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ABSTRACT

Spectral unmixing is an important tool for interpreting remotely sensed hyperspectral scenes with sub-pixel
precision. It relies on the identification of a set of spectrally pure components (called endmembers) and the
estimation of the fractional abundance of each endmember in each pixel of the scene. Fractional abundance
estimation is generally subject to two constraints: non-negativity of estimated fractions and sum-to-one for all
abundance fractions of endmembers in each single pixel. Over the last decade, several algorithms have been
proposed for simultaneous and sequential extraction of image endmembers from hyperspectral scenes. In this
paper, we develop a new sequential algorithm that automatically extracts endmembers by using an unconstrained
linear mixture model. Our assumption is that fractional abundance estimation using a set of properly selected
image endmembers should naturally incorporate the constraints mentioned above, while imposing the constraints
for an inadequate set of spectral endmembers may introduce errors in the model. Our proposed approach first
applies an unconstrained linear mixture model and then uses a new metric for measuring the deviation of the
unconstrained model with regards to the ideal, fully constrained model. This metric is used to derive a set of
spectral endmembers which are then used to unmix the original scene. The proposed algorithm is experimentally
compared to other algorithms using both synthetic and real hyperspectral scenes collected by NASA/JPL’s
Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS).

Keywords: Hyperspectral data, spectral mixture analysis, endmember extraction, linear spectral unmixing,
fully constrained abundance estimation, unconstrained abundance estimation.

1. INTRODUCTION

Hyperspectral imaging instruments are capable of collecting hundreds of images, corresponding to different
wavelength channels, for the same area on the surface of the Earth.1 For instance, NASA is continuously
gathering imagery data with instruments such as the Jet Propulsion Laboratory’s Airborne Visible-Infrared
Imaging Spectrometer (AVIRIS),2 able to record the visible and near-infrared spectrum (wavelength region from
0.4 to 2.5 micrometers) of the reflected light of an area 2 to 12 kilometers wide and several kilometers long using
224 spectral bands. The resulting hyperspectral data cube3 is a stack of images (see Fig. 1) in which each pixel
(vector) is represented by a spectral signature or ‘fingerprint’ that uniquely characterizes the underlying objects,
and the resulting multidimensional data volume typically comprises several GBs per flight.

Spectral mixture analysis (SMA) is a popular tool for characterizing mixed pixels in remotely sensed hy-
perspectral data sets.4 In this model, it is assumed that the collected spectra are linearly mixed. As a result,
a linear (macroscopic) mixture is obtained when the endmember substances are sitting side-by-side within the
field of view of the imaging instrument as displayed in Fig. 2(a). The standard processing chain for linear SMA
comprises two stages: 1) extraction of pure spectral signatures (endmembers), and 2) estimation of the fractional
abundance of each endmember in each pixel of the scene. The use of spectral endmembers allows one to deal
with the problem of mixed pixels. For instance, it is likely that the pixel labeled as ‘vegetation’ in Fig. 1 actually
comprises a mixture of vegetation and soil. In this case, the measured spectrum can be decomposed into a linear
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Figure 1. Concept of hyperspectral imaging.

combination of pure spectral endmembers of soil and vegetation, weighted by abundance fractions that indicate
the proportion of each endmember in the mixed pixel.

Let us assume that a remotely sensed hyperspectral scene with n bands is denoted by F, in which the pixel at
the discrete spatial coordinates (i, j) of the scene is represented by a vector X(i, j) = [x1(i, j), x2(i, j), · · · , xn(i, j)] ∈
�n, where � denotes the set of real numbers in which the pixel’s spectral response xk(i, j) at sensor channels
k = 1, . . . , n is included. Under the linear mixture model assumption, each pixel vector in the original scene can
be modeled using the following expression:

X(i, j) =
p∑

z=1

Φz(i, j) · Ez + n(i, j), (1)

where Ez denotes the spectral response of endmember z, Φz(i, j) is a scalar value designating the fractional
abundance of the endmember z at the pixel X(i, j), p is the total number of endmembers, and n(i, j) is a noise
vector. The solution of the linear spectral mixture problem described in (1) relies on a successful estimation of
how many endmembers, p, are present in the input hyperspectral scene F, and also on the correct determina-
tion of a set {Ez}p

z=1 of endmembers and their correspondent abundance fractions {Φz(i, j)}p
z=1 at each pixel

X(i, j). Two physical constrains are generally imposed into the model described in equation (1), these are the
abundance non-negativity constraint (ANC), i.e., Φz(i, j) ≥ 0, and the abundance sum-to-one constraint (ASC),
i.e.,

∑p
z=1 Φz(i, j) = 1.3, 5 However, if the endmembers are not properly selected or there are not any available

pure signatures in the scene (resulting from the available spatial resolution of the sensor or other issues6), it may
be difficult to form a simplex using the spectrally purest pixels available in the data so that the simplex encloses
all other (mixed) pixels in the scene, as it would be naturally desirable in a linear mixture modeling scenario.7

In this situation, illustrated in Fig. 2(b), the outliers correspond to pixels which cannot be explained using the
ASC or ANC constraints, since their endmember abundances may be negative or summing less or more than
one. In this case, imposing the ASC and ANC constraints in fractional abundance estimation may be harmful
for linear mixture modeling of the data.

Over the last decade, several algorithms have been developed for extracting spectral endmembers directly
from an input hyperspectral data set.8, 9 Available algorithms may be generally categorized into two classes
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(a) (b)
Figure 2. (a) Linear mixture model. (b) Graphical interpretation of the concept of spectral endmember.

of algorithms,10 namely, simultaneous endmember extraction algorithms (SMEEAs) and sequential endmember
extraction algorithms (SQEEAs):

• On the one hand, SMEEAs generally assume that the number of endmembers (p) is known in advance
and produce a set of endmembers simultaneously. So, for a different value of p, an SMEEA generally
produces a different set of endmembers. In other words, for any given number of endmembers, p, an EEA
must recalculate all the endmembers and cannot take advantage of a set of p − 1 endmembers previously
generated by the same algorithm. In addition, these p − 1 endmembers do not necessarily constitute a
subset of the set of p endmembers generated subsequently, which may have implications in computational
performance when various values of p need to be tested. Among a wide set of available SMEEAs, we
have selected the N-FINDR method11 as a representative of this class of algorithms, among several other
choices.12–15

• In contrast, SQEEAs produce a set of endmembers in sequential order. In other words, a set of p end-
members generated by an SQEEA always includes the set of previously generated p − 1 endmembers.
This feature is highly desirable for an endmember extraction algorithm because it can save a great deal
of computational time when the value of p has to be adjusted, as it is often the case in real applications.
Among a wide set of available SMEEAs, we have selected a method inspired by the concept of orthogonal
subspace projection (OSP)16 as a representative algorithm17 of this class of methods, among several other
choices.18–21

In this paper, we develop a new SQEEA that automatically extracts endmembers from hyperspectral scenes
by using an unconstrained linear mixture model. Our assumption is that the ANC and ASC constraints should
be naturally satisfied if the set of endmembers has been properly extracted, thus providing an adequate physical
description of the data. However, this is not always the case and, in many cases, the constraints are imposed
regardless of whether the extracted endmembers are spectrally pure or not. As a result, these constraints are
not satisfied per se. In order to address this issue, our proposed approach first applies an unconstrained linear
mixture model and then uses a metric for measuring the deviation of the unconstrained model with regards to
the fully constrained one. To do so, we extract as endmembers those extreme pixel vectors that minimize the
number of negative abundance estimations (i.e., those falling outside the estimated simplex), thus searching for
the optimal combination of available image pixels which results in the smallest number of abundance estimates
that do not satisfy the ASC and ANC constraints. The proposed algorithm is experimentally compared to
other representative SQEEAs (OSP algorithm) and SMEEAs (N-FINDR algorithm) in order to substantiate
its performance, using both synthetic and real hyperspectral scenes collected by NASA/JPL’s Airborne Visible
Infra-Red Imaging Spectrometer (AVIRIS).

The remainder of the paper is organized as follows. Section 2 describes the OSP and N-FINDR algorithms
used as representative SMEEAs and SQEEAs, respectively. Section 3 introduces the proposed method. Section
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4 describes the synthetic and real hyperspectral data sets used for experiments in this work. Section 5 conducts a
quantitative and comparative assessment of the proposed method with regards to available approaches. Finally,
section 6 concludes with some remarks and hints at plausible future research lines.

2. CLASSIC ENDMEMBER EXTRACTION ALGORITHMS

2.1 N-FINDR

The original N-FINDR algorithm developed by Winter11 is a representative example of a SMEEA, and can be
summarized by the following steps:

1. Feature reduction. Apply a dimensionality reduction transformation such as the minimum noise fraction
(MNF) or the principal component analysis (PCA)22, 23 to reduce the dimensionality of the data from n to
p − 1, where p is an input parameter to the algorithm (number of endmembers to be extracted).

2. Initialization. Let {E(0)
1 ,E(0)

2 , · · · ,E(0)
p } be a set of endmembers randomly extracted from the input data.

3. Volume calculation. At iteration k ≥ 0, calculate the volume defined by the current set of endmembers as:

V (E(k)
1 ,E(k)

2 , · · · ,E(k)
p ) =

∣∣∣∣det

[
1 1 · · · 1

E(k)
1 E(k)

2 · · · E(k)
p

]∣∣∣∣

(p − 1)!
(2)

4. Replacement. For each pixel vector X(i, j) in the input hyperspectral data set, recalculate the volume
by testing the pixel in all p endmember positions, i.e., first calculate V (X(i, j),E(k)

2 , · · · ,E(k)
p ), then

V (E(k)
1 ,X(i, j), · · · ,E(k)

p ), and so on until V (E(k)
1 ,E(k)

2 , · · · ,X(i, j)). If none of the p recalculated vol-
umes is greater than V (E(k)

1 ,E(k)
2 , · · · ,E(k)

p ), then no endmember is replaced. Otherwise, the combination
with maximum volume is retained. Let us assume that the endmember absent in the combination resulting
in the maximum volume is denoted by E(k+1)

j . In this case, a new set of endmembers is produced by letting

E(k+1)
j = X(i, j) and E(k+1)

i = E(k)
i for i �= j. The replacement step is repeated for all the pixel vectors in

the input data until all the pixels have been exhausted.

2.2 OSP

The orthogonal subspace projection (OSP) approach16 has been combined with an automatic target generation
process17 to automatically derive spectrally distinct signatures in typical SQEEA fashion. Let E1 be an initial
signature (i.e., the pixel vector with maximum length). The OSP relies on an orthogonal subspace projector
operator specified by the following expression:

P⊥
U = I − U(UT U)−1UT , (3)

which is applied to all pixel vectors X(i, j) in the input hyperspectral data set, with U = {E1}. It then finds a
second signature, denoted by E2, with the maximum projection in < E1 >⊥, which is the orthogonal complement
space linearly spanned by E1. A third signature E3 can then be found by applying another orthogonal subspace
projector P⊥

U with U = {E1,E2} to the original image, where the signature that has the maximum orthogonal
projection in < E1,E2 >⊥ is selected as E3. The above procedure is repeated until a set of endmembers
{E1,E2, · · · ,Ep} is extracted, where p is an input parameter to the algorithm.
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3. PROPOSED ENDMEMBER EXTRACTION APPROACH

In the following, we describe our proposed SQEEA, which has been designed to account both for the extremity
of endmembers in the data cloud and for the capacity of such endmembers to properly unmix a hyperspectral
scene (satisfying both the ANC and ASC constraints) when the scene is unmixed using an unconstrained linear
model. The algorithm can be summarized by the following steps:

1. Feature reduction. Apply a dimensionality reduction transformation such as the minimum noise fraction
(MNF) or the principal component analysis (PCA)22, 23 to reduce the dimensionality of the data from n to
p − 1, where p is an input parameter to the algorithm (number of endmembers to be extracted).

2. Initialization. Calculate the centroid of the data cloud as X =
∑ r,c

i=1,j=1 X(i,j)

r×c . Here, r is the number of
rows and c is the number of columns of the original hyperspectral scene. The algorithm now assumes
that all other pixels in the image scene are pure pixels made up of X with 100% abundance and performs
an unconstrained linear unmixing of the scene using X as the only endmember. Of course, the resulting
abundance estimation is not accurate. However, it can be used to identify the pixel with highest fractional
abundance error. This pixel is selected as the first endmember E1.

3. Iterative endmember extraction. Once the initial endmember E1 has been found, the following endmembers
are extracted (in iterative fashion) by evaluating all pixels at the different spatial locations (i, j) in the
original image and selecting the pixel which maximizes the following expression:

εΦ = SAD(X,X(i, j)) +
1

r × c × p

r∑

i=1

c∑

j=1

∣∣(1 −
p∑

z=1

|Φz(i, j)|)
∣∣, (4)

where the first term accounts for the spectral angle distance (SAD)3 of the considered pixel with regards
to the centroid of the data cloud (thus providing an idea about the extremity or convexity of the pixel in
spectral angle sense) and the second term accounts for the number of negative fractions, or sets of fractions
summing less than or above one for the considered pixel, when the pixel is unmixed using an unconstrained
linear mixture model. Here, p refers to the number of endmembers extracted so far. As a result, the
second term in equation (4) evaluates to what extent the fractional abundance estimates provided by the
unconstrained model satisfy the ANC and ASC constraints, which should naturally hold if the endmembers
are properly selected. The idea of selecting as a new endmember the pixel that maximizes equation (4) is
intended to minimize the number of fractional abundance estimates that do not satisfy the ANC and ASC
constraints when the unconstrained linear mixture model is applied.

4. Stopping rule. The aforementioned procedure is repeated in order to find a second endmember E2, a third
endmember E3, and so on, until a set of p endmembers {E1,E2, · · · ,Ep} are extracted, where p is the only
input parameter to the algorithm.

4. HYPERSPECTRAL DATA SETS

4.1 Synthetic hyperspectral scenes

A database of five synthetic hyperspectral scenes has been created using fractals to generate distinct spatial
patterns, which are then used to simulate linear mixtures of reflectance signatures selected from a spectral
library compiled by the U.S. Geological Survey (USGS)∗. Fig. 3 shows the five scenes considered in experiments,
and 4 shows the nine fractional abundance maps used in the generation of one of such scenes. In Fig. 4, black
color indicates 0% abundance of the corresponding mineral, white color indicates 100% abundance of the mineral,
and fractional abundances in each pixel of the scene sum to unity. Zero-mean Gaussian noise was added to the
scenes in different signal to noise ratios (SNRs) –from 30:1 to 110:1– to simulate contributions from ambient
(clutter) and instrumental sources, following a previously described procedure.16

∗http://speclab.cr.usgs.gov/spectral-lib.htm
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Figure 3. Synthetic images used in experiments, where spatial patterns where generated using fractals.

Figure 4. Fractional abundance distributions used in the generation of one of the synthetic images.

4.2 Real hyperspectral data

A well-known hyperspectral data set has been selected for the purpose of illustrating the spectral unmixing
algorithm described in this work. The data set was collected by the AVIRIS sensor over the Cuprite mining
district in Nevada [see Fig. 5(a)], and is available online in both radiance and reflectance units†. In our
experiments, we use reflectance data in order to relate our results to the reference USGS spectral library. The
scene selected for experiments is the one labeled as f970619t01p02 r02 sc03.a.rfl. This scene comprises a relatively
large area (350 × 350 pixels and 20-meter pixels) and 224 spectral bands between 0.4 and 2.5 μm. Bands 1-3,
105-115 and 150-170 were removed prior to the analysis due to water absorption and low SNR in those bands.
The site is well understood mineralogically, and has several exposed minerals of interest. Fig. 5(b-c) shows
reference ground signatures of the above minerals. These signatures will be used to assess endmember signature
purity in this work.

†http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Figure 5. AVIRIS Cuprite scene (a) and reference spectra for the scene (b-c).

5. EXPERIMENTAL RESULTS

5.1 Experiments with synthetic hyperspectral data

We have first conducted an analysis of the proposed technique in the task of extracting pure spectral signatures
from the five synthetic scenes in Fig. 3 with different signal to noise ratio (SNR) proportions, and compared the
obtained results to those provided by the OSP and N-FINDR algorithms. In all cases, the number of endmembers
to be extracted was set to p = 9, the number of random USGS spectral signatures used for the construction of
those scenes.

Table 1 shows the mean spectral angle distance (SAD) of the extracted endmembers that were matched
(using a previously developed spectral similarity matching algorithm8) to their corresponding reference USGS
spectral signatures, for the proposed algorithm and for the OSP and N-FINDR algorithms when those algorithms
were applied to the five synthetic scenes without noise and with SNRs ranging from 30:1 to 110:1. In the table,
lower SAD indicates higher spectral similarity. As shown by Table 1, the proposed algorithm outperforms OSP
and N-FINDR in three of the considered scenes (Fractal2, Fractal4 and Fractal5) although the average SAD
scores reported for the method decrease when the SNR is very high (30:1). On the other hand, both the OSP
and N-FINDR perform similarly, thus indicating that the design of an endmember extraction algorithm in the
form of a SMEEA or a SQUEEA does not have a significant impact on algorithm performance. In this case,
the design in the form of a SQUEEA has the computational advantage that it is not necessary to recalculate
all the endmembers if a set of p endmembers has already been obtained and the number of endmembers needs
to be increased to q with q > p. In this case, a SQUEEA such as the proposed method (and OSP) can take
advantage of a set of p− 1 endmembers previously generated by the same algorithm. It should be noted that, in
our experiments with synthetic scenes, the determination of the value of p is straightforward since the number
of endmembers available in the simulated scenes is known in advance. However, in real data experiments several
tests often need to be performed before setting the value of p to a desirable value.

5.2 Experiments with real hyperspectral data

To illustrate the performance of the proposed method with a real hyperspectral scene, we have conducted an
experimental assessment of endmember extraction algorithms using the well-known AVIRIS Cuprite data set. In
this work, we estimate the number of endmembers in the AVIRIS Cuprite data using the virtual dimensionality
(VD) concept, which has been shown in previous work to be an effective approach for this purpose.24 The VD
estimated a total of p = 18 endmembers, which is consistent with the available ground-truth for the scene.

An experiment-based cross-examination of algorithm endmember extraction accuracy is presented in Table 2,
which tabulates the SAD scores obtained after comparing some selected USGS library spectra with the corre-
sponding endmembers extracted by the three considered algorithms (OSP, N-FINDR and the proposed method).
The smaller the SAD values across the ten minerals considered, the better the results. It should be noted that
Table 2 only displays the smallest SAD scores of all endmembers with respect to each USGS signature for each
algorithm. As shown in the table, all tested methods produced endmembers which were similar, spectrally, to the
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Table 1. Average SAD score (cosine of the spectral angle) of matched endmembers with regards to USGS reference spectral
signatures for each set of p = 9 endmembers extracted by OSP, N-FINDR and the proposed algorithm from the synthetic
scenes without noise and with SNRs from 30:1 to 110:1.

Scene SNR OSP N-FINDR Proposed
Fractal1 No noise 0.0031 0.0030 0.0041

110:1 0.0031 0.0030 0.0041
90:1 0.0029 0.0033 0.0041
70:1 0.0030 0.0029 0.0042
50:1 0.0048 0.0046 0.0073
30:1 0.0349 0.0324 0.0352

Fractal2 No noise 0.0011 0.0012 0.0011
110:1 0.0011 0.0012 0.0011
90:1 0.0011 0.0012 0.0011
70:1 0.0014 0.0014 0.0013
50:1 0.0039 0.0040 0.0039
30:1 0.0354 0.0339 0.0347

Fractal3 No noise 0.0077 0.0077 0.0175
110:1 0.0077 0.0077 0.0175
90:1 0.0077 0.0077 0.0175
70:1 0.0078 0.0077 0.0176
50:1 0.0092 0.0093 0.0192
30:1 0.0384 0.0364 0.0381

Fractal4 No noise 0.0077 0.0058 0.0052
110:1 0.0060 0.0058 0.0052
90:1 0.0069 0.0072 0.0053
70:1 0.0055 0.0068 0.0054
50:1 0.0074 0.0088 0.0073
30:1 0.0359 0.0363 0.0405

Fractal5 No noise 0.0121 0.0138 0.0121
110:1 0.0121 0.0138 0.0121
90:1 0.0129 0.0146 0.0121
70:1 0.0129 0.0146 0.0121
50:1 0.0140 0.0139 0.0133
30:1 0.0401 0.0435 0.0557

USGS reference signatures. Interestingly, the SAD spectral similarity scores obtained for the proposed algorithm
were similar and, in some cases, superior to those reported by the OSP and N-FINDR algorithms.

For illustrative purposes, Fig. 6 maps the spatial locations of the p = 18 endmembers extracted by the OSP, N-
FINDR and the proposed method. As shown by Fig. 6, the three considered methods provide several endmembers
which are overlapped in terms of their spatial locations in the scene. On the other hand, Table 2 indicates that
the endmembers which are not overlapped are similar in spectral terms, since the SAD scores reported in the
table (comparing the best matched endmember for each method with regards to each USGS reference spectral
signature) are very similar, thus indicating that the three methods perform similarly in the considered real
hyperspectral image analysis scenario. Future work should comprise an evaluation of the considered methods
under different analysis scenarios, using hyperspectral data sets collected by different instruments and in the
context of different application domains.

To conclude our experimental results section, we provide an idea about the computational complexity of the
proposed method in the task of processing the AVIRIS Cuprite hyperspectral scene in a personal computer with
Intel Core 2 Duo processor at 1.83 GHz and 3 GB of RAM memory. In this platform, our Matlab implementation
of the OSP algorithm extracted the p = 18 endmembers in 149.73 seconds, while our Matlab implementation
of N-FINDR needed 780.67 seconds. Finally, our Matlab implementation of the proposed approach selected all
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Table 2. SAD-based spectral similarity scores among selected USGS mineral spectra in Fig. 5(b-c) and the endmembers
produced by different algorithms.

Mineral OSP N-FINDR Proposed
Alunite 0.1002 0.1134 0.1002
Buddingtonite 0.0929 0.0929 0.0985
Calcite 0.1849 0.1216 0.1216
Kaolinite 0.1969 0.2185 0.2250
Chlorite 0.2695 0.2834 0.2695
Jarosite 0.1371 0.1715 0.1441
Montmorillonite 0.1045 0.1050 0.0903
Pyrophilite 0.1735 0.1434 0.1397
Muscovite 0.1077 0.1104 0.0946
Nontronite 0.2045 0.2185 0.2297

Figure 6. Spatial locations of the p = 18 endmembers extracted by the three considered extraction methods.

p = 18 endmembers in 155.4 seconds. It should be noted that the proposed algorithm was implemented with
PCA-based dimensionality reduction as its initial step, which consumed about 20 seconds of processing time
(already included in the total processing time reported).

6. CONCLUSIONS AND FUTURE RESEARCH LINES

In this paper, we have described a new algorithm for automatic endmember extraction which sequentially finds
a pre-determined number of endmembers by considering both the extremity of sample pixel vectors (tested iter-
atively as potential endmember candidates) and the capacity of endmember candidates to satisfy the abundance
non-negativity and sum-to-one constraints (on a per-pixel basis) after using an unconstrained linear spectral
unmixing model. Our assumption in this work is that the aforementioned constraints should naturally hold
in the fractional abundance estimations if the endmembers are properly selected, and thus make use of this
assumption to intelligently guide the image endmember searching process to a combination of available extreme
image pixels that minimize the number of fractional abundance estimations that do not satisfy such constraints.
Our experimental results, obtained using both synthetic and real hyperspectral scenes, indicate the importance
of considering not only the convexity or extremity of spectral endmembers (accounted for in this work in spectral
angle sense), but also their capacity to produce fractional abundance estimations which can naturally fulfill the
ASC and ANC constraints when applying an unconstrained linear spectral unmixing model in the process of au-
tomatically extracting such endmembers, i.e. without imposing such constraints during the endmember searching
process. As future work, additional criteria for measuring the convexity of extracted endmembers (e.g., volume
of the simplex defined by the endmembers or their orthogonality) in combination with the proposed error term
(measuring the deviation of unconstrained versus constrained linear unmixing) should be considered. Further
experiments should also be conducted in order to substantiate if the proposed method can also provide adequate
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(either unconstrained or constrained) fractional abundance estimations when the set of derived endmembers is
used to unmix additional synthetic and real hyperspectral scenes.
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