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ABSTRACT

One of the most important techniques for hyperspectral data exploitation is spectral unmixing, which aims at
characterizing mixed pixels. When the spatial resolution of the sensor is not fine enough to separate different
spectral constituents, these can jointly occupy a single pixel and the resulting spectral measurement will be a
composite of the individual pure spectra. The N-FINDR algorithm is one of the most widely used and successfully
applied methods for automatically determining endmembers (pure spectral signatures) in hyperspectral image
data without using a priori information. The identification of such pure signatures is highly beneficial in order
to ‘unmix’ the hyperspectral scene, i.e. to perform sub-pixel analysis by estimating the fractional abundance
of endmembers in mixed pixels collected by a hyperspectral imaging spectrometer. The N-FINDR algorithm
attempts to automatically find the simplex of maximum volume that can be inscribed within the hyperspectral
data set. Due to the intrinsic complexity of remotely sensed scenes and their ever-increasing spatial and spectral
resolution, the efficiency of the endmember searching process conducted by N-FINDR depends not only on the
size and dimensionality of the scene, but also on its complexity (directly related with the number of endmembers).
In this paper, we develop a new parallel version of N-FINDR which is shown to scale better as the dimensionality
and complexity of the hyperspectral scene to be processed increases. The parallel algorithm has been implemented
on two different parallel systems, in which two different types of commodity graphics processing units (GPUs)
from NVidiaTM are used to assist the CPU as co-processors. Commodity computing in GPUs is an exciting
new development in remote sensing applications since these systems offer the possibility of (onboard) high
performance computing at very low cost. Our experimental results, obtained in the framework of a mineral
mapping application using hyperspectral data collected by the NASA Jet Propulsion Laboratory’s Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS), reveal that the proposed parallel implementation compares
favorably with the original version of N-FINDR not only in terms of computation time, but also in terms of the
the accuracy of the solutions that it provides. The real-time processing capabilities of our GPU-based N-FINDR
algorithms and other GPU algorithms for endmember extraction are also discussed.
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1. INTRODUCTION

Hyperspectral imaging1, 2 is concerned with the measurement, analysis, and interpretation of spectra acquired
from a given scene (or specific object) at a short, medium or long distance by an airborne or satellite sensor.
The special characteristics of hyperspectral datasets pose different processing problems (especially due to the
extremely high dimensionality of the data in the spectral domain, with hundreds of narrow spectral bands3),
which must be necessarily tackled under specific mathematical formalisms. As a result, a wide range of techniques
for hyperspectral image processing have been proposed in recent years.4, 5 One of such techniques is spectral
unmixing, a very important task in remotely sensed hyperspectral data exploitation.6 When the spatial resolution
of the sensor is not fine enough to separate different spectral constituents,7, 8 these can jointly occupy a single
pixel and the resulting spectral measurement will be a mixed pixel, i.e., a composite of the individual pure
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spectra.9 In order to define the mixture problem in mathematical terms, let us assume that a remotely sensed
hyperspectral scene with n bands is denoted by X, in which the pixel at the discrete, spatial coordinates (i, j) of
the scene is represented by a feature vector given by X(i, j) = [x1(i, j), x2(i, j), · · · , xn(i, j)] ∈ �n, and � denotes
the set of real numbers corresponding to the pixel’s spectral response xk(i, j) at sensor channels k = 1, . . . , n.
Under a linear mixture model assumption,6 each pixel vector in the original scene can be modeled using the
following expression:

X(i, j) =
p∑

k=1

Φk(i, j) ·Ek + n(i, j), (1)

where Ek denotes the spectral response of the k-th endmember, Φz(i, j) is a scalar value designating the fractional
abundance of the k-th at pixel X(i, j), p is the total number of endmembers, and n(i, j) is a noise vector. The
solution of the linear spectral mixture problem described in (1) relies on the correct determination of a set of p
endmembers denoted by {Ek}p

k=1.

Over the last decade, several algorithms have been developed for extraction of spectral endmembers directly
from the input hyperspectral data set.10 Winter’s N-FINDR algorithm11 is one of the most widely used and
successfully applied methods for that purpose. This approach finds the set of pixels with the largest possible
volume by “inflating” a simplex within the data. After reducing the dimensionality of the data from n to p − 1
(this is a feasible step, since typically p << n), a random set of p pixel vectors is initially selected from the
input scene. In order to refine the initial estimate of endmembers, every pixel in the image must be evaluated
in terms of pixel purity likelihood or nearly pure statehood. To achieve this, the volume is calculated for every
pixel in the place of each endmember. A trial volume is calculated for every pixel in each endmember position
by replacing that endmember and finding the volume. If the replacement results in a volume increase, the
pixel replaces the endmember. This procedure is repeated until there are no more replacements of endmembers.
While the endmember determination step of N-FINDR in the commercial version distributed by Pacific Spectral
Technology∗ has been optimized for high speed processing, the computational performance of the algorithm
depends on the accuracy of the initial random selection of endmembers and, most importantly, on the dimensions
of the hyperspectral scene and the number of endmembers to be found, p.

Although commodity clusters have been used for speeding up computational performance of hyperspectral
imaging applications in the past,12, 13 these systems are expensive and difficult to adapt to onboard data process-
ing scenarios, in which low-weight and low-power integrated components are highly desirable to reduce mission
payload.14 In this regard, an exciting new development is the emergence of commodity graphics processing
units (GPUs), which can now satisfy extremely high computational requirements, such as those introduced by
hyperspectral imaging applications,15–17 at very low cost. In this paper, we propose a new GPU-based imple-
mentation of the N-FINDR algorithm, which is used in this work as a representative case study of hyperspectral
image processing algorithms. The remainder of the paper is organized as follows. Section 2 describes the orig-
inal N-FINDR algorithm. Section 3 describes our parallel implementation. Section 4 quantitatively assesses
our implementation in terms of both endmember extraction accuracy and parallel efficiency, using two different
generations of commercial GPUs (8600GT and 8800GTX) from NVidiaTM, one of the most important GPU
vendors†. Section 5 discusses real-time considerations for the proposed algorithm and for other similar parallel
GPU algorithms in the area of hyperspectral image analysis. Finally, section 6 concludes the paper with some
remarks and hints at plausible future research lines.

2. ORIGINAL N-FINDR ALGORITHM

The original N-FINDR algorithm developed by Winter11 can be summarized by the following steps.18

1. Feature reduction. Apply a dimensionality reduction transformation such as the minimum noise fraction
(MNF)19 or the principal component analysis (PCA)8 to reduce the dimensionality of the data from n to
p − 1, where p is an input parameter to the algorithm (number of endmembers to be extracted).

∗http://www.pacificspectral.com
†http://www.nvidia.com
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2. Initialization. Let {E(0)
1 ,E(0)

2 , · · · ,E(0)
p } be a set of endmembers randomly extracted from the input data.

3. Volume calculation. At iteration k ≥ 0, calculate the volume defined by the current set of endmembers as
follows:

V (E(k)
1 ,E(k)

2 , · · · ,E(k)
p ) =

∣∣∣∣det

[
1 1 · · · 1

E(k)
1 E(k)

2 · · · E(k)
p

]∣∣∣∣

(p − 1)!
(2)

4. Replacement. For each pixel vector X(i, j) in the input hyperspectral data, recalculate the volume by
testing the pixel in all p endmember positions, i.e., first calculate V (X(i, j),E(k)

2 , · · · ,E(k)
p ), then calculate

V (E(k)
1 ,X(i, j), · · · ,E(k)

p ), and so on, until V (E(k)
1 ,E(k)

2 , · · · ,X(i, j)). If none of the p recalculated volumes

is greater than V (E(k)
1 ,E(k)

2 , · · · ,E(k)
p ), then no endmember is replaced. Otherwise, the combination with

maximum volume is retained. Let us assume that the endmember absent in the combination resulting in
the maximum volume is denoted by E(k+1)

j . In this case, a new set of endmembers is produced by letting

E(k+1)
j = X(i, j) and E(k+1)

i = E(k)
i for i �= j. The replacement step is repeated in iterative fashion, using

as many iterations as needed until there are no more replacements of endmembers.

3. PARALLEL IMPLEMENTATION OF THE N-FINDR ALGORITHM

Our parallel implementation of N-FINDR can be summarized by the following steps. It should be noted that
step 1 (feature reduction) of the original N-FINDR algorithm has not been implemented in parallel.

1. Initialization. Let {E(0)
1 ,E(0)

2 , · · · ,E(0)
p } be a set of endmembers randomly extracted from the input data.

The volume defined by this set of endmembers, V (E(0)
1 ,E(0)

2 , · · · ,E(0)
p ) is calculated using Eq. (2). Due to

the low computational complexity of this step, it is not implemented in parallel.

2. Data partitioning. Assign a different pixel vector to each processor of the parallel system in a pre-defined
row-column order, i.e., from the first pixel in the first image row, X(1, 1), to the last pixel in the first image
row, X(1, C); then, from the first pixel in the second image row, X(2, 1), to the last pixel in the second
image row, X(2, C); and so on, until the last pixel in the last image row, X(R, C), is processed. Here, R
denotes the total number of rows and C denotes the total number of columns.

3. Replacement. At iteration k ≥ 0, recalculate the volume by first testing a block of R pixel vectors (in
parallel) in all p endmember positions. This situation is illustrated graphically in Fig. 1. Let us as-
sume that one of such pixels, say, the one with spatial coordinates (i, j), is allocated to processor t, with
t ∈ {1, · · · , T }, being T the total number of processors in the parallel system. If we denote such pixel
as Xt(i, j), then p volumes can be calculated at processor t by testing Xt(i, j) in all p endmember posi-
tions, i.e., processor t first calculates V (Xt(i, j),E

(k)
2 , · · · ,E(k)

p ), then V (E(k)
1 ,Xt(i, j), · · · ,E(k)

p ), and so
on, until V (E(k)

1 ,E(k)
2 , · · · ,Xt(i, j)). If none of the p recalculated volumes at processor t is greater than

V (E(k)
1 ,E(k)

2 , · · · ,E(k)
p ), then no endmember is replaced. Otherwise, the combination with maximum vol-

ume is retained along with the coordinates of the pixel and the endmember that was replaced at each
processor (see Fig. 1). If we denote the endmember absent in the combination resulting in the maximum
volume by E(k+1)

j , then a new set of endmembers at processor t is produced at processor t by letting

E(k+1)
j = Xt(i, j) and E(k+1)

i = E(k)
i for i �= j. After R pixels have been processed in parallel, the max-

imum volume resulting from all iterations is selected and replaced, and the procedure continues until all
the columns in the original hyperspectral image have been exhausted. The replacement step is repeated in
iterative fashion, using as many iterations as needed until there are no more replacements of endmembers.
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Figure 1. Diagram illustrating the proposed parallel implementation of N-FINDR algorithm.

4. EXPERIMENTAL RESULTS

The parallel implementation of N-FINDR has been validated with regards to a serial version of the original
N-FINDR, using a well-known hyperspectral scenes collected by the Airborne Visible Infra-Red Imaging Spec-
trometer (AVIRIS)20 over the Cuprite mining district in Nevada‡. This scene has been widely used to validate
the performance of endmember extraction algorithms.21, 22 The portion used in experiments corresponds to a
250 × 191-pixel subset of the sector labeled as f970619t01p02 r02 sc03.a.rfl in the online data. Fig. 2(a) shows
the spectral band at 667.3 nm wavelength of the considered scene, which comprises 224 spectral bands between
0.4 and 2.5 µm and nominal spectral resolution of 10 nm. Prior to the analysis, bands 1–2, 105-115, 150–170,
and 223–224 were removed due to water absorption and low signal-to-noise ratio (SNR) in those bands, leaving
a total of 188 spectral bands and an image size of 17.4 MB. A library of reference spectral signatures collected
by U.S. Geological Survey (USGS) is available for the Cuprite scene§. A few selected spectra from the USGS
library, corresponding to minerals: alunite, buddingtonite, calcite, kaolinite and muscovite [see Fig. 2(b)], are
used in this work to substantiate endmember signature purity.

It should be noted that, in our experiments, the feature reduction step of N-FINDR has been conducted using
the MNF transformation. The initialization step has been performed so that both implementations (serial and
parallel) are run 50 times and receive exactly the same 50 sets of randomly chosen endmember pixels to start
the process, and the volume-based scores provided by each implementation after the 50 runs are reported. It
is worth noting that the estimation of the number of endmembers, p, to be extracted by each implementation
has been conducted using the virtual dimensionality (VD) concept.23 This approach uses a Neyman-Pearson
detector as a decision maker based on a prescribed false alarm probability, PF . According to recent studies,24

a reasonable empirical choice is PF = 10−4, which resulted in an estimate of p = 16 for the considered AVIRIS
scene.

4.1 Experiment 1: Analysis of volume estimations

Fig. 3(a) analyzes the volume of the simplex provided for the considered implementations in each of the different
50 runs. Each bar in Fig. 3(a) reports the percentage of volume estimated by each method out of the total

‡http://aviris.jpl.nasa.gov/html/aviris.freedata.html
§http://speclab.cr.usgs.gov
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(a) (b)
Figure 2. (a) Spectral band at 667.3 nm wavelength of a portion of the AVIRIS Cuprite scene. (b) USGS spectral
signatures of five representative minerals in the Cuprite mining district.

(a) (b)
Figure 3. (a) Comparison of volume estimates, and (b) comparison of average SAD with regards to five reference USGS
mineral signatures obtained for the original and parallel N-FINDR implementations.

cumulative volume estimated by both methods. Therefore, the optimal situation in this experiment would be
achieved when the 50 bars (each of which corresponds to a different experiment) are made up of 50% volume for
the original N-FINDR and 50% volume for the parallel implementation, meaning that the two implementations
reach exactly the same volume in the final endmember solution. As shown by Fig. 3(a), the two compared
methods achieve comparatively very similar volume estimations. Out of 50 experiments, the parallel version
produced higher volume than the serial version in 25 of them.

4.2 Experiment 2: Analysis of extracted endmembers

Our second experiment analyzes the spectral purity of the endmembers extracted by the two considered im-
plementations. This is assessed by reporting the average spectral angle distance (SAD) scores obtained after
comparing the USGS library signatures of the main five minerals present in the Cuprite scene (alunite, budding-
tonite, calcite, kaolinite and muscovite) with the corresponding endmembers extracted by the different N-FINDR
implementations, where each library signature was matched to one of the endmembers extracted by a certain
algorithm in terms of the smaller SAD value observed across the full endmember set. Fig. 3(b) reports the aver-
age SAD values obtained by each method in each of the different 50 runs. As shown by Fig. 3(b), both the serial
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Figure 4. NVidiaTM GeForce 8800GTX architecture.

and parallel implementations achieve comparatively similar average SAD values, indicating that their capacity to
extract endmembers which are similar (in spectral angle sense) with regards to five highly representative USGS
mineral signatures is comparable, even though the original N-FINDR implementation is slightly better (lower
average SAD scores). Out of 50 experiments, the parallel version produced lower average SAD score than the
serial version in 27 of them.

4.3 Experiment 3: Analysis of parallel performance in different GPU architectures

The proposed endmember extraction algorithm has been implemented on two different generations of NVidiaTM

GPUs. The parallel algorithm was implemented using NVidiaTM CUDA, a collection of C extensions and a
runtime library. CUDAs functionality primarily allows a developer to write C functions to be executed on the
GPU. CUDA also includes memory management and execution configuration, so that a developer can control
the number of GPU processors and threads that are to be invoked during a function’s execution. The CPU
implementations were developed using the Intel C/C++ compiler. Two different systems were used in our
experiments. The first one is based on an Intel Quad-Core CPU running at 2.4 GHz and with 2 GB of RAM.
This computer is equipped with an NVidiaTM GeForce 8600GT with 4 multiprocessors and 255 MB of global
memory. The second system used in experiments is based on an Intel Core 2 Duo CPU running at 2.33 GHz and
with 2 GB of RAM. The computer is equipped with an NVidiaTM GeForce 8800GTX with 16 multiprocessors,
each composed of 8 SIMD processors operating at 1350 Mhz. Each multiprocessor has 8192 registers, a 16 KB
parallel data cache of fast shared memory, and access to 768 MB of global memory. The GPU architecture is
graphically illustrated in Fig. 4.

Fig. 5 shows the execution times measured for the CPU and GPU-based implementations, respectively, for
each of the 50 experiments conducted in the two considered systems, with Fig. 5(a) displaying the timing results
in the system with the 8600GT GPU and Fig. 5(b) displaying the timing results in the system with the 8800GTX
GPU. All the cores available in the CPU systems were used when the timing the serial implementation. The
C function clock() was used for timing the CPU implementation and the CUDA timer was used for the GPU
implementation. The time measurement was started right after the hyperspectral image file was read to the
CPU memory and stopped right after the results of the N-FINDR algorithm were obtained and stored in the
CPU memory. After calculating the mean scores from the different times reported in Fig. 5, it was observed
that the serial version of N-FINDR took 68320 ms (on average) to process the considered AVIRIS scene in the
system with the 8600GT GPU, while the same serial version took 68660 ms (on average) to process the same
scene in the system with the 8800GTX GPU. In contrast, the parallel version of the algorithm took 39100 ms (on
average) to process the considered AVIRIS scene in the system with the 8600GT GPU, while the same parallel
version took 26385 ms (on average) to process the considered AVIRIS scene in the system with the 8800GTX
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(a) (b)
Figure 5. (a) Processing times in the NVidiaTM 8600GT GPU. (b) Processing times in the NVidiaTM 8800GTX GPU.

GPU. It should be noted that the serial processing times reported in Fig. 5 correspond to versions of N-FINDR
which have been carefully optimized in the two considered systems. For reference, we also measured the times
achieved by the serial version of our parallel implementation, obtaining very similar average processing times
(62192 ms and 67696 ms, respectively) to those reported for the optimized serial versions executed in the two
considered systems.

Although the proposed implementation can still be optimized, we emphasize that (according to our experi-
ments with other scenes with different sizes and number of endmembers), the speedup achieved by the proposed
parallel version with regards to the serial version depends on the value of p (number of endmembers). In other
words, for large values of p and large images, the proposed parallel algorithm can achieve better speedups than
for smaller values of p and smaller images. We believe that this is an interesting and highly desirable feature for
the proposed parallel algorithm, mainly because the size, spectral dimensionality and spatial resolution of hyper-
spectral images is ever improving resulting from technological advances in sensor design and instrumentation.

5. REAL-TIME CONSIDERATIONS

Before concluding the paper, it is important to emphasize that the processing times reported in the previous
section are not in real-time since the cross-track line scan time in AVIRIS, a push-broom instrument, is quite fast
(8.3 msec to collect 512 full pixel vectors). This introduces the need to process the considered scene (250 × 191
pixels) in approximately 3.68 seconds to fully achieve real-time performance. Despite the fact that the current
implementation of N-FINDR could only achieve processing times around 20 seconds for the considered scene, we
believe that further optimizations for N-FINDR are possible in future developments by making a better use of
GPU computing resources and reducing the granularity of the problem. In this regard, recent experiments with
an optimized version of N-FINDR in an NVidia Tesla GPU architecture resulted in speedups on the order of 10
times faster (instead of 3 times faster reported in this paper) when comparing the GPU version with regards
to an optimized serial version of the same code executed in the same machine without resorting to the CPU.
In addition to this, we have recently developed a GPU version of a different endmember extraction algorithm
called orthogonal subspace projection (OSP),25, 26 with similar performance to N-FINDR in terms of endmember
extraction accuracy and better parallel performance.27 Specifically, the implementation of OSP using an NVidia
GeForce GTX 275 GPU was able to process a 614 × 512 hyperspectral image in 5.51 seconds as compared to
an execution of the same algorithm in a desktop PC with 4 cores (all of them were used to implement the
reference version) which took 204.09 seconds. This means that the GPU version of OSP was 37 times faster
than the multi-core implementation of the same algorithm, thus achieving near real-time performance since the
limit to process a hyperspectral scene with 614 × 512 pixels is 5.09 seconds. Another strategy that we have in
mind to further speedup the performance of N-FINDR in the task of endmember extraction is to apply a fast
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spectral pre-processing operation to remove those pixels which are not sufficiently pure prior to the endmember
searching process implemented by N-FINDR. In this regard, we are currently experimenting with NVidia Tesla
architectures in order to fully achieve the goal of real-time endmember extraction from hyperspectral imagery,
which may allow incorporation of processing hardware onboard hyperspectral imaging instruments for real-time
data exploitation at the same time as the data is collected by the sensor.

6. CONCLUSIONS AND FUTURE RESEARCH LINES

The ever increasing spatial and spectral resolutions that will be available in the new generation of hyperspectral
instruments for remote observation of the Earth anticipates significant improvements in the capacity of these
instruments to uncover spectral signals in complex real-world analysis scenarios. Such capacity demands parallel
processing techniques which can cope with the requirements of time-critical applications and properly scale with
image size, dimensionality and complexity. In order to address such need, in this paper we have developed a new
parallel version of the popular N-FINDR algorithm for automatic endmember extraction in the context of spectral
unmixing applications. The performance of the proposed parallel algorithm has been evaluated (in terms of the
quality of the solutions it provides and its parallel performance) on two different GPU generations of commercial
GPUs (8600GT and 8800GTX) from NVidiaTM. Our experimental results indicate that the accuracy of the
parallel algorithm is very similar with regards to the original N-FINDR. Also, the parallel algorithm performs
better with latest-generation GPUs, thus taking advantage of the increased processing power of such units. Most
importantly, the algorithm scales better as the size and complexity (given by the number of endmembers, p)
of the hyperspectral image to be processed is increased. Resulting from these observations, we conclude that
our parallel algorithm may cope well with the requirements introduced by the new generation of hyperspectral
instruments. Although the proposed implementation is not strictly in real-time, we expect to achieve this
consideration in future developments as it is already the case with other endmember extraction algorithms that
we implemented in similar GPU architectures (NVidia Tesla and GeForce GTX 275) which are very close to
perform in real-time mode. In order to fully substantiate the aforementioned remarks, further experimentation
with additional hyperspectral scenes and GPU architectures is highly desirable.
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