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ABSTRACT- The main objective of the Earth Observation Optical Data Calibration and Information Extraction 
(EODIX) project is to develop advanced ground segment methodologies for optical data calibration and 

information extraction from a broad family of imaging instruments currently in orbit. EODIX also has an 

important component related with advanced information extraction from remotely sensed data sets. In this paper, 

we describe some of the advances carried out in one of the tasks of the EODIX project, focused on the area of 

spectral unmixing of remotely sensed data. It is well known that most pixels in remotely sensed images are 

characterized by their mixed nature and can be modelled as the combination of elementary components (called 

endmembers) with variable per-pixel fractional abundances. The techniques described in this paper comprise 

several new algorithms for endmember extraction (including not only spectral information but also spatial 

information) and abundance estimation (with particular focus on the sparsity of the abundance estimation 

problem, which can be used to increase the accuracy of the estimations). The paper also describes 

computationally efficient implementations of some of the discussed algorithms.  

 

1. I�TRODUCTIO�  

Hyperspectral imaging instruments are capable of 

collecting hundreds of images, corresponding to 

different wavelength cha-nnels, for the same area on 

the surface of the Earth (Goetz, 1985). For instance, 

NASA is continuously gathering imagery data with 

instruments such as the Jet Propulsion Laboratory’s 

Airborne Visible-Infrared Imaging Spectrometer 

(AVIRIS), able to record the visible and near-infrared 

spectrum (wavelength region from 0.4 to 2.5 

micrometers) of the reflected light of an area 2 to 12 

kilometers wide and several kilometers long using 224 

spectral bands, thus allowing spectral signature-based 

analyses as shown by Fig. 1. On the other hand, Fig. 2 

illustrates the problem of mixed pixels challenging 

hyperspectral data interpretation.   

Spectral mixture analysis (or spectral unmixing) 

has been an alluring exploitation goal since the earliest 

days of imaging spectroscopy (Keshava and Mustard, 

2002). No matter the spatial resolution, in natural 

environments, spectral signatures in hyperspectral data 

are invariably a mixture of the signatures of the 

various materials found within the spatial extent of the 

ground instantaneous field view. The mixing 

systematics can be inherently linear or nonlinear. On 

the one hand, the linear model assumes that pure 

spectral components (endmembers) are sitting side-by-

side within the field of view of the imaging 

instrument, as illustrated in Fig. 3(top). On the other 

hand, the nonlinear model assumes that multiple 

scattering effects dominate the interaction between 

incindent radiation and the response measured at the 

imaging spectrometer, as illustrated in Fig. 3(bottom). 

The linear model is generally adopted in practice due 

to its simplicity and independence of physical 

properties, but it may provide more accurate results 

(Keshava and Mustard, 2002). 

 

 
Figure 1. The concept of hyperspectral imaging. 
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Figure 2. Problem of mixed pixels. 

 

 

 
Figure 3. Linear (top) vs nonlinear (bottom) unmixing. 

 

In the context of linear spectral unmixing, the 

estimated endmember fractional abundances are often 

required to satisfy two constraints. First, all 

abundances must be non-negative. Second, the sum of 

abundances for a given pixel must be unity. However, 

it is the derivation and validation of the correct suite of 

endmembers that has remained a challenging and 

elusive goal for the past several years. Several 

approaches have been developed for this purpose over 

the last few years. Many available approaches have 

been focused on analyzing the data in spectral terms 

only (Chang, 2003), i.e. trying to find the endmembers 

as the extreme pixels (corners) in the multi-

dimensional data cloud. Examples of this convex 

geometry-based approach to identification of image 

endmembers include the pixel purity index (PPI) 

algorithm, the orthogonal subspace projection (OSP), 

the N-FINDR algorithm, or the iterative error analysis 

(IEA) algorithm, among others (Plaza et al., 2009).  

 
Figure 4. Importance of using spatial information. 

 

Although these methods have shown considerable 

promise, they are exclusively based on the spectral 

information of the data. However, most endmember 

extraction algorithms could benefit from an integrated 

framework in which both the spectral information and 

the spatial arrangement of pixel vectors are taken into 

account. An example is given in Fig. 4 in which the 

spatial locations of pixel vectors in an urban 

hyperspectral scene are randomly shuffled. In this 

case, the application of convex geometry-based 

endmember extraction in the original scene and the 

one without spatial correlation would be the same, 

meaning that the rich spatial information available was 

not taken into account during the endmember 

searching process. 

In this paper, we address new trends in spectral 

unmixing specifically developed in the framework of 

the Earth Observation Optical Data Calibration and 

Information Extraction (EODIX) project. These 

comprise the incorporation of spatial constraints into 

spectral unmixing, the use of spectral unmixing for 

feature extraction purposes, and the use of sparse 

regression-based approaches to spectral unmixing. 

Experimental results using a real hyperspectral data set 

are given at the end of the paper for illustration 

purposes. Combined, these topics reflect the maturity 

of a field that currently represents one of the most 

active research areas in hyperspectral image analysis. 

2. I�CORPORATIO� OF SPATIAL 

I�FORMATIO� I�TO SPECTRAL U�MIXI�G  

We have recently developed a region-based spatial 

preprocessing technique for endmember extraction 

algorithms intended to exploit spectral information 

more effectively by adequately incorporating spatial 

context. Our proposed approach first adaptively 

searches for spectrally pure and spatially 

homogeneous regions by using a hybrid procedure that 

combines unsupervised clustering and orthogonal 

subspace projections, thus selecting a set of 

representative regions in spatial-spectral terms. This 

spatial preprocessing is followed by a standard 

endmember extraction process using the pixels located 

in such regions, providing a set of spatially 
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Figure 5. Region-based spatial preprocessing for endmember extraction. 
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Figure 6. Spectral unmixing for feature extraction prior to supervised classification. 

 

representative endmembers with the potential to 

accurately characterize large homogeneous areas in the 

original hyperspectral scene (Martin and Plaza, 2010). 

The concept of region-based spatial preprocessing, 

illustrated in Fig. 5, can be readily combined with 

algorithms that use only the spectral information 

contained in the original hyperspectral data set, as it is 

the case of the N-FINDR (Winter, 1999) in Fig. 7. 

3. USI�G SPECTRAL U�MIXI�G FOR 

FEATURE EXTRACTIO� PURPOSES  

Recently, we have developed a new strategy for 

feature extraction prior to supervised classification of 

hyperspectral data which is based on spectral 

unmixing concepts (Rojas et al., 2010). This 

unmixing-based feature extraction approach presents 

some distinctive features with regards to classic 

approaches commonly used in the framework of 

classification (such as principal component analysis) 

or unmixing (such as the minimum noise fraction): 

• First, it provides additional information for 

classification in hyperspectral analysis scenarios 

with moderate spatial resolution, since the sub-

pixel composition of training samples can be used 

as part of the learning process of the classifier. 

• Second, it can effectively model the non-

stationary behavior of the spectral signatures of 

land-cover classes in the spatial domain of the 

scene, since (possibly disjoint) regions belonging 

to the same class are represented by the same 

spectral signature, and the variations related with 

different cover proportions or illumination 

conditions are modeled via the abundance 

estimation process inherent in spectral unmixing. 

• Third, the components estimated by the proposed 

feature extraction strategy exhibit physical 

meaning as opposed to those obtained by 

principal component analysis or the minimum 

noise transform. 
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Figure 7. The N-FINDR algorithm inflates a simples with 
maximum volume using the pixels available in the input 

hyperspectral data. After a random initialization, it tries all 

pixels in each endmember position until the combination with 
maximum volume is found. 

• A final advantage of the proposed approach is 

that it does not penalize classes which are not 

relevant in terms of variance or signal-to-noise 

ratio (SNR). 

The proposed unmixing-based feature extraction 

strategy has been implemented in the form of a 

standard unmixing processing chain prior to 

supervised classification using a traditional method 

such as the support vector machine (SVM) as 

illustrated in Fig. 6, and also as a modified unmixing 

chain in which spatial information is used to guide the 

selection of endmembers to spatially relevant areas by 

means of a spatial preprocessing framework in Fig. 8. 

 

 
Figure 8. Spatial preprocessing to guide endmember 
extraction to spatially representative areas. 

4. SPARSE HYPERSPECTRAL U�MIXI�G 

The spectral unmixing problem has been recently been 

approached in a semi-supervised fashion, by assuming 

that the observed image signatures can be expressed in 

the form of linear combinations of a number of pure 

spectral signatures known in advance (e.g., spectra 

collected on the ground by a field spectro-radiometer). 

Unmixing then amounts to finding the optimal subset 

of signatures in a (potentially very large) spectral 

library that can best model each mixed pixel in the 

scene (Iordache et al., 2010). In practice, this is a 

combinatorial problem which calls for efficient linear 

sparse regression techniques based on sparsity-

inducing regularizers, since the number of 

endmembers participating in a mixed pixel is usually 

very small compared with the (ever-growing) 

dimensionality and availability of spectral libraries to 

spatially relevant areas (Bioucas-Dias and Plaza, 

2010).  

5. PARALLEL IMPLEME�TATIO� OF A FULL 

HYPERSPECTRAL U�MIXI�G CHAI� 

The unmixing techniques introduced in previous 

sections can be extremely time consuming when 

applied to real hyperspectral data sets. At the same 

time, these techniques exhibit inherent parallelism at 

multiple levels: across pixel vectors (coarse grained 

pixel-level parallelism), across spectral information 

(fine grained spectral-level parallelism), and even 

across tasks (task-level parallelism). As a result, they 

map nicely to massively parallel systems such as 

graphics processing units (GPUs) or field 

programmable gate arrays (FPGAs). The latter are 

particularly suitable to on-board processing due to low 

power consumption and tolerance to radiation in 

space. We have developed parallel implementations of 

a full hyperspectral unmixing chain for both types of 

platforms: GPUs (Sanchez et al., 2010) and FPGAs 

(Gonzalez et al., 2010). These platforms are 

respectively illustrated in Figs. 9 and 10. 

 

 
Figure 9. NVidia commodity graphic processing unit. 
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6. CO�CLUSIO� A�D SUMMARY 

In this paper, we have described several new 

techniques for spectral unmixing of hyperspectral data 

developed in the framework of the Earth Observation 

Optical Data Calibration and Information Extraction 

(EODIX) project, comprising new methods for 

endmember extraction (including not only spectral 

information but also spatial information) and 

abundance estimation (with particular focus on the 

sparsity of the abundance estimation problem, which 

can be used to increase the accuracy of the 

estimations). The paper also described 

computationally efficient implementations of some of 

the discussed algorithms. Although the techniques 

have been functionally described, experimental 

evidence of their success can be found in the provided 

references. We would like to emphasize that this work 

is part of a much larger strive to fully incorporate the 

advantages that can be obtained by spectral unmixing 

into the analysis of remotely sensed hyperspectral data 

sets. In this regard, complementary lines of research 

that we are planning to address in the near future 

comprise the refinement of some of the presented 

techniques (most notably, the inclusion of spatial 

information into sparse unmixing methods) and also 

the development of additional parallel 

implementations for some of the discussed algorithms, 

which are often dominated by regular computations. 
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Figure 10. Xilinx field programmable gate array. 
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