B through all the pixels of the input data, defin-
ing a local spatial search area around each pixelf(x, y),
and calculate the maximum and minimum pixel vec-
tors at each B-neighborhood using extended morpho-
logical erosion and dilation, which are respectively
defined as follows [11]:

(f8B) (x, y) == argmin(i,j)EZ 2 (B) {DB [f(x+i, y+j)]}
(5)

(fffiB) (x, y) == argmax(i,j)EZ 2 (B) {DB [f(x+i, y+j)]}
(6)

3. Update the MEl at each spatial location (x, y) using:

MEI(x, y) == Dist[(f8 B)(x, y), (fffi B)(x, y)] (7)

4. Set i == i + 1. If i == I m a x , then go to step (5).
Otherwise, replace the original image with its dila-
tion using Busing f == f ffi B. This represents an
optimization that propagates only the purest pixels at
the local neighborhood to the following algorithm it-
eration. Then, go to step (2).

5. Select the set of p pixel vectors with higher associated
MEl scores (called endmember candidates) and form
a unique spectral set of {ei}{=1 pixels, with q ~ P,
using the OSP algorithm [6] to perform this task.

N

D(fi Ilfj ) == L pz o, (fi Ilfj )

Z=l
N N

== LPz(Iz(fj) - IZ(fi)) == LPZ log(pz/qz)
Z=l Z=l

(3)

6. Once a set ofP endmembers have been extracted from
the input data, a spatial/spectral unmixing procedure
is accomplished by considering a spatial neighbor-
hood (defined by B) around each mixed pixel. This
method is similar to traditional ones, in the sense that
it makes use of the standard (fully constrained or un-
constrained) least squares-based technique to estimate
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abundance fractions [4]. But it differs from traditional
methods in the fact that the endmember set used for
each pixel is adaptively calculated based on the spa-
tial context. The method is based on the following
steps:
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Fig. 1. Synthetic images used in experiments, where spatial
patterns where generated using fractals.

Fig. 2. Fractional abundance distributions used in the gen-
eration of one of the synthetic images.

(a) Before unmixing a certain pixelf(x, y), a weight
is assigned to the pixels in the B-neighborhood
centered at spatial coordinates (x,y) by first cal-
culating, for each pixel in the B-neighborhood,
the Dist to each one of the endmembers in the
set {ed{=1' and then labeling the pixel as an
instance of a certain endmember (candidate) by
using the minimum Dist score.

(b) Then, a weight is assigned to each endmember
candidate (the weight is inversely proportional
to the minimum Dist score for that candidate).

(c) Finally, all endmembercandidates located in the
B-neighborhood are sorted by weight, and only
those with associated weights above a certain
tolerance threshold are incorporated to the 'lo-
cal' endmember set which is finally used to un-
mix the pixelf(x, y).

As shown by the algorithm description above, the pro-
posed method is based on the selection of a set of 'local'
endmembers at each spatial neighborhood defined by the
morphological structuring clement. These endmembers are
then used to define a MEL score which reflects the degree
of spectral purity of signatures at local spatial neighbor-
hoods defined around each image pixel. The pixels with
maximum MEL scores are then used to obtain the global
endmembers by avoiding endmember repetitions. There-
fore, our proposed spatial/spectral endmember extraction
method follows a local-to-global approach in the search of
image endmembers, and further incorporates spatial con-
straints in the spectral unmixing stage performed for esti-
mation of endmember fractional abundances.

3. EXPERIMENTAL DATA

3.1. Synthetic hyperspectral data

A database of five synthetic hyperspectral scenes has been
created using fractals to generate distinct spatial patterns,
which are then used to simulate linear mixtures of reflectance
signatures selected from a spectral library compiled by the
U.S. Geological Survey (USGS)]. Fig. I shows the five
scenes considered in experiments, and 2 shows the nine
fractional abundance maps used in the generation of one
of such scenes . In Fig. 2, black color indicates 0% abun-
dance of the corresponding mineral, white color indicates

I http://speclab.cr.usgs .gov/spectral-Iib.htm

100% abundance of the mineral, and fractional abundances
in each pixel of the scene sum to unity. Zero-mean Gaussian
noise was added to the scenes in different signal to noise ra-
tios (SNRs) -from 30: I to 110:1- to simulate contributions
from ambient (clutter) and instrumental sources, following
the procedure described in [6].

3.2. Real hyperspectral data

A well-known hyperspectral data set has been selected for
the purpose of illustrating the spectral unmixing algorithm
described in this work. The data set was collected by the
AVIRIS sensor over the Cuprite mining district in Nevada
[see Fig. 3(a)], and is available online in both radiance and
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reflectance units2 . In our experiments, we use reflectance
data in order to relate our results to the reference USGS
spectral library. The scene selected for experiments is the
one labeled as f970619tOlp02J02_sc03.a.rfl. This scene
comprises a relatively large area (350 x 350 pixels and 20-
meter pixels) and 224 spectral bands between 0.4 and 2.5
JLm. Bands 1-3, 105-115 and 150-170 were removed prior
to the analysis due to water absorption and low SNR in those
bands. The site is well understood mineralogically, and has
several exposed minerals of interest. Fig. 3(b-c) shows ref-
erence ground signatures of the above minerals. These sig-
natures will be used to assess endmember signature purity
in this work.

4. EXPERIMENTAL RESULTS

4.1. Experiments with synthetic hyperspectral data

We have first conducted an analysis of the proposed spa-
tial/spectral technique in the task of extracting pure spectral
signatures from the five synthetic scenes in Fig. 1 with dif-
ferent SNR proportions, and compared the obtained results
to those provided by a purely spectral technique such as N-
FINDR. In all cases, the number of endmembers to be ex-
tracted was set to p == 9, the number of random USGS spec-
tral signatures used for the construction of those scenes. In
order to ensure the fairest possible comparison, the best per-
formance must be obtained from each alternative method.
In this work, we have individually optimized each method
to achieve the best possible results (by analyzing different
spectral matching criteria) by testing all possible parame-
ter values (within reasonable range values) and report the
best result obtained for each algorithm with each considered
scene.

Table 1 shows the number of extracted endmembers that
were matched (using the spectral similarity matching al-
gorithm described in [3]) to their corresponding reference
USGS spectral signatures, along with the mean spectral an-
gle distance (SAD) of the matched endmembers for the pro-
posed algorithm and for the asp and N-FINDR algorithms,
when the algorithms were applied to the five synthetic scenes
without noise and with SNRs ranging from 30:1 to 110:1.
In the table, lower SAD indicates higher spectral similar-
ity. As shown by Table 1, the spectral-based asp algorithm
provides the best results in terms of matched endmembers
and spectral similarity of extracted endmembers with re-
gards to reference USGS signatures in the experiments with
synthetic hyperspectral data. an the other hand, the pro-
posed approach outperforms the N-FINDR in terms of av-
erage SAD, and performs similarly to N-FINDR in terms of
matched endmembers. The proposed method was sensitive
to the window size used in morphological operations, but

2http://aviris .jpl.nasa. gOY/htmllaviris. freedata. html

Table 1. Number of matched endmembers with regards to
USGS reference spectral signatures and average SAD score
(in the parentheses) of matched endmembers for each set
of p == 9 endmembers extracted by asp, N-FINDR and
the proposed spatial/spectral algorithm from the synthetic
scenes without noise and with SNRs from 30:1 to 110:1.

Scene asp N-FINDR Proposed
Fractall 9.00 (0.004) 7.15 (0.039) 5.82 (0.025)
Fractal2 9.00 (0.002) 5.15 (0.062) 6.00 (0.019)
Fractal3 9.00 (0.010) 6.00 (0.049) 5.57 (0.023)
Fractal4 9.00 (0.008) 5.82 (0.052) 5.00 (0.023)
Fractal5 9.00 (0.015) 5.27 (0.053) 5.28 (0.023)

similar results were obtained by using structuring elements
ranging from 5 x 5 to 15 x 15 pixels. It should be noted that
the results reported on Table 1 refer to the spectral similarity
of extracted endmembers with regards to reference signa-
tures used in the construction of the synthetic scenes, but do
not analyze the quality of fractional abundance estimations
resulting from such endmembers. As a result, further exper-
iments are highly desirable in order to evaluate the accuracy
of the proposed fractional abundance estimation approach
in combination with the endmember extraction stage.

4.2. Experiments with real hyperspectral data

To illustrate the performance of the proposed spatial/spectral
unmixing method with a real hyperspectral scene, we have
conducted an experimental assessment of spectral mixture
analysis algorithms using the well-known AVIRIS Cuprite
data set. In experiments, we have first considered a standard
mixed pixel decomposition procedure based on endmem-
ber extraction followed by least squares-based linear spec-
tral unmixing [4]. Four algorithms: PPI, N-FINDR, lEA
and the proposed spatial/spectral method were considered
for comparison purposes. Although in practice it is very
difficult to fully optimize each method, we have used our
previous experience with these methods to select parame-
ters which are reasonably close to optimal for the test data.
For the proposed method, the best results were obtained us-
ing a structuring element with 15 x 15 pixels in size. The
parameter values selected are in agreement with those used
before in previous studies [3].

In addition, four linear spectral unmixing algorithms were
used in this experiment to derive endmember fractional abun-
dances. These include the standard fully constrained (FC)
and unconstrained (UC) least-squares based methods, and
also two novel methods: spatial/spectral fully constrained
(SPFC) and spatial/spectral unconstrained (SPUC) unmix-
ing, presented in this work as the last step of the proposed
algorithm (but which can also use endmembers derived by
other methods as input). Prior to a full examination and dis-
cussion of results, it is important to outline parameter values
used for the considered endmember extraction algorithms,
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Fig. 3. AVIRIS Cuprite scene (a) and reference spectra for the scene (b-e),
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Proposed
Alunite 0.084 0.081 0.084
Buddingtonite 0.106 0.084 0.112
Calcite 0.105 0.105 0.093
Chlorite 0.125 0.136 0.096
Kaolinite 0.136 0.152 0.134
Jarosite 0.112 0.102 0.112
Montmorillonite 0.106 0.089 0.120
Muscovite 0.108 0.094 0.105
Nontronite 0.102 0.099 0.099
Pyrophilite 0.094 0.090 0.112

of spectral variability throughout real-world landscapes. In
order to accurately characteri ze the data , it might be neces-
sary to account for multiple scattering effects , which overes-
timate the results obtained from a linear scattering model. In
order to calibrate the performance of linear spectral unmix-
ing adopted in this work for estimating sub-pixel fractional
abundances in the AVIRIS Cuprite data, we also unmixed
the data using the considered FC, UC, SPFC and SPUC al-
gorithms. Interestingly, our experiments revealed that the
correspondent endmember fractional abundance maps de-
rived by using SPFC and SPUC were in visual agreement
for all endmember extraction methods tested. In addition ,
negative and/or unreali stic SPUC-derived abundance frac-
tions (which usually indicate a bad fit of the model and re-
veal inappropriate endmember selections) were very rarely
found , in particular, when the proposed spatial/spectral al-
gorithm was used for the endmember selection stage. Quite
opposite, the abundance maps derived by the UC algorithm
showed a much more significant fraction of negative abun-
dances , in particular, when endmembers were derived using
the spectral information only. Having those circumstances
in mind, the results in this section indicate that the linear
mixture model, improved by the integration of spatial and
spectral information, was able to provide a relatively good
characterization of complex mixture s in the Cuprite mining
district. Further experimentation with nonlinear models is
highly desirable to fully substantiate the above remark s.

Table 2. SAD-based spectral similarity scores among se-
lected USGS mineral spectra in Fig. 3(b-c) and the end-
members produced by different algorithm s.

Mineral PPI N·FINDR lEA

bearing in mind that all of them require that the number of
endmembers to be extracted,p, be set as an input parameter.

In this work, we estimate the number of endmembers
in the AVIRIS Cuprite data using the virtual dimensionality
(VD) concept, which has been shown in previous work to
be an effective approach for this purpose [12]. The VD es-
timated a total of p = 16 endmembers, which is consistent
with the available ground -truth for the scene. For the PPI al-
gorithm , we used the version available in Research Systems
ENVI 4.0 software, which is based on a semi-automatic pro-
cedure that first generates a large number of random vec-
tors with unit norm (104 in experiments) and then projects
the pixel vectors in the data to those random vectors, using
ENVI's N-dimensional visualization tool to manually select
a final endmember set. For the proposed algorithm, we used
a structuring element with size of 3 x 3 pixels and fixed the
value of parameter I m a x = 5.

An experiment-based cross-examination of algorithm end-
member extraction accuracy is presented in Table 2, which
tabulates the SAD scores obtained after comparing some
selected USGS library spectra with the corresponding end-
members extracted by the four considered algorithms. The
smaller the SAD values across the ten minerals considered,
the better the results. It should be noted that Table 2 only
displays the smallest SAD scores of all endmembers with
respect to each USGS signature for each algorithm. As
shown in the table, all tested methods produced endmem-
bers which were similar, spectrally, to the USGS referen ce
signatures. Interestingly, the SAD spectral similarity scores
obtained for the proposed spatial/spectral algorithm were
generally very low, and often superior to those reported by
spectral-based algorithms. This demonstrated the impor-
tance of considering not only spectral but also spatial infor-
mation in the selection of image endmembers, even when
the ultimate goal is to find most spectrally pure signatures
(in this case, the incorporation of spatial information directs
the endmember search to spatially homogeneous areas, in
which it is easier to identify spectrally pure pixels).

It is important to note that the linear mixture model is
generally not flexible enough to accommodate the full range
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4.3. Experiments with nonlinearly mixed data

To expand our disscussion to a nonlinear mixing scenario,
this subsection briefly discusses the use of machine learn-
ing techniques in order to deal with nonlinearly mixed data.
For this purpose, we use a multi-layer perceptron neural net-
work in which the neuron count at the input layer, N, equals
the number of spectral bands. The number of neurons at the
output layer, p, equals the number of spectral endmembers.
The number of neurons in the hidden layer is empirically
set to the square root of the product of the number of input
features and information classes, a configuration shown to
be successful in previous work [11].

In order to illustrate the effectiveness of the MLP neu-
ral network architecture in nonlinear spectral unmixing, we
have considered a database consisting of a set of mineral
mixtures with absolute ground truth. The data consisted of
20 spectra collected using RELAB, a bi-directional, high-
resolution spectrometer able to collect 211 spectral bands in
the spectral range from 0.4 to 2.5 J-Lm. In addition to three
spectral endmembers corresponding to minerals anorthosite,
enstatite and olivine, the database contains ten binary mix-
tures and seven ternary mixtures. We first estimated the
abundance fractions of pure signatures in the 20 available
spectra using the fully constrained (FC) and unconstrained
(UC) linear mixture models. From our experiments, we ob-
served that both FC and UC accurately characterized the
binary mixtures, but for the ternary mixtures a nonlinear
model was required. With this in mind, we trained the MLP
architecture using the backpropagation algorithm. Addi-
tional training samples were generated from the three pure
endmember signatures and the available mixed training sam-
ples by artificially adding random noise (according to RE-
LAB sensor SNR characteristics) to the available samples,
thus assisting the backpropagation training process. It should
be noted that the ground-truth abundance fractions for these
spectra were known in advance, thus allowing us to train the
MLP architectures with highly mixed training samples. The
incorporation of the most highly mixed available samples
allowed us to reduce the overall fractional abundance esti-
mation errors in about 6% for the most complex mixtures,
indicating that intelligently trained machine learning tech-
niques can accurately learn the structure of complex mix-
tures for sub-pixel characterization of hyperspectral data.

5. CONCLUSIONS AND FUTURE LINES

In this paper, we have investigated the impact of including
spatial and abundance-related constraints in spectral mix-
ture analysis of synthetic and real hyperspectral data sets.
Our experimental results, obtained using a variety of algo-
rithms for endmember extraction, unconstrained and con-
strained linear unmixing, and nonlinear unmixing, indicate
that the incorporation of spatial constraints can be benefi-

cial in order to improve automatic endmember extraction
from the input data and unconstrained and constrained lin-
ear spectral unmixing based on endmembers derived using
spectral information only. Further experiments are neces-
sary in order to fully substantiate the impact of spatial con-
straints on nonlinear spectral unmixing, a topic in which
machine learning methods can provide highly relevant con-
tributions. We anticipate that the full adaptation of soft clas-
sifiers such as support vector machines to sub-pixel analysis
(e.g., via multi-regression) may push the frontiers of hyper-
spectral imaging to new application domains.
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