
GPUs versus FPGAs for Onboard Payload Compression of

Remotely Sensed Hyperspectral Data

Antonio Plaza, Sergio Sánchez, Abel Paz and Javier Plaza

Hyperspectral Computing Laboratory

Department of Technology of Computers and Communications

Escuela Politécnica de Cáceres, University of Extremadura

Avda. de la Universidad s/n, E-10003 Cáceres, Spain

Email: {aplaza, sersanmar, apazgal, jplaza}@unex.es

ABSTRACT

In this paper, we compare field programmable gate arrays (FPGAs) versus graphical processing units (GPUs) in the

framework of (lossy) remotely sensed hyperspectral data compression by developing parallel implementations of a

spectral unmixing-based compression strategy on both platforms. For the FPGA implementations, we resort to Xilinx

hardware devices certified for on-board operation, while for the GPU implementation we make use of hardware devices

available from NVidia, such as the Tesla series. In our comparison, we thoroughly assess the advantages and

disadvantages of each considered architecture by designing and evaluating new parallel compression algorithms for

both types of platforms. These algorithms are quantitatively evaluated in terms of lossy compression performance using

hyperspectral data collected by the NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) system over

the World Trade Center (WTC) in New York, five days after the terrorist attacks that collapsed the two main towers in

the WTC complex. Our experimental results indicate that low-weight and low-power integrated components are very

appealing to reduce mission payload and obtain analysis/compression results in real-time, thus bridging the gap towards

on-board lossy compression of remotely sensed hyperspectral data.

1. I$TRODUCTIO$

Remotely sensed hyperspectral sensors provide image data containing rich information in both the spatial and the

spectral domain. The extreme dimensionality of the data introduces the need for compression algorithms which can

operate on-board the sensor in time-critical applications that demand a response in real-time, thus reducing the volume

of data before it is transmitted to Earth and optimizing the bandwidth of the downlink connection. Specifically,

hyperspectral data compression [1] has received considerable interest in recent years due to the enormous data volumes

collected by latest-generation imaging spectrometers [2] such as NASA Jet Propulsion Laboratory's Airborne Visible

Imaging Infra-Red Imaging Spectrometer (AVIRIS) [3], which is now able to collect hundreds of contiguous spectral

bands with high between-band spectral correlation (see Fig. 1). Two approaches have been explored in the literature to

address the relevant issue of hyperspectral data compression prior to the analysis: lossless and lossy, in accordance with

redundancy removal. Which compression framework should be used depends heavily upon the application domain.

Since we are interested in exploitation-based applications, our target hyperspectral data analysis techniques are

generally determined by features of objects in the image data rather than the image itself As a result, lossless

compression may not offer significant advantages over lossy compression in the sense of feature extraction.

Figure 1. The concept of hyperspectral imaging illustrated using the AVIRIS spectrometer.

The success of a lossy compression technique is generally measured by whether or not its effectiveness meets a preset

desired goal which in turn determines which criterion should be used for compression. As an example, principal

component analysis (PCA) [4] can be seen as a compression technique that represents data in a few principal

components determined by data variances. Its underlying assumption is based on the fact that the data are well

represented and structured in terms of variance, where most of data points are clustered and can be packed in a low

dimensional space. However, it has been shown that signal-to-noise ratio (SNR) is generally a better measure than data

variance to measure image quality in multispectral imagery. Similarly, the mean squared error (MSE) has been also

widely used as a criterion for optimality in communications and signal processing such as quantization. However, it is

also known that it may not be appropriate to be used as a measure of image interpretation. This is particularly true for

hyperspectral imagery which can uncover many unknown signal sources, some of which may be very important in data

analysis such as anomalies, small targets which generally contribute very little to SNR or MSE. In the PCA these targets

may only be retained in minor components instead of principal components. So, preserving only the first few principal

components may lose these targets. In SNR or MSE, such targets may very likely be suppressed by lossy compression if

no extra care is taken since missing these targets may only cause inappreciable loss of signal energy or small error.

By realizing the importance of hyperspectral data compression, many efforts have been devoted to design and

development of compression algorithms for hyperspectral imagery [1]. Some of these techniques are based on a direct

extension of 2D image compression to 3D image compression where many 2D image compression algorithms that have

proven to be efficient and effective in 2D images are extended to 3D algorithms. Two techniques of particular interest

will be used in our investigation: the JPEG2000 multicomponent [5] and the 3D-SPIHT [6, 7]. Despite a hyperspectral

image can be considered as an image cube and therefore processed by the techniques above, our experimental results in

previous work [8] show that a direct application of 3D image compression to hyperspectral data may not be able to

accurately preserve the very rich spectral information that is present in hyperspectral data cubes. In particular, using

MSE or SNR as a compression criterion may result in significant loss of spectral information for data analysis.

Our main focus in this work is to design efficient strategies for reducing significantly the large volume of information

contained in the original hyperspectral data cube while, at the same time, being able to retain information that is crucial

to deal with small targets (possibly smaller than the pixel size) and anomalies [9]. These two types of pixels are

essential in many hyperspectral analysis applications, including military target detection and tracking, environmental

modeling and assessment at sub-pixel scales. A subpixel target is a mixed pixel with size smaller than the available

pixel size (spatial resolution). So, it is embedded in a single pixel and its existence can only be verified by using the

wealth of spectral information provided by hyperspectral sensors. An anomaly is a pixel with a spectral signature which

is completely different from those of its surrounding pixels. In both cases, spectral information can greatly help to

effectively characterize the substances within the mixed pixel via spectral unmixing techniques [10]. When

hyperspectral image compression is performed, it is critical and crucial to take into account these two issues, which

have been generally overlooked in the development of lossy compression techniques in the literature.

In this work, we address the aforementioned issue by designing spectral unmixing-based lossy hyperspectral data

compression techniques and efficiently implementing them on specialized hardware devices intended for onboard

exploitation, such as field programmable gate arrays (FPGAs) [11] and graphical processing units (GPUs) [12]. These

platforms offer significant advantages in terms of mission payload, mainly due to their low weight and compact size,

and to their capacity to provide high performance computing at low costs. For instance, FPGAs offer the appealing

possibility of being able to adaptively select the data processing algorithm to be applied (out of a pool of available

algorithms) from a control station on Earth, immediately after the data is collected by the sensor. This feature is possible

thanks to the inherent reconfigurability of FPGA devices, which are generally more expensive than GPU devices. In the

near future, significant developments are expected in the active research area devoted to radiation-hardening of GPU

and FPGA devices, which may allow their full incorporation to satellite-based Earth and planetary observation

platforms in space.

The remainder of the paper is organized as follows. Section 2 describes the proposed linear spectral mixture-based lossy

compression technique. Sections 3 and 4 respectively develop parallel versions of the proposed algorithms for efficient

implementation in FPGAs and GPUs. Section 5 provides experimental results comparing the performance of the

proposed techniques with regards to existing ones in terms of both information preservation after compression and

parallel performance. Finally, section 6 concludes with some remarks and hints at future research lines.

2. SPECTRAL U$MIXI$G-BASED LOSSY COMPRESSIO$ OF HYPERSPECTRAL DATA

This section describes an application-oriented, lossy compression algorithm for hyperspectral image data which relies

on the utilization of the linear mixture model [13]. The idea of the proposed lossy data compression algorithm is to

represent a hyperspectral image cube by a set of fractional abundance images (see Fig. 2). Let us assume that a remotely

sensed hyperspectral scene with 0 bands is denoted by F, in which a pixel at discrete spatial coordinates is represented

by a vector f = [f1, f2,…, f0], where fk denotes the spectral response at the k-th sensor wavelength, with k = 1, 2, …, 0.

Under the linear mixture model assumption, each pixel vector in the original scene can be modeled using the following

expression:

 tef +⋅=∑
=

E

i

iia
1

, (1)

where ei designates the i-th pure spectral component (endmember) residing in the pixel, ai is a scalar value designating

the fractional abundance of the endmember ei at the pixel f, E is the total number of endmembers, and t is a noise

vector. The solution of the linear spectral mixture problem described in (1) and adopted in our work relies on the correct

determination of a set of endmembers and their correspondent abundance fractions at each pixel f (possibly after a

dimensionality reduction transformation to speed up the procedure for searching for E endmembers in the data). Two

physical constrains are generally imposed into the model described in (1), these are the abundance non-negativity

constraint (ANC) and the abundance sum-to-one constraint (ASC). By using the linear mixture model above, we can

represent each pixel vector f by its associated, linearly derived abundance vector f = [f1, f2,…, fE] with E dimensions,

which can be seen as a fingerprint of f with regards to E endmembers which are extracted from the original input scene

by a fully automatic algorithm. With this idea in mind, in order to compress the original hyperspectral image (in lossy

fashion) we would just need to retain the extracted E endmembers and their associated E fractional abundance maps

(see Fig. 2). Since the number of endmembers in a hyperspectral image, E, is generally much higher than the number of

spectral bands, 0, significant compression rations can be achieved by this simple lossy compression strategy.

Spectral unmixingSpectral unmixingSpectral unmixing

A simple, yet effective

strategy to compress a

hyperspectral data set

is to retain the spectral

endmembers (with high

spectral fidelity) and

the estimated (spatial)

abundance fractions

A simple, yet effective

strategy to compress a

hyperspectral data set

is to retain the spectral

endmembers (with high

spectral fidelity) and

the estimated (spatial)

abundance fractions

Figure 2. The proposed lossy hyperspectral data compression strategy using spectral unmixing concepts.

In order to accomplish the endmember extraction part of the proposed lossy compression strategy, one of the most

successful algorithms for automatic endmember extraction in the literature has been the PPI algorithm [14]. The

algorithm proceeds by generating a large number of random, 0-dimensional unit vectors called “skewers” through the

dataset. Every data point is projected onto each skewer, and the data points that correspond to extrema in the direction

of a skewer are identified and placed on a list. As more skewers are generated, the list grows, and the number of times a

given pixel is placed on this list is also tallied. The pixels with the highest tallies are considered the final endmembers.

The concept of the PPI algorithm is explained in Fig. 3. On the other hand, for the abundance estimation part of the

lossy compression algorithm we use the fully constrained linear spectral unmixing (FCLSU) algorithm in [15], which

includes the desired ASC and ANC constraints. The full compression strategy is illustrated in pseudo-code in Fig. 4.

Extreme pixel

Extreme pixel

Extreme pixel

Extreme pixel

Extreme pixelExtreme pixel

Extreme pixelExtreme pixel

Extreme pixelExtreme pixel

Extreme pixelExtreme pixel

Skewer 1Skewer 1

Skewer 2Skewer 2

Skewer 3Skewer 3

Figure 3. Toy example illustrating the behaviour of the pixel purity index (PPI) algorithm in a 2-dimensional space.

Figure 4. Pseudo-code of the proposed lossy hyperspectral data compression strategy.

3. FPGA IMPLEME$TATIO$

Our strategy for implementation of the hyperspectral unmixing chain in reconfigurable hardware is aimed at enhancing

replicability and reusability of slices in FPGA devices through the utilization of systolic array design [16]. Fig. 5

describes our systolic architecture. Here, local results remain static at each processing element, while a total of T pixel

vectors with 0 dimensions are input to the systolic array from top to bottom. Similarly, K skewers with 0 dimensions

are fed to the systolic array from left to right. In Fig. 5, asterisks represent delays. The processing nodes labeled as dot

in Fig. 5 perform the individual products for the skewer projections. On the other hand, the nodes labeled as max and

min respectively compute the maxima and minima projections after the dot product calculations have been completed.

In fact, the max and min nodes avoid broadcasting the pixel while simplifying the collection of the results. Based on the

systolic array in Fig. 5 (which also allows implementation of the fully constrained spectral unmixing stage) we have

implemented the full hyperspectral unmixing chain using the very high speed integrated circuit hardware description

language (VHDL) for the specification of the systolic array. Further, we have used the Xilinx ISE environment and the

Embedded Development Kit (EDK) environment to specify the complete system. The full system has been ported to a

low-cost reconfigurable board of XUPV2P type with a single Virtex-II PRO xc2vp30 FPGA component.

0

0

dot11 dot12 dot13 dot1T

dot21 dot22 dot23 dot2T

dot31 dot32 dot33 dot3T

dotK1 dotK2 dotK3 dotKT

() ()1
11 ,...,ff

0 () () ∗122 ,...,ff
0 () () ∗∗133 ,...,ff

0 () ()
{

1

1 ...,...,
−

∗∗
T

T
0

T ff() ()1
11 ,...,ff

0 () () ∗122 ,...,ff
0 () () ∗∗133 ,...,ff

0 () ()
{

1

1 ...,...,
−

∗∗
T

T
0

T ff

min1

min2

min3

minK

''∞

min1

min2

min3

minK

''∞

max1 max2 max3 maxT'0' max1 max2 max3 maxT'0'

() ()1
11 ,...,skewerskewer

0

() () ∗122 ,...,skewerskewer
0

() () ∗∗133 ,...,skewerskewer
0

() ()
{

1

1 ...,...,
−

∗∗
K

K
0

K skewerskewer

() ()1
11 ,...,skewerskewer

0

() () ∗122 ,...,skewerskewer
0

() () ∗∗133 ,...,skewerskewer
0

() ()
{

1

1 ...,...,
−

∗∗
K

K
0

K skewerskewer

Figure 5. Systolic array architecture used in our FPGA hardware implementation.

Fig. 6 shows the architecture of the hardware used to implement the hyperspectral unmixing chain. For data input we

use the FPGA memory slot (of DDR2 SDRAM type) which holds up to 2 Gigabytes, and a direct memory access

(DMA) module (controlled by a PowerPC) with a write queue to store the pixel data. A read queue and a transmitter are

also used to send the endmembers to the FPGA via a RS232 port. A control unit, the systolic array, and a module for

random generation of skewers are also implemented. Additional details are given in [17].

Figure 6. FPGA board used in our experiments.

4. GPU IMPLEME$TATIO$

GPUs can be abstracted in terms of a stream model, under which all data sets are represented as streams (i.e., ordered

data sets). Algorithms are constructed by chaining so-called kernels, which operate on entire streams, taking one or

more streams as inputs and producing one or more streams as outputs. Thereby, data-level parallelism is exposed to

hardware, and kernels can be concurrently applied without any sort of synchronization. In order to implement the

considered hyperspectral unmixing chain in a GPU, the first issue that needs to be addressed is how to map a

hyperspectral image onto the memory of the GPU. Since the size of hyperspectral images may exceed the capacity of

the GPU memory, in that case we split the image into multiple spatial-domain partitions [16] made up of entire pixel

vectors. Fig. 7 shows a flowchart describing the kernels that comprise our GPU-based implementation, which has been

developed using the compute unified device architecture (CUDA).

Uses the final endmembers and produces the

endmember fractional abundances for each pixel

Uses the final endmembers and produces the

endmember fractional abundances for each pixel

Complementary kernel to discard candidates with

cumultative scores below a certain threshold

Complementary kernel to discard candidates with

cumultative scores below a certain threshold

Complementary kernel to identify pixels which

have been selected a certain number of times

Complementary kernel to identify pixels which

have been selected a certain number of times

Spatial-domain tiles uploaded

into the GPU memory

Spatial-domain tiles uploaded

into the GPU memory

Nvidia’s implementation of

Mersenne twister generator

Nvidia’s implementation of

Mersenne twister generator

Computes the cumulative spectral angle distance

between each candidate and all other candidates

Computes the cumulative spectral angle distance

between each candidate and all other candidates

Multi-pass kernel that implements an element-

wise multiply and add operation

Multi-pass kernel that implements an element-

wise multiply and add operation

Stream uploading

For each spatial-domain partition

T pixels

Skewer generation

Extreme projections

Endmember selection

K skewers

Endmember candidates

Final endmembers

Spectral unmixing

Fractional abundances

Data partitioning

KxT dot products

Candidate selection

Original

Hyperspectral

image

Relative coordinates of pixels with max and min

distance after the projection onto each skewer

Relative coordinates of pixels with max and min

distance after the projection onto each skewer

Figure 7. Flowchart summarizing the kernels involved in our GPU implementation.

5. EXPERIME$TAL RESULTS

This section evaluates the effectiveness of the proposed hyperspectral data compression technique. Subsection 5.1

describes the hyperspectral data sets used for evaluation purposes. Subsection 5.2 describes the parallel computing

architectures (FPGA and GPU). A survey on algorithm performance in a real application domain is then provided in

subsection 5.3, along with a discussion on the advantages and disadvantages of the proposed lossy compression

technique in terms of hyperspectral data fidelity after compression. Finally, subsection 5.4 provides an evaluation of

parallel performance of the proposed high performance implementations.

5.1. Hyperspectral data set

The image scene used for experiments in this work was collected by the AVIRIS instrument, which was flown by

NASA's Jet Propulsion Laboratory over the World Trade Center (WTC) area in New York City on September 16, 2001,

just five days after the terrorist attacks that collapsed the two main towers and other buildings in the WTC complex. The

data set selected for experiments was geometrically and atmospherically corrected prior to data processing, and consists

of 614x512 pixels, 224 spectral bands and a total size of 140 MB. The spatial resolution is 1.7 meters per pixel. The

leftmost part of Fig. 8 shows a spectral band of the data set selected for experiments, in which a detail of the WTC area

is shown in a rectangle. The rightmost part of Fig. 8 shows a thermal map generated by U.S. Geological Survey and

centered at the region where the buildings collapsed. The map displays the locations of the thermal hot spots with

temperatures ranging from 700F (marked as “F”) to 1300F (marked as “G”). This thermal map will be used in this work

as ground-truth to substantiate the capacity of the proposed compression algorithm to retain the sub-pixel spectral

information required to detect the hot spot fires in the WTC complex.

Figure 8. AVIRIS image collected over World Trade Center (left). Location of thermal hot (right).

5.2. Parallel computing architectures

Two specialized hardware architectures have been considered in this work. The first one is a low-cost reconfigurable

board with a single Virtex-II PRO xc2vp30 FPGA component, a DDR SDRAM DIMM memory slot with 2 Gigabytes

of main memory, a RS232 port, and some additional components not used by our implementation (see Fig. 6). This

board is very similar to other Xilinx designs which have been certified for aerospace operation. We also use an NVidia

Tesla C1060 GPU, which features 240 processor cores operating at 1.296 Ghz, with single precision floating point

performance of 933 Gigaflops, double precision floating point performance of 78 Gflops, total dedicated memory of 4

GB, 800 MHz memory (with 512-bit GDDR3 interface) and memory bandwidth of 102 GB/sec. The GPU is connected

to an Intel core i7 920 CPU at 2.67 Ghz with 8 cores, which uses a motherboard Asus P6T7 WS SuperComputer.

5.3. Experimental assessment of data fidelity after compression

Prior to a full examination and discussion of compression results, it is important to outline parameter values used for the

different stages of the proposed hyperspectral lossy compression technique. Specifically, the number of endmembers to

be extracted in the WTC data was set to E=20 after estimating the intrinsic dimensionality of the data using the virtual

dimensionality concept [18]. In addition, the number of skewers was set to K=10
4
 (although values of K=10

3
 and K=10

5

were also tested, we experimentally observed that the use of K=10
3
 resulted in the loss of important endmembers, while

the endmembers obtained using K=10
5
 were essentially the same as those found using K=10

4
). These parameter values

are in agreement with those used before in the literature [16].

In order to explore the degree of spectral fidelity of the compressed images obtained after applying the proposed

compression method, Fig. 9 reports the spectral angle values among the pixels labeled as hot spots and the pixels at the

same spatial locations in the images obtained after applying the proposed lossy hyperspectral data compression

technique (in the table, the lowest the scores, the highest the spectral similarity). In experiments, compression ratios of

20:1, 40:1 and 80:1 (given by different tested values of input parameter E) were used. For illustrative purposes, we have

also included the results provided by two standard methods in our comparison, i.e., the wavelet-based JPEG2000

multicomponent [6] and the 3D-SPIHT [7]. The JPEG2000 implementation used for our experiments was the one

available in kakadu software. Both techniques are 3D compression algorithms that treat the hyperspectral data as a 3D

volume, where the spectral information is the third dimension. As expected, as the compression ratio was increased, the

quality of extracted endmembers was decreased. Results in Fig. 9 show that, for the same compression ratio, a 3D lossy

compression algorithm may result in significant loss of spectral information which can be preserved better, in turn, by

an application-oriented algorithm such as the proposed lossy compression approach. It should be noted that all the

algorithms reported on Table 1 required several minutes of computation to compress the AVIRIS WTC data set in a PC

with AMD Athlon 2.6 GHz processor and 512 MB of RAM (specifically, the proposed lossy compression algorithm

required almost one hour).

Figure 9. Spectral angle-based similarity scores between the original hyperspectral image pixels labeled as hot spots in

the AVIRIS scene over the World Trade Center and the corresponding pixels in the hyperspectral images obtained after

compression using different techniques.

5.4. Parallel performance

Our implementation of the lossy hyperspectral data compression algorithm on the considered FPGA board was able to

achieve a total processing time for the considered AVIRIS scene of 31.23 seconds utilizing approximately 76% of the

available hardware resources in the considered board. This FPGA has a total of 13696 slices (out of which 10423 were

used by our implementation). An interesting feature of the considered design is that it can be scaled without

significantly increasing the delay of the critical path (the clock cycle remained constant at 187 MHz). It should also be

noted that in our implementation he have paid special attention to the impact of communications. In previous designs

[16], the module for random generation of skewers was situated in an external processor. Hence, frequent

communications between the host (CPU) and the device (FPGA) were needed. However, in our implementation the

hardware random generation module is implemented internally in the FPGA board. This approach significantly reduced

the communications, leading to increased parallel performance.

On the other hand, the execution time for the lossy hyperspectral compression algorithm implemented on the NVidia

C1060 Tesla GPU was 17.59 seconds. In our experiments on the Intel Core i7 920 CPU, the hyperspectral unmixing

chain took 1078.03 seconds to process the considered AVIRIS scene (using just one of the available cores). This means

that the speedup achieved by our GPU implementation with regards to the serial implementation in one core was

approximately 61.28. After profiling the implementation using the CUDA Visual Profiler tool, we checked that the

skewer projections kernel consumed more than 95% of the total GPU time, while the one used for random generation of

skewers compraratively occupied a much smaller fraction. Finally, the data movement operations were not significant,

which indicates that most of the GPU processing time is invested in the most time-consuming operation, i.e. the

calculation of skewer projections and identification of maxima and minima projection values leading to endmember

identification with E=20, which is indeed a crucial step for defining the compression ratio in our proposed lossy

compression algorithm.

6. CO$CLUSIO$S A$D FUTURE RESEARCH LI$ES

We have inter-compared FPGAs versus GPUs in the role of compressing hyperspectral data (in lossy fashion) using

spectral unmixing concepts. The proposed implementations are intended for on-board analysis (before the hyperspectral

data is transmitted to Earth). A major goal is to overcome an existing limitation in many remote sensing and

observatory systems: the bottleneck introduced by the bandwidth of the downlink connection from the observatory

platform. In this regard, our experimental results demonstrate that the proposed hardware implementations make

appropriate use of computing resources in FPGA and GPU architectures, and further provide adequate compromises in

terms of on-board payload data compression. However, it should be noted that the achieved response times are not in

real time. Specifically, the cross-track scan line of AVIRIS, a pushbroom instrument, is 8.3 msec to collect 512 pixel

vectors, and this introduces the need to process a standard data set of 614x512 pixels in less than 5 sec to fully achieve

real-time performance. However, the measured times can still be improved and are actually believed to be acceptable in

most remote sensing applications. As a result, the reconfigurability of FPGA systems on the one hand, and the low cost

of GPU systems on the other, open many innovative perspectives, ranging from the appealing possibility of being able

to adaptively select one out of a pool of available data compression algorithms (which could be applied on the fly

aboard the airborne/satellite platform, or even from a control station on Earth), to the possibility of providing near real-

time response. Flexibility is also important parameter to be discussed in aerospace applications, since the available

space is very restricted. In this regard, both platforms offer a low-weight solution compliant with mission payload

requirements, although power consumption is higher in the GPU solution than in the FPGA solution. In both cases the

solutions can be easily reused to deal with other different processing problems (e.g. lossless compression). In the GPU

case, this is as simple as executing a different code, whereas in the FPGA case this can be achieved by reconfiguring the

platform with an adequate algorithm. Although the experimental results presented in this work are quite encouraging,

further work is still needed to optimize the proposed implementations and fully achieve real-time performance.

Radiation-tolerance and power consumption issues for these hardware accelerators should be explored in more detail in

future developments (particularly for GPUs, since many FPGAs have already been certified for aerospace operation).

REFERE$CES

[1] G. Motta, F. Rizzo, and J. A. Storer, Hyperspectral data compression, Springer-Verlag, New York, 2006.
[2] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science,

vol. 228, pp. 1147–1153, 1985.
[3] R. O. Green, “Imaging spectroscopy and the airborne visible-infrared imaging spectrometer (AVIRIS),” Remote

Sensing of Environment, vol. 65, pp. 227–248, 1998.
[4] J. A. Richards, “Analysis of remotely sensed data: the formative decades and the future,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 43, pp. 422–432, 2005.
[5] D. S. Taubman and M. W. Marcellin, JPEG2000: Image compression fundamentals, standard and practice, Kluwer,

Boston, 2002.
[6] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, pp. 243–250, 1996.
[7] B.-J. Kim, Z. Xiong, andW. A. Pearlman, “Low bit-rate scalable video coding with 3-D set partitioning in

hierarchical trees (3-D SPIHT),” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, pp.
1374–1387, 2000.

[8] A. Plaza, “Clusters versus FPGAs for spectral mixture analysis-based lossy hyperspectral data compression,”
Proceedings of SPIE, Satellite Data Compression, Communication and Processing Conference V, vol. 7084, 2008.

[9] A. Paz and A. Plaza, “Clusters versus GPUs for parallel automatic target detection in remotely sensed hyperspectral
images,” EURASIP Journal on Advances in Signal Processing, vol. 2010, Article ID 915639, 18 pages, 2010.

[10] Q. Du and C.-I. Chang, “Linear mixture analysis-based compression for hyperspectral image analysis,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 42, pp. 875–891, 2004.

[11] A. Plaza, “Towards real-time compression of hyperspectral images using Virtex-II FPGAs,” Lecture 0otes in
Computer Science, vol. 4641, pp. 248-257, 2007.

[12] J. Setoain, M. Prieto, C. Tenllado, A. Plaza and F. Tirado, “Parallel morphological endmember extraction using
commodity graphics hardware,” IEEE Geoscience and Remote Sensing Letters, vol. 43, no. 3, pp. 441-445, 2007.

[13] J. B. Adams, M. O. Smith and P. E. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at
the Viking Lander 1 site,” Journal of Geophysical Research, vol. 91, pp. 8098–8112, 1986.

[14] J. W. Boardman, “Automating spectral unmixing of aviris data using convex geometry concepts,” Summaries of
Airborne Earth Science Workshop, R. O. Green, ed., JPL Publication 93-26, pp. 111–114, 1993.

[15] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mixture analysis for material quantification in
hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, pp. 529–545, 2001.

[16] A. Plaza and C.-I. Chang, High performance computing in remote sensing, CRC Press, Boca Raton, 2006.
[17] C. Gonzalez, J. Resano, D. Mozos, A. Plaza and D. Valencia, “FPGA implementation of the pixel purity index

algorithm for remotely sensed hyperspectral image analysis,” EURASIP Journal on Advances in Signal
Processing, vol. 2010, Article ID 969806, 13 pages, 2010.

[18] C.-I. Chang, Hyperspectral imaging: techniques for spectral detection and classification, Kluwer Academic and
Plenum Publishers, New York, 2003.

