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ABSTRACT

Many different approaches have been proposed in recent years for remotely sensed hyperspectral image clas-
sification. Despite the variety of techniques designed to tackle the aforementioned problem, the definition of
standardized processing chains for hyperspectral image classification is a difficult objective, which may ulti-
mately depend on the application being addressed. Generally speaking, a hyperspectral image classification
chain may be defined from two perspectives: 1) the provider’s viewpoint, and 2) the user’s viewpoint, where the
first part of the chain comprises activities such as data calibration and geo-correction aspects, while the second
part of the chain comprises information extraction processes from the collected data. The modules in the second
part of the chain (which constitutes our main focus in this paper) should be ideally flexible enough to be ac-
commodated not only to different application scenarios, but also to different hyperspectral imaging instruments
with varying characteristics, and spatial and spectral resolutions. In this paper, we evaluate the performance of
different processing chains resulting from combinations of modules for dimensionality reduction, feature extrac-
tion/selection, image classification, and spatial post-processing. The support vector machine (SVM) classifier
is adopted as a baseline due to its ability to classify hyperspectral data sets using limited training samples.
A specific classification scenario is investigated, using a reference hyperspectral data set collected by NASA’s
Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Indian Pines region in Indiana, USA.

Keywords: Hyperspectral image classification, support vector machine (SVM), dimensionality reduction, fea-
ture extraction/selection, spatial post-processing.

1. INTRODUCTION

The Hyperspectral Imaging Network (Hyper-I-Net)∗ is a four-year Marie Curie research training network† de-
signed to build an interdisciplinary European research community focused on hyperspectral imaging activities.
One of the main activities of Hyper-I-Net is to settle the basis for the definition and testing of a flexible hyper-
spectral data collection and processing chain, in which individual elements can be integrated in such a way that
the resulting chain can be dynamically adapted and reconfigured to satisfy the requirements of different applica-
tion scenarios with little effort.1 Since efficient hyperspectral data processing can be a really complex procedure,
Hyper-I-Net approaches this problem in the context of a multidisciplinary collaboration so that the proposed
activity can benefit from the complementary expertise of partners with focus in heterogeneous disciplines such
as sensor design and calibration, pattern recognition, signal and image processing, and Earth observation related
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Figure 1. Example illustrating the importance of spatial information in hyperspectral image classification.

products.2 The outcome of this joint activity is expected to be a set of hardware/software processing techniques
able to deal with the complexity of hyperspectral data in an effective manner.

Generally, a hyperspectral data processing chain may be defined from two perspectives: 1) the provider’s
viewpoint, and 2) the user’s viewpoint, where the first approach generally results in the first part of the chain, and
the second approach results in a chain that is placed immediately afterwards. As a result, the first part of the chain
comprises data correction activities such as sensor specification, geometric corrections, radiometric calibrations,
etc.2 Once the data has been pre-processed and geo-corrected, an information extraction process from collected
data is needed for the second part of the chain. Several processing steps are available in the literature for
this purpose,3, 4 including data transformation (e.g., for dimensionality reduction), spectral matching (requiring
centralized spectral libraries of multiple materials), feature extraction/selection, and data classification. Another
important and essential requirement for the user-oriented part of the processing chain is to define precisely
characterized and accurately validated high-level products. It is important to note that the elements in the
user-oriented chain should be flexible enough to be accommodated not only to different application scenarios,
but also to different hyperspectral imaging instruments with varying spatial and spectral resolutions.

On the other hand, an important consideration in any hyperspectral image processing chain is the inclusion
of spatial information in the analysis.5–7 Specifically, one of the distinguishing properties of hyperspectral
data is the multivariate information coupled with a two-dimensional (pictorial) representation amenable to
image interpretation.8 Subsequently, spectral-based classification chains may not be able to accurately model
spatial dependencies in the scene. Recent efforts in the literature have demonstrated that hyperspectral image
classification can greatly benefit from an integrated framework in which both the spectral information and the
spatial arrangement of pixel vectors are taken into account. An example of this situation is given in Fig. 1, in
which a hyperspectral data cube is modified by randomly permuting the spatial coordinates of the pixel vectors,
thus removing the spatial correlation. In both scenes, the application of a spectral-based classification method
would yield the same analysis results while a spatial-spectral classifier could incorporate more effectively the
spatial information present in the original scene into the analysis process.

In this work, we adopt a user-oriented perspective and further explore the suitability of defining a flexible
hyperspectral processing chain in two different application domains, namely, urban environment monitoring and
vegetation mapping. These are complex problems which may serve as adequate case studies to demonstrate
the validity of our approach in a real application context, using a limited number of processing steps for a
preliminary assessment focused on dimensionality reduction, feature selection/extraction (possibly including
spatial information), data classification, and spatial post-processing. Specifically, our processing chains are all
based on the support vector machine (SVM) classifier,9, 10 which has demonstrated an excellent ability to classify
hyperspectral data sets using limited training samples.11 a hyperspectral data set collected by NASA’s Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Indian Pines region in Indiana, USA is used to
illustrate our findings.
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The remainder of the paper is organized as follows. Section 2 describes the individual modules that will be
used to form our proposed hyperspectral data processing chains. Section 3 describes several different processing
chains that will be evaluated as possible solutions for the considered problem. Section 4 validates the previously
introduced processing chains using the aforementioned hyperspectral data set. Finally, section 5 concludes with
some remarks and hints at plausible future research lines.

2. PROCESSING MODULES

This section is intended to provide a general overview of the processing modules that will be used for the second
part (i.e., user-oriented) of the hyperspectral processing chain. Usually, these techniques are subdivided into
different groups, such as spectral analyses, spatial analyses, and spatial/spectral analyses.1 In our preliminary
approach towards the development of a flexible hyperspectral processing chain, the following techniques have
been considered:

• Dimensionality reduction. In hyperspectral imaging, there is clear need for methods that can reduce the
dimensionality of the data to the right subspace without losing the original information that allows for the
separation of classes.3, 4 Standard spectral-based transformations such as the principal component analysis
(PCA) and minimum noise fraction (MNF) will be used to transform input data to a dataset in a new
uncorrelated coordinate system.

• Feature selection. Another interesting approach to reduce input data dimensionality has been the selection
of the most highly relevant spectral bands for data exploitation. Along with traditional approaches, a new
criterion based on maximum band separation index in terms of entropy is considered to select the most
relevant input bands prior to the analysis.

• Feature extraction. One of the distinguishing properties of hyperspectral data, as collected by available
imaging spectrometers, is the multivariate information coupled with a two dimensional pictorial represen-
tation amenable to image interpretation. However, feature extraction from hyperspectral data has been
traditionally carried out without incorporating information on the spatially adjacent data. In this work,
multiscale texture features12 and morphological features8 are tested to accurately characterize spatial in-
formation jointly with spectral information. A novel approach based on using spectral unmixing concepts
(endmember extraction plus fractional abundance estimation) for feature extraction prior to classification
is also considered.

• Classification. Often, standard supervised classifiers, for high dimensional data like hyperspectral images,
require large volumes of training data, which have to be obtained by costly ground truth measurements.
In this work, we resort to a classifier such as the SVM which has demonstrated its ability to perform
accurately in scenarios dominated by limited training samples, thus providing a good compromise between
the extremely large dimensionality of hyperspectral data and the often limited availability of training
data, due to the difficulties to obtain such training information in real scenarios as a matter of time
and finance. To investigate the potential of spatial information within the classification procedure, the
previously generated classification images were reprocessed using a spatially-aware approach based on a
fuzzy neural network structure.

The impact of the processing modules above is objectively quantified in this work by implementing different
chains made up of different combinations of such modules. In the following section, we propose several different
chains that will be substantiated by experiments using real hyperspectral data.

3. HYPERSPECTRAL PROCESSING CHAINS

A general, user-oriented hyperspectral processing chain can be described by a small group of interconnected
processing modules or blocks. In fact, after pre-processing the input data set (e.g., via radiometric calibrations,
geometric or atmospheric corrections, etc.) relevant information can be extracted from the scene. Assuming
that we start from a corrected data set, three principal steps can be used to define a simple, user-oriented
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Figure 2. Generic processing chain.

processing chain: data transformation and feature extraction, feature selection, and classification (see Fig. 2).
It should be noted that the representation given in Fig. 2 is a very general one, in which each module can be
implemented in very different ways. For instance, feature extraction may be constituted by a spectral analysis
procedure (e.g., PCA or MNF) or by a spatial-oriented processing (such as textures, semivariograms), or even
by multi-scale analysis (differential morphological profiles). On the other hand, feature selection provides best
combinations of bands and/or features for a given problem, but the combination of these features is complex
and thus, fast and efficient algorithms are necessary. Finally, classification may also be accomplished by different
techniques, including approaches in the spectral domain (e.g., spectral angle-based classification), in the spatial
domain (context-aware classifiers), or even in both domains (object-oriented classification, morphology-based
classifiers). In this work, we have selected representative techniques to generally describe each processing module.
Specifically, feature extraction is described by PCA and MNF. Moreover, other techniques such as texture and
morphological analysis, or linear spectral unmixing, are included in some chains to obtain best features from
different perspectives (spatial information, mixture information). On the other hand, the feature selection step
is supplied by separation index analysis, which permits an efficient selective procedure to choose best subsets,
starting from high-dimensional data. Finally, in all cases we include a post-processing stage which performs
spatial re-processing using a spatially-aware approach based on a fuzzy neural network structure to increase the
spatial consistency of the final classification results.13 In the following we outline the six hyperspectral processing
chains considered in our study:

• Processing chain #1. This chain comprises feature selection from the original hyperspectral image
using separation index analysis, followed by spectral-based SVM classification on the retained features,
and spatial post-processing.

• Processing chain #2. This chain comprises feature extraction from the original hyperspectral image
using the PCA transformation, followed by spectral-based SVM classification on the extracted features,
and spatial post-processing.

• Processing chain #3. This chain comprises feature extraction from the original hyperspectral image
using the MNF transformation, followed by spectral-based SVM classification on the extracted features,
and spatial post-processing.

• Processing chain #4. This chain comprises feature extraction from the original hyperspectral image
using linear spectral unmixing14 (endmember extraction using the N-FINDR method15 plus abundance
estimation using fully constrained least squares linear spectral unmixing16), followed by spectral-based
SVM classification and spatial post-processing.

• Processing chain #5. This chain comprises feature extraction from the original hyperspectral image
using the MNF transformation, followed by texture-based feature extraction12 in the MNF space, followed
by spectral-based SVM classification and spatial post-processing.

• Processing chain #6. This chain comprises feature extraction from the original hyperspectral image
using the MNF transformation, followed by morphological-based feature extraction8 in the MNF space,
followed by spectral-based SVM classification and spatial post-processing.

In all the aforementioned processing chains, the number of features selected/extracted was varied in experi-
ments (different tests were performed and we report those which resulted in the best overall results in terms of
classification accuracy). Future work should comprise an exploration of appropriate mechanisms for automati-
cally determining the optimal number of features to be retained for classification experiments.
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(a) (b)
Figure 3. (a) False color composition of the AVIRIS Indian Pines scene. (b) Ground truth-map containing 15 mutually
exclusive land-cover classes (right).

4. EXPERIMENTAL RESULTS

4.1 Hyperspectral data set

The data set used in our experiments was collected by the AVIRIS sensor over the Indian Pines region in
Northwestern Indiana in 1992. This scene, with a size of 145 lines by 145 samples, was acquired over a mixed
agricultural/forest area, early in the growing season. The scene comprises 202 spectral channels in the wavelength
range from 0.4 to 2.5 µm, nominal spectral resolution of 10 nm, moderate spatial resolution of 20 meters by
pixel, and 16-bit radiometric resolution. After an initial screening, several spectral bands were removed from
the data set due to noise and water absorption phenomena, leaving a total of 164 radiance channels to be used
in the experiments. For illustrative purposes, Fig. 3(a) shows a false color composition of the AVIRIS Indian
Pines scene, while Fig. 3(b) shows the ground-truth map available for the scene, displayed in the form of a
class assignment for each labeled pixel, with 15 mutually exclusive ground-truth classes. These data, including
ground-truth information, are available online‡, a fact which has made this scene a widely used benchmark for
testing the accuracy of hyperspectral data classification algorithms.

4.2 Experimental design

Before describing the results obtained in experimental validation, we first briefly describe the adopted super-
vised classification system. Firstly, depending on the considered chain, relevant features for classification are
selected/extracted from the original image. The resulting features are used to train an SVM classifier in which
four types of kernels: linear, polynomial, Gaussian RBF, and sigmoid were used (since the best results were
always obtained using the Gaussian RBF kernel,9 we only report results obtained using this configuration).
Specifically, the SVM was trained different training subsets (all comprising 10% of the available ground-truth)
and then evaluated with the remaining test set. Each experiment was repeated ten times, and the mean accuracy
values were reported to guarantee the statistical significance of the results. Kernel parameters were optimized in
all experiments by a grid search procedure. In essence, the SVM classification is based on the notion of fitting
an optimal separating hyperplane between classes by focusing on the training samples that lie at the edge of the
class distributions, the support vectors. All of the other training samples are effectively discarded as they do
not contribute to the estimation of hyperplane location. In this way not only is an optimal hyperplane fitted, in
the sense that it is expected to have a large degree of generalizability, but also a high accuracy may be obtained
with the use of a small training set.

4.3 Results and discussion

In the following, we evaluate the performance of the different chains in the task of classifying the AVIRIS Indian
Pines scene. In order to illustrate the performance of the different chains, we have decided to show actual
classified scenes instead of overall accuracies, despite the fact that each classification experiment was repeated
ten times to guarantee the statistical significance of our results. This is because we feel that visual interpretation

‡http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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Figure 4. Classification results obtained by processing chain #1.

is also very important in analyzing the quality of classification results. With this observation in mind, in the
following we discuss the performance achieved by the different processing chains in the task of classifying the
AVIRIS Indian Pines scene and finally we discuss the results globally prior to concluding the paper with some
observations and remarks.

4.3.1 Results obtained by processing chain #1

Fig. 4 shows the most relevant results obtained with processing chain #1. Specifically, three different results
are displayed for the feature selection stage (10, 15 and 20 selected features, respectively) and spatial post-
processing results are also displayed in all cases. As shown by Fig. 4, it can be seen that SVMs generalize quite
well: with only 10% of training pixels per class, at least 80% overall classification accuracy is reached in all cases.
Interestingly, classification accuracies decreased when the number of selected features were increased from 15 to
20, but it is also worth noting that the classification results are quite similar in both cases. This confirms the
fact that SVMs are not significantly affected by the Hughes phenomenon, in particular, when performing feature
selection/extraction prior to classification. Finally, it can be noticed that spatial post-processing significantly
increased classification results in all cases, increasing the overall classification accuracy in approximately 10% or
more in all considered cases. This is due to the spatial homogeneity of the ground-truth classes in Fig. 3(b). It
should also be noticed that the final classification maps after spatial post-processing appear a bit degraded from
a spatial point of view, but classification scores improve due to the spatial consistency of the resulting classes
which increases the similarity with regards to the ground-truth.

4.3.2 Results obtained by processing chain #2

The main difference between processing chain #2 and processing chain #1 is that the feature selection stage
in processing chain #1 is replaced by a PCA-based feature extraction stage. Fig. 5 shows the most relevant
results obtained with processing chain #2. Specifically, three different results are displayed for the PCA-based
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Figure 5. Classification results obtained by processing chain #2.

feature extraction stage (10, 15 and 20 extracted features, respectively) and spatial post-processing results are
also displayed in all cases. As shown by Fig. 5, the results obtained by the PCA feature extraction module
cannot improve those achieved by using band selection in processing chain #1. Again, spatial post-processing
significantly increased classification results in all cases, increasing the overall classification accuracy in 10% or
more in all considered cases. This confirms that spatial post-processing is very important in order to enhance
the comparison with the ground-truth classes in Fig. 3(b), although it is also noticed that the final classification
maps after spatial post-processing exhibit some spatial distortion.

4.3.3 Results obtained by processing chain #3

The main difference between processing chain #3 and processing chain #2 is that the PCA-based feature ex-
traction stage is replaced by an MNF-based feature extraction stage. While the PCA orders the transformed
features in terms of variance, the MNF orders the transformed features in terms of signal-to-noise ratio (SNR)
and performs a better characterization of the noise present in the input hyperspectral image when obtaining the
transformed features. Fig. 6 shows the most relevant results obtained with processing chain #3. Specifically,
three different results are displayed for the MNF-based feature extraction stage (10, 15 and 20 extracted fea-
tures, respectively) and spatial post-processing results are also displayed in all cases. As shown by Fig. 6, the
results obtained by the MNF feature extraction significantly improve those obtained using the PCA transform
in processing chain #2 and band selection in processing chain #1, achieving 91.2% classification accuracy with
10 extracted features without spatial post-processing. This represents a significant increase in classification ac-
curacy with regards to the first two considered chains. When spatial post-processing is applied, classification
results increase to 96% or more for 15 and 20 features, which is a very significant result taking in mind the com-
plexity of this scene, dominated by mixed pixels and very similar spectral classes. Interestingly, it an be visually
appreciated that the use of MNF transform as feature extraction helps reducing the spatial distortion in the final
classified maps after spatial post-processing. Interestingly, while in the results without spatial post-processing it
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Figure 6. Classification results obtained by processing chain #3.

seems that 10 features are more appropriate than 15 or 20, the best overall results after spatial post-processing
are obtained for both 15 and 20 MNF features, which indicates that the number of retained components is a topic
deserving future research and that should be evaluated in light of the impact of possible spatial post-processing
applied to the classification results.

4.3.4 Results obtained by processing chain #4

The main difference between processing chain #4 and processing chains #2 and #3 is that the feature extraction
stage is replaced by linear spectral unmixing. The rationale for using an unmixing-based feature extraction
approach presents some distinctive features with regards to PCA and MNF-based feature extraction. First, it
provides useful information for classification in hyperspectral analysis scenarios with moderate spatial resolution,
since the sub-pixel composition of training samples can be used as part of the learning process of the classifier.
Second, it can model the non-stationary behavior of the spectral signatures of land-cover classes in the spatial
domain of the scene, since (possibly disjoint) regions belonging to the same class are represented by the same
spectral signature, and the variations related with different cover proportions or illumination conditions are
modeled via the abundance estimation process inherent in spectral unmixing. Third, the components estimated
by the proposed feature extraction strategy exhibit physical meaning. A final distinctive feature is that it
does not penalize classes which are not relevant in terms of variance or signal-to-noise ratio (SNR). In our
experiments, we have performed linear spectral unmixing for feature extraction strategy using the following
steps: 1) extracting the purest spectral signatures (endmembers17) from the scene using the N-FINDR,15 a
volume-based fully automatic algorithm; and 2) estimating the abundance fractions associated to the spectral
endmembers using fully constrained linear spectral unmixing.16, 18, 19

Fig. 7 shows the most relevant results obtained with processing chain #4, which correspond to extraction of
15 endmembers (based on a previous estimation of the number of endmembers in the data20, 21) and estimation
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Figure 7. Classification results obtained by processing chain #4.

of their fractional abundances, which are then used as input features to the SVM-based classification process.
Spatial post-processing is also optionally applied. As shown by Fig. 7, the results obtained by the linear spectral
unmixing-based feature extraction are similar to those reported for the MNF-based feature extraction. Spatial
post-processing increases the quality of classification results in experiments. We believe that this strategy can still
be further enhanced by testing additional algorithms and fractional abundance estimation methods, as well as
more robust methodologies which can automatically estimate the number of endmembers in the scene and include
the spatial information during the search for spectral endmembers and not only during the post-processing stage.
The most interesting property of unmixing-based feature extraction is that the resulting features have physical
meaning as opposed to those derived by PCA or MNF. In future research efforts, we will continue exploring this
strategy to perform feature extraction prior to classification of hyperspectral data.

4.3.5 Results obtained by processing chain #5

The main difference between processing chain #5 and processing chains #3 is that texture features are extracted
from the MNF space prior to the application of the SVM-based classifier. In this work, we have used up to 18
classic texture features (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, different
correlation measures, sum average, sum variance, sum entropy, difference variance, difference entropy, skewness
and kurtosis). Due to the increase in data dimensionality resulting from the application of texture feature
extraction to the first 4 MNF components (resulting in 4 × 18 = 72 features) we applied a feature selection
stage to avoid increasing the dimensionality significantly. Fig. 8 shows the most relevant results obtained
with processing chain #5, in which the best results reported correspond to the selection of 10 and 15 features,
respectively. Spatial post-processing results are also displayed in all cases. As shown by Fig. 8, the inclusion of
texture features does not produce an improvement of the results already reported for processing chain #3 based
exclusively on the MNF transform. This indicates that the considered texture features were not relevant for the
classifier, which provided lower classification accuracies than in the MNF space. A similar observation applies
to the results with spatial post-processing, which cannot improve those obtained for the processing chain #3. In
future work, we will conduct a more detailed investigation of additional texture features that could bring more
significance to the results originally provided by processing chain #3 due to the potential of well-defined texture
features to improve spatial characterization. However, in our current set of experiments the considered texture
features did not seem to bring additional information which is relevant to improve the overall classification
accuracy.

4.3.6 Results obtained by processing chain #6

The main difference between processing chain #6 and processing chains #5 is that morphological features (instead
of texture features) are extracted from the MNF space prior to the application of the SVM-based classifier. In this
work, we have used a series of morphological opening and closing by reconstruction operations (using disk-shaped
structuring elements of increasing radius) applied to the first 4 MNF components (resulting in 4×18 = 72 features
as it was the case with texture features). Due to the large dimensionality of the resulting feature space, we applied
a feature selection stage. Fig. 9 shows the most relevant results obtained with processing chain #6, in which
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Figure 8. Classification results obtained by processing chain #5.

Table 1. Best classification results (in percentage overall accuracy) achieved for the AVIRIS Indian Pines scene by the
different processing chains tested, with and without spatial post-processing.

Chain #1 Chain #2 Chain #3 Chain #4 Chain #5 Chain #6
No spatial post-processing 84.8 80.9 91.2 88.4 83.6 91.4

With spatial post-processing 94.7 93.8 96.4 95.2 91.7 96.1

the best results reported correspond to the selection of 10 and 15 features, respectively. Spatial post-processing
results are also displayed in all cases. As shown by Fig. 9, the inclusion of morphological features (processing
chain #6) improves the classification results significantly with regards to the case in which texture features are
used (processing chain #5). However, if we compare the classification results with morphological features with
the case in which no such features are extracted from the MNF space (processing chain #3) the results are very
similar. This indicated that morphological feature extraction on the MNF space cannot significantly improve
the results already obtained for the processing chain #3. A similar observation can be made when analyzing
the results with spatial post-processing, which indicates that the inclusion of spatial information appears to be
more relevant in the post-processing stage than in the feature extraction stage (via spatial-spectral morphological
features). In any event, the inclusion of spatial information introduces moderate improvements and we expect
further developments in this area by appropriately selecting additional morphological features prior to the SVM-
based classification stage.

4.3.7 Summary

To conclude this section, we summarize in Table 1 the best classification results achieved for the AVIRIS Indian
Pines scene by the different processing chains tested, with and without spatial post-processing. As shown by Table
1, the best overall classification scores (without spatial post-processing) were achieved by processing chain #3
(which uses the MNF transform for feature extraction) and by processing chain #6 (which applies morphological
feature extraction on the MNF space prior to classification), although processing chain #4 based on using spectral
unmixing for feature extraction provided comparable results but with a more physically meaningful feature
extraction stage. When spatial post-processing was included, again processing chains #3 and #6 achieved
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Figure 9. Classification results obtained by processing chain #6.

the best overall accuracies, with classification results above 96% which are really remarkable taking in mind
the complexity of this reference hyperspectral scene. Again, processing chain #4 provided results which are
comparable to the best obtained cases. The results obtained by processing chain #6 should be analyzed under
the observation that they are based on the MNF space which already provided comparable results in processing
chain #3 without the application of morphological descriptors.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have evaluate the performance of different processing chains for remotely sensed hyperspectral
image classification. A challenging classification problem, based on a reference hyperspectral data set collected
by AVIRIS over the Indian Pines region, has been thoroughly investigated. One of the main observations of
our study is that the MNF transform provides very competitive results as a feature extraction strategy, despite
the fact that it has been mainly used in the context of spectral unmixing (not classification scenarios, in which
the PCA transform has been commonly one of the tools of choice). Although our experiments in this work
indicate that the MNF has the potential to outperform most other feature extraction approaches considered
in this work, we believe that unmixing-based approaches have good potential for feature extraction and may
provide competitive results to this strategy, since they have the potential to extrapolate concepts from mixed-
pixel classification into a standard full-pixel classification scenario, thus addressing the non-stationary behavior
of spectral signatures throughout spatially disjoint classes. Future work should comprise experiments with
additional scenes, techniques and configurations in order to prove the generality of our compared approaches.
Computationally efficient implementations of the considered processing chains are being currently developed, in
line with our recent proposal of an efficient parallel implementation of the SVM classifier in commodity clusters
of computers.22
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