
FPGA Implementation of Endmember Extraction Algorithms
from Hyperspectral Imagery: Pixel Purity Index versus

N-FINDR

Carlos Gonzáleza, Daniel Mozosa, Javier Resanob and Antonio Plazac

aDepartment of Computer Architecture and Automatics, Complutense University of Madrid,
C/ Profesor José Garćıa Santesmases s/n 28040 Madrid (Spain)

bDepartment of Computer Architecture, University of Zaragoza, C/ de Maŕıa de Luna 3, 50018
Zaragoza (Spain)

cDepartment of Technology of Computers and Communications, University of Extremadura,
Avda. de la Universidad s/n E-10071 Cáceres (Spain)

ABSTRACT

Endmember extraction is an important task for remotely sensed hyperspectral data exploitation. It comprises
the identification of spectral signatures corresponding to macroscopically pure components in the scene, so that
mixed pixels (resulting from limited spatial resolution, mixing phenomena happening at different scales, etc.) can
be decomposed into combinations of pure component spectra weighted by an estimation of the proportion (abun-
dance) of each endmember in the pixel. Over the last years, several algorithms have been proposed for automatic
extraction of endmembers from hyperspectral images. These algorithms can be time-consuming (particularly for
high-dimensional hyperspectral images). Parallel computing architectures have offered an attractive solution for
fast endmember extraction from hyperspectral data sets, but these systems are expensive and difficult to adapt
to on-board data processing scenarios, in which low-weight and low-power hardware components are essential to
reduce mission payload, overcome downlink bandwidth limitations in the transmission of the hyperspectral data
to ground stations on Earth, and obtain analysis results in (near) real-time.

In this paper, we perform an inter-comparison of the hardware implementations of two widely used techniques
for automatic endmember extraction from remotely sensed hyperspectral images: the pixel purity index (PPI)
and the N-FINDR. The hardware versions have been developed in field programmable gate arrays (FPGAs). Our
study reveals that these reconfigurable hardware devices can bridge the gap towards on-board processing of re-
motely sensed hyperspectral data and provide implementations that can significantly outperform the (optimized)
equivalent software versions of the considered endmember extraction algorithms.

Keywords: Hyperspectral image analysis, endmember extraction, pixel purity index (PPI), N-FINDR, field
programmable gate arrays (FPGAs).

1. INTRODUCTION

Hyperspectral imaging, also known as imaging spectroscopy, is a technique that has been widely used during
recent years in Earth and planetary remote sensing.1 It generates hundreds of images, corresponding to different
wavelength channels, for the same area on the surface of the Earth. The concept of hyperspectral imaging
originated at NASA’s Jet Propulsion Laboratory in California, which developed instruments such as the Airborne
Imaging Spectrometer (AIS), then called AVIRIS (for Airborne Visible Infra-Red Imaging Spectrometer2). This
system is now able to cover the wavelength region from 400 to 2500 nanometers using 224 spectral channels,
at nominal spectral resolution of 10 nanometers. As a result, each pixel (considered as a vector) collected by a
hyperspectral instrument can be seen as a spectral signature or ‘fingerprint’ of the underlying materials within
the pixel (see Figure 1).

Further author information: (Send correspondence to Carlos González)
Carlos González: carlosgonzalez@fdi.ucm.es, Daniel Mozos: mozos@fis.ucm.es, Javier Resano: jresano@unizar.es, Antonio
Plaza: aplaza@unex.es

High-Performance Computing in Remote Sensing, edited by Bormin Huang, Antonio J. Plaza,
Proc. of SPIE Vol. 8183, 81830F · © 2011 SPIE · CCC code: 0277-786X/11/$18 · doi: 10.1117/12.897384

Proc. of SPIE Vol. 8183 81830F-1

Figure 1. The concept of hyperspectral imaging.

One of the great challenges in remotely sensed hyperspectral image analysis is computational complexity
resulting from the need to process enormous data volumes.3 With recent advances in reconfigurable computing,
many image processing algorithms can be accelerated using high-performance FPGAs.4 One of the fundamental
tasks in hyperspectral image processing is endmember extraction which has found many applications in data
exploitation, especially spectral unmixing.5 Over the last years, many algorithms have been developed with the
purpose of finding “spectral endmembers”,5 which are assumed to be pure signatures in hyperspectral data sets.
Such pure signatures can then be used to estimate the abundance or concentration of materials in mixed pixels,
thus allowing sub-pixel analysis of hyperspectral images. The pixel purity index (PPI) and the N-FINDR algo-
rithms have been widely used in endmember extraction. These algorithms have a very expensive computational
cost, a fact that has generally prevented its exploitation in valid response times in a wide range of applications,
including environmental monitoring, military applications or hazard and threat assessment/tracking. The flexi-
bility, high performance and reduced energy consumption of FPGAs make them particularly attractive in remote
sensing applications which require a response in real- or near real-time.4

The remainder of the paper is organized as follows. Section 2 formulates the spectral unmixing problem in
mathematical terms. Section 3 describes the original PPI and N-FINDR algorithms. Section 4 describes their
implementations on a Xilinx Virtex-4 XC4VFX60 FPGA. Section 5 provides an experimental assessment of both
endmember extraction accuracy and processing performance of the proposed FPGA-based algorithms, using
well-known hyperspectral data sets collected by AVIRIS over two different sites: the Cuprite mining district in
Nevada, and the Jasper Ridge Biological Preserve in California. Finally, section 6 concludes with some remarks
and hints at plausible future research lines.

2. SPECTRAL UNMIXING

In order to define the spectral unmixing problem in mathematical terms, let us assume that a remotely sensed
hyperspectral scene with n bands is denoted by F, in which the pixel at the discrete spatial coordinates (i, j) of
the scene is represented by a vector X(i, j) = [x1(i, j), x2(i, j), · · · , xn(i, j)] ∈ �n, where � denotes the set of real
numbers in which the pixel’s spectral response xk(i, j) at sensor channels k = 1, . . . , n is included. Under the
linear mixture model assumption3,6 each pixel vector in the original scene can be modeled using the following
expression:

X(i, j) =
p∑

z=1

Φz(i, j) · Ez + n(i, j), (1)

Proc. of SPIE Vol. 8183 81830F-2

where Ez denotes the spectral response of endmember z, Φz(i, j) is a scalar value designating the fractional
abundance of the endmember z at the pixel X(i, j), p is the total number of endmembers, and n(i, j) is a noise
vector. The solution of the linear spectral mixture problem described in (1) relies on the correct determination
of a set {Ez}p

z=1 of endmembers and their correspondent abundance fractions {Φz(i, j)}p
z=1 at each pixel X(i, j).

The derivation and validation of the correct suite of endmembers has remained a challenging and goal for the
past years (not only in terms of adequate spectral signature extraction,5 but also in terms of computational
complexity7).

3. ALGORITHMS DESCRIPTION

3.1 The Pixel Purity Index (PPI) Algorithm

The PPI algorithm calculates a spectral purity score for each n-dimensional pixel in the original data by gener-
ating random unit vectors (called skewers), so that all pixel vectors are projected onto the skewers and the ones
falling at the extremes of each skewer are counted. After many repeated projections to different skewers, those
pixels that count above a certain cut-off threshold are declared “pure”.

The inputs to the PPI algorithm are a hyperspectral image cube F with N spectral bands; a maximum
number of projections, K ; a cut-off threshold value, vc, used to select as final endmembers only those pixels
that have been selected as extreme pixels at least vc times throughout the process; and a threshold angle, va,
used to discard redundant endmembers during the process. The output is a set of p endmembers {ej}p

j=1. The
algorithm can be summarized by the following steps:

1. Skewer generation. Produce a set of K randomly generated unit vectors, denoted by {skewerj}K
j=1.

2. Extreme projections. For each skewerj , all sample pixel vectors fi in the original data set F are projected
onto skewerj via dot products of fi · skewerj to find sample vectors at its extreme (maximum and
minimum) projections, forming an extrema set for skewerj which is denoted by Sextrema(skewerj).

3. Calculation of pixel purity scores. Define an indicator function of a set S, denoted by IS(fi), to denote
membership of an element fi to that particular set as IS(fi) = 1 if (fi ∈ S) else 0. Using the function above,
calculate the number of times that a given pixel has been selected as extreme using the following equation:

NPPI(fi) =
K∑

j=1

ISextrema(skewerj)(fi) (2)

4. Endmember selection. Find the pixels with value of NPPI(fi) above vc and form a unique set of p end-
members {ej}p

j=1 by calculating the spectral angle (SA)3, 8 for all possible endmember pairs and discarding
those which result in an angle value below va. The SA is invariant to multiplicative scalings that may arise
due to differences in illumination and sensor observation angle.9

The most time consuming stage of the PPI algorithm is given by step 2 (extreme projections). Fortunately, the
PPI algorithm is well suited for parallel implementation. The computation of skewer projections are independent
and can be performed simultaneously, leading to many ways of parallelization.

3.2 The N-FINDR Algorithm

This algorithm attempts to automatically find the simplex of maximum volume that can be inscribed within the
hyperspectral data set. The original N-FINDR algorithm developed by Winter10 can be summarized as follows:

1. Feature reduction. Apply a dimensionality reduction transformation such as the minimum noise fraction
(MNF)11 or the principal component analysis (PCA)12 to reduce the dimensionality of the data from n to
p − 1, where p is an input parameter to the algorithm (number of endmembers to be extracted).

2. Initialization. Let {E(0)
1 ,E(0)

2 , · · · ,E(0)
p } be a set of endmembers randomly extracted from the input data.

Proc. of SPIE Vol. 8183 81830F-3

Figure 2. (a) basic unit. (b) Parallelization strategy by pixels. (c) Parallelization strategy by skewers. (d) Parallelization
strategy by skewers and pixels.

3. Volume calculation. At iteration k ≥ 0, calculate the volume defined by the current set of endmembers as
follows:

V (E
(k)
1 , E

(k)
2 , · · · ,E(k)

p) =

∣∣∣∣det

[
1 1 · · · 1

E
(k)
1 E

(k)
2 · · · E

(k)
p

]∣∣∣∣

(p − 1)!
, (3)

4. Replacement. For each pixel vector X(i, j) in the input hyperspectral data, recalculate the volume by testing
the pixel in all p endmember positions, i.e., first calculate V (X(i, j),E(k)

2 , · · · ,E(k)
p), then V (E(k)

1 ,X(i, j),

· · · ,E(k)
p), and so on, until V (E(k)

1 ,E(k)
2 , · · · ,X(i, j)). If none of the p recalculated volumes is greater

than V (E(k)
1 ,E(k)

2 , · · · ,E(k)
p), then no endmember is replaced. Otherwise, the combination with maximum

volume is retained. Let us assume that the endmember absent in the combination resulting in the maximum
volume is denoted by E(k+1)

j . In this case, a new set of endmembers is produced by letting E(k+1)
j = X(i, j)

and E(k+1)
i = E(k)

i for i �= j. The replacement step is repeated in an iterative fashion, using as many
iterations as needed until there are no more replacements of endmembers.

In this work, we use the PCA of ENVI 4.0 software to generate dimensionally reduced images to be the input
of the N-FINDR algorithm.

4. FPGA IMPLEMENTATIONS

4.1 The Pixel Purity Index (PPI) Algorithm

The most time consuming stage of the PPI algorithm (extreme projections) computes a very large number of
dot products, all of which can be performed simultaneously. If we consider a simple basic unit such as the one
displayed in Fig. 2(a) as the baseline for parallel computations, then we can perform the parallel computations
by pixels [see Fig. 2(b)], by skewers [see Fig. 2(c)], or by pixels and skewers [see Fig. 2(d)]. If we parallelize
the computations by skewers, we can compute K dot products at the same time for the same pixel, where K

Proc. of SPIE Vol. 8183 81830F-4

Figure 3. Hardware architecture to implement the endmember extraction step.

is the number of skewers [see Fig. 2(c)]. If we increase the number of skewers, the required area would grow
proportionally with the number of dot product units and the clock cycle would remain constant. Another possible
way to parallelize the extreme projections stage is to compute them by pixels. In this implementation, the increase
in the number of pixels makes the required area and the clock cycle will be equal than the parallelization by
skewers. However, as we increase the number of parallel computations, a greater number of additional clock
cycles would be needed for maxima/minima computations. Finally, the parallelization strategy in Fig. 2(d) is
an intermediate solution which provides no further advantage with respect to the parallelization by skewers and
has the same extra clock cycles that parallelization by pixels.

Taking in mind the above rationale, in this work we have selected the parallelization strategy based on
skewers. Apart from the aforementioned advantages with regards to other possible strategies, another reason for
our selection is that the parallelization strategy based on skewers fits very well the procedure for data collection
(in a pixel-by-pixel fashion) at the imaging instrument. Therefore, parallelization by skewers is the one that
best fits the data entry mechanism since each pixel can be processed immediately as collected. Specifically, our
hardware system should be able to compute K dot products against the same pixel fi at the same time, being
K the number of skewers.

Fig. 3 shows the architecture of the hardware used to implement the PPI algorithm, along with the I/O
communications. For data input, we use a DDR2 SDRAM and a DMA (controlled by a PowerPC) with a FIFO
to store pixel data. For data output, we use a PowerPC to send the position of the endmembers via a RS232 port.
Finally, a systolic array, a random generation module and a occurrences memory are also used. For illustrative
purposes, Fig. 4 describes the architecture of the dot product processors used in our systolic array. Basically,
a systolic cycle consists of computing a single dot product between a pixel and a skewer, and to memorize the
index of the pixel if the dot product is higher or smaller than a previously computed Max/Min value. It has
been shown in previous work13, 14 that the skewer values can be limited to a very small set of integers when their
dimensionality is large, as in the case of hyperspectral images. A particular and interesting set is {1,−1} since it
avoids the multiplication. The dot product is thus reduced to an accumulation of positive and negative values.
As a result, each dot product processor only needs to accumulate the positive or negative values of the pixel input
according to the skewer input. These units are thus only composed of a single addition/subtraction operator and
a register. The min/max unit receives the result of the dot product and compares it with the previous minimum
and maximum values. If the result is a new minimum or maximum, it will be stored for future comparisons.

On the other hand, the incorporation of a hardware-based random generation module is one of the main
features of our system. This module significantly reduces the I/O communications that were the main bottleneck

Proc. of SPIE Vol. 8183 81830F-5

Figure 4. Hardware architecture of a dot product processor.

Table 1. Summary of Resource Utilization for the FPGA-Based Implementation of the PPI Algorithm on a Virtex-4
XC4VFX60 FPGA.

Component Number of Number of Number of Number of Percentage of Maximum
skewers slice flip flops 4 input LUTs slices total frequency (MHz)

Systolic Array 120 13440 23660 12711 53.16 217
140 15680 27603 14830 58.66 217
160 17920 31546 16948 67.04 217
180 20160 35489 19067 75.42 217
200 22400 39432 21148 83.65 217

Random 120 240 720 346 1.36 684
Generation 140 280 840 403 1.59 684
Module 160 320 960 461 1.82 684

180 360 1080 521 2.06 684
200 400 1200 576 2.27 684

RS232 Transmitter - 69 128 71 0.28 238

DMA Controller - 170 531 367 1.45 102

of the system in previous implementations.13–15 It should be noted that, in a digital system, it is not possible to
generate 100% random numbers. In our design, we have implemented a random generator module which provides
pseudo-random and uniformly-distributed sequences using registers and XOR gates. It requires an affordable
amount of space (576 slices for 200 skewers) and it is able to generate the next component of every skewer in
only one clock cycle and operates at a high clock frequency (648 MHz).

To calculate the number of times each pixel has been selected as extreme (step 3 of the algorithm) we use the
occurrences memory, which is initialized to zero. Once we have calculated the minimum and maximum value for
each of the skewers, we update the number of occurrences by reading the previous values stored for the extremes
in the occurrences memory and then, writing these values increased by one. When this step is completed, the
PowerPC reads the total number of occurrences for each pixel. If this number exceeds the threshold value vc, it
is selected as an endmember. After that, the PowerPC calculates the SA for all possible endmember pairs and
discards those which result in an angle value below va (step 4 of the algorithm). Finally, the PowerPC sends the
non-redundant endmember positions through the RS232 port.

Table 1 shows the resources used for our FPGA-based implementation of the PPI endmember extraction
process for different numbers of skewers (ranging from K = 140 to K = 200), tested on the Virtex-4 XC4VFX60
FPGA of the ML410 board. As shown by Table 1, we can scale our design up to 200 skewers (therefore, P = 50
algorithm passes are needed in order to process K = 104 skewers). An interesting feature of our design is that
we can scale it without increasing the delay of the critical path.

4.2 The N-FINDR Algorithm

Figure 5 describes the general architecture of the hardware used to implement the N-FINDR algorithm, along
with the I/O communications. For data input, we use a DDR2 SDRAM and a DMA (controlled by a PowerPC
using a prefetching approach) with a FIFO to store pixel data. N-FINDR module is used to implement our
version of the N-FINDR algorithm. Finally, a transmitter is used to send the endmembers via a RS232 port.

The most time consuming part of the algorithm is the volume calculation. The limited available resources
in a small or medium FPGA to calculate determinants of large order, makes it difficult to develop an efficient

Proc. of SPIE Vol. 8183 81830F-6

Figure 5. Hardware architecture of the complete system.

Figure 6. Hardware architecture to implement the N-FINDR algorithm.

implementation of the algorithm and this is the reason because there are not FPGA implementations of the
algorithm in the literature. To calculate determinants, it is advisable to use the fundamental properties of the
determinants and apply them systematically to transform the determinant in others who are increasingly easy
to calculate, down to one which is trivial. For the design of the algorithm we use the Gauss elimination method
in order to have a triangular matrix.

Figure 6 shows the hardware architecture used to implement the volume calculation step. We use registers to
store the pixel vectors selected as endmembers until the moment, their positions in the image and their volume,
and also the current pixel vector data, his position, his greater volume and the index inside the matrix where it
is obtained. Moreover, we have included a module that calculates the absolute value of the determinant using
the Gauss elimination method:

First, for j = 2, ..., n we take a multiple aj1/a11 of the first row and subtract it to the j-th row, to make
aj1 = 0. Thus, we have knocked out all elements of matrix A below the ‘pivot’ element a11 in the first column.
Now, for j = 3, ..., n, we take a multiple aj2/a22 of the second row and subtract it to the j-th row. When we
have finished this, all sub-diagonal elements in the second column are zero, and we are ready to process the third
column. Applying this process to columns i = 1, ..., n− 1 completes the matrix triangulation process and matrix
A has been reduced to upper triangular form. These operations are carried out by the data path (see Figure 3).

Obviously, if one of the diagonal pivots aii is zero, we cannot use aii to knock out the elements below it; we
cannot change aji by subtracting any multiple of aii = 0 to it. We must switch row i with another row k below
it, which contains a nonzero element aki in the i-th column. Now the new pivot aii is not zero, and we can
continue the matrix triangulation process. If aki = 0 for k = i, ..., n, then it will not be satisfactory to switch
row i with any of rows below it, as all the potential pivots are zero and therefore det A = 0. This behaviour has
been implemented using a modified circular queue with a small control unit (see Figure 7).

Proc. of SPIE Vol. 8183 81830F-7

Figure 7. Hardware architecture of the abs(det) module.

Table 2. Summary of Resource Utilization for the FPGA-Based Implementation of the N-FINDR Algorithm For Different
Numbers of Endmembers on a Virtex-4 XC4VFX60

Component Number of Number of Number of Maximum
endmembers DSP48Es slices frequency

N-FINDR Module 9 92 6231 (24%) 43.1 MHz
16 128 11700 (46%) 42.9 MHz
18 128 14056 (55%) 42.8 MHz
19 128 17577 (69%) 42.6 MHz
21 128 24622 (97%) 42.3 MHz

RS232 Transmitter - 0 71 (0.28%) 208 MHz

DMA Controller - 0 367 (1.4%) 102 MHz

Finally, the multiplier calculates the multiplication of the main diagonal elements of the triangular matrix
and obtains the absolute value.

With this implementation we can extract up to 21 endmembers (the typical number of endmembers per
scene lies below this range) with almost total use of available resources of a small FPGA (all embedded DSP48Es
multipliers and 97% of the FPGA slices). Table 2 shows the resources used for our hardware implementation
of the proposed N-FINDR algorithm design for different numbers of endmembers to be extracted, conducted on
the Virtex-4 XC4VFX60 FPGA of the ML410 board.

5. EXPERIMENTAL RESULTS

In this section we illustrate the endmember accuracy and performance of the proposed FPGA implementations.
The section is organized as follows. In subsection 5.1 we describe the FPGA board used in our experiments.
Subsection 5.2 describes the hyperspectral data sets that will be used for demonstration purposes. Subsection
5.3 evaluates the endmember extraction accuracy and execution times of the considered implementations and
performs an inter-comparison.

5.1 FPGA Architecture

The hardware architecture described in section 4 has been implemented using the VHDL language. Further, we
have used the Xilinx ISE environmentand the Embedded Development Kit (EDK) environmentto specify the
complete system. The full system has been implemented on a ML410 board , a low-cost reconfigurable board
with a single Virtex-4 XC4VFX60 FPGA component, a DDR2 SDRAM DIMM slot which holds up to 2GBytes,
a RS232 port, and some additional components not used in our implementation. We use a Xilinx Virtex-4
XC4VFX60 FPGA because is based on the same architecture as other FPGAs16 that have been certified by
several international agencies for space operation. This FPGA is very close to the space-grade Virtex-4QV
XQR4VFX60 FPGA so we could easily implement our design on it.

5.2 Hyperspectral Image Data Sets

Several different hyperspectral data sets have been used in our experiments:

Proc. of SPIE Vol. 8183 81830F-8

(a) (b)
Figure 8. (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in Nevada. (b) U.S.
Geological Survey mineral spectral signatures used for validation purposes.

• The first one is the well-known AVIRIS Cuprite scene [see Fig. 8(a)], collected in the summer of 1997
and available online in reflectance units after atmospheric correction. The portion used in experiments
corresponds to a 350 × 350-pixel subset of the sector labeled as f970619t01p02 r02 sc03.a.rfl in the online
data which comprises 224 spectral bands in the range from 400 to 2500 nanometers, and a total size of
around 50 Megabytes. Bands 1-3, 105-115, and 150-170 were removed prior to the analysis due to water
absorption and low SNR in those bands. The site is well understood mineralogically, and has several
exposed minerals of interest including alunite, buddingtonite, calcite, kaolinite and muscovite. Reference
ground signatures of the above minerals [see Fig. 8(b)], available in the form of a U.S. Geological Survey
library (USGS)will be used to estimate endmember extraction accuracy in this work.

• Second, we have used a set of two AVIRIS images taken over the Jasper Ridge Biological Preserve in
California. The datasets are available in both radiance (uncorrected) and reflectance (atmospherically
corrected) units. Each of the data sets, acquired on April 1998, consist of 512×614 pixels and 224 spectral
bands (for a total size of around 140 Megabytes each). Water absorption and low SNR bands were removed
prior to the analysis. In a previous study of surface materials over this area, image endmembers were derived
from the scenes above based on extensive ground knowledge.17 Fig. 9 plots spectral signatures in radiance
and reflectance units associated to the main constituent materials at Jasper Ridge. These signatures,
corresponding to materials such as soil, evergreen forest, dry grass, chaparral vegetation, and shade, were
obtained from the image scene by using a hybrid method combining visual inspection and prior information
about the scene. The location of these materials is also identified in Fig. 9. Ground knowledge was used
to identify homogeneous vegetation, shadow and soil areas in the scene. Inside those areas, representative
pixels were selected as ground-truth spectra by comparing them to a spectral library of field data, used to
represent landscape components at Jasper Ridge. In this process, we ensured that library spectra matched
the phenology at the time of the image, and that there was little mis-calibration between field spectra and
image spectra.

5.3 Inter-comparison of the hardware PPI and N-FINDR implementations

In this subsection we will make a comparison between the implementations proposed in section 4 of the PPI
and N-FINDR algorithms for endmember extraction. A dimensionality reduction transformation is necessary for
subsequent execution of the N-FINDR algorithm, however, this step is not necessary for the implementation of
PPI algorithm. Dimensional reduction allows us to reduce processing time but often discards relevant information
in the spectral domain.

Proc. of SPIE Vol. 8183 81830F-9

Figure 9. AVIRIS hyperspectral images collected over Jasper Ridge Biological Preserve in radiance (left) and reflectance
(right) units, along with the spectral signatures and spatial location of representative endmembers in the two considered
scenes.
Table 3. Spectral Angle-Based Similarity Scores between the Endmembers Extracted by our PPI and N-FINDR imple-
mentations and the Selected USGS Reference Signatures

PPI N-FINDR
Radians Degrees Radians Degrees

Alunite 0.084 4.812 0.084 4.812
Buddingtonite 0.073 4.182 0.089 5.099
Calcite 0.092 5.271 0.105 6.016
Kaolinite 0.136 7.792 0.138 7.906
Muscovite 0.092 5.271 0.108 6.187

To make a comparison as fair as possible, we performed the dimensional reduction of the images using the
Principal Component Analysis (PCA) of the ENVI 4.0 software to make the endmmebers extraction with them.
Tables 3 and 4 show the SA for the most similar endmembers extracted by PPI and N-FINDR algorithms
over AVIRIS Cuprite scene reduced to 15 superbands and in the AVIRIS Jasper Ridge scene reduced to 18
superbands in both reflectance and radiance units. Moreover, Table 5 shows the computation time of the PPI
and N-FINDR algorithms for the different hyperspectral scenes once they have been dimensionally reduced and
after the evaluation of 104 skewers. Since the processing times of the AVIRIS Jasper Ridge data in radiance and
reflectance units are identical, only one is shown in the table.

Firstly, we will make a quantitative comparison between the endmembers extracted by the proposed imple-
mentations of the PPI and N-FINDR algorithms. Observing Tables 3 and 4 we realize that, although the values
of SA in both algorithms show a high spectral correspondence with the availables reference spectral signatures in
every scene, the values obtained by the PPI algorithm are smaller than the values obtained by the N-FINDR al-
gorithm, which means greater spectral similarity. Regarding the response times of both algorithms in processing
dimensionally reduced images observing Table 5, it is clear that the PPI algorithm is faster than the N-FINDR
algorithm with a speedup slightly higher to 12.

Proc. of SPIE Vol. 8183 81830F-10

Table 4. Spectral Angle Similarity Scores between the Endmembers Extracted by PPI and N-FINDR from the AVIRIS
Jasper Ridge Scenes (in Radiance and Reflectance Units) and the Available Pure Spectral Signatures in Both Scenes.

Radiance data
Soil Forest Grass Chaparral Lake

PPI
Radians 0.065 0.061 0.045 0.042 0.032
Degrees 3.724 3.495 2.578 2.406 1.833

N-FINDR
Radians 0.077 0.065 0.044 0.050 0.032
Degrees 4.411 3.724 2.521 2.864 1.833

Reflectance data
Soil Forest Grass Chaparral Lake

PPI
Radians 0.030 0.026 0.024 0.031 0.019
Degrees 1.718 1.489 1.375 1.776 1.088

N-FINDR
Radians 0.028 0.025 0.022 0.020 0.019
Degrees 1.604 1.432 1.260 1.145 1.088

Table 5. Processing Times Measured for the Hardware PPI and N-FINDR Implementations.

AVIRIS AVIRIS
Cuprite Jasper Ridge

Number of endmembers 16 19

Total size (Megabytes) 50 140

Execution time for PPI Implementation (seconds) 1.35 3.48

Execution time for N-FINDR Implementation (seconds) 13.46 49.35

Speedup 12.48 12.44

Although both algorithms obtain a set of endmembers signatures similar to reference spectral signatures,
we must consider that the endmembers extracted by PPI algorithm has greater similarity with such spectral
signatures, but most important, it makes the endmember extraction more quickly. Moreover, the N-FINDR
algorithm has a set of limitations: One is determining the number of endmembers necessary to be extracted
by the N-FINDR algorithm. Another is its computational complexity as a result of an exhaustive search. The
third and probably the most critical issue is the requirement of the dimensional reduction of the scene, a process
that is often very complex and therefore significantly increases the computation time. A fourth is the use of
random initial endmembers resulting in the selection of a final set of endmembers that can be inconsistent and
that the results are not reproducible. On the other hand, the N-FINDR algorithm is most popular than the
PPI algorithm and PPI needs a post-processing step to obtain the final endmembers from the purity values
associated to each pixel, while N-FINDR gives the final endmembers without an aditional step. For all these
reasons, we recommend to use the PPI algorithm to implement an unmixing chain in FPGA, since the problem
of determining the number of endmembers to be extracted is reduced to determining a threshold value and is
not necessary a dimensional reduction of the scene (we do not lose spectral information). In addition, for larger
FPGAs PPI algorithm is more easily parallelizable since the basic processing unit uses less hardware resources.

6. CONCLUSIONS AND FUTURE RESEARCH LINES

The number of remote sensing applications requiring fast response of algorithm analysis has been growing ex-
ponentially in recent years. Current sensor design practices can greatly benefit from the inclusion of radiation-
hardened FPGAs, which can be easily mounted or embedded in the sensor due to its compact size and low-weight,
which does not compromise mission payload. In this paper, we present an inter-comparison of the the experimen-
tal results of our FPGA implementation of the PPI and N-FINDR algorithms, the most well-known approaches
for hyperspectral data analysis in the remote sensing community. Our experimental results, conducted on a
Virtex-4 XC4VFX60, demonstrate that our architecture can extract endmembers with highly satisfactory spec-
tral purity. To implement an unmixing chain in FPGA, we recommend to use the PPI algorithm since is not
necessary a dimensional reduction and provides better performance. Further, our proposed hardware version of
the algorithms can significantly outperform (in terms of computation time) an equivalent software version.

As future work, we are investigating FPGA implementations of techniques for estimating the number of
endmembers in the scene, such as the virtual dimensionality concept in,18 as well as techniques for estimating

Proc. of SPIE Vol. 8183 81830F-11

endmember abundances in order to provide a full spectral unmixing chain.

ACKNOWLEDGMENTS

This work has been supported by the European Community’s Marie Curie Research Training Networks Pro-
gramme under reference MRTN-CT-2006-035927, Hyperspectral Imaging Network (HYPER-I-NET). This work
has also been supported by the Spanish Ministry of Science and Innovation (HYPERCOMP/EODIX project,
reference AYA2008-05965-C04-02), AYA2009-13300-C03-02 y TIN2009-09806. The authors gratefully thank Dr.
Robert O. Green at NASA/JPL for providing the AVIRIS data sets used in our experimental assessment.

REFERENCES
[1] Goetz, A. F. H., Vane, G., Solomon, J. E., and Rock, B. N., “Imaging spectrometry for Earth remote

sensing,” Science 228, 1147–1153 (1985).
[2] Green, R. O. et al., “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer

(AVIRIS),” Remote Sensing of Environment 65(3), 227–248 (1998).
[3] Chang, C.-I., [Hyperspectral Imaging: Techniques for Spectral Detection and Classification], Kluwer Aca-

demic/Plenum Publishers: New York (2003).
[4] El-Ghazawi, T. A., El-Araby, E., Huang, M., Gaj, K., Kindratenko, V. V., and Buel, D. A., “The promise

of high-performance reconfigurable computing,” IEEE Computer 41, 69–76 (2008).
[5] Plaza, A., Martinez, P., Perez, R., and Plaza, J., “A quantitative and comparative analysis of endmember ex-

traction algorithms from hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing 42(3),
650–663 (2004).

[6] Heinz, D. and Chang, C.-I., “Fully constrained least squares linear mixture analysis for material quan-
tification in hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing 39, 529–545
(2000).

[7] Plaza, A. and Chang, C.-I., [High Performance Computing in Remote Sensing], Taylor & Francis: Boca
Raton, FL (2007).

[8] Keshava, N. and Mustard, J. F., “Spectral unmixing,” IEEE Signal Processing Magazine 19(1), 44–57
(2002).

[9] Chang, C.-I., [Hyperspectral Data Exploitation: Theory and Applications], John Wiley & Sons: New York
(2007).

[10] Winter, M. E., “N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyper-
spectral data,” Proc. SPIE Image Spectrometry V 3753, 266–277 (2003).

[11] Green, A. A., Berman, M., Switzer, P., and Craig, M. D., “A transformation for ordering multispectral
data in terms of image quality with implications for noise removal,” IEEE Transactions on Geoscience and
Remote Sensing 26, 65–74 (1988).

[12] Schowengerdt, R. A., [Remote Sensing: Models and Methods for Image Processing, 2nd ed.], Academic
Press: New York (1997).

[13] Lavernier, D., Fabiani, E., Derrien, S., and Wagner, C., “Systolic array for computing the pixel purity index
algorithm on hyperspectral images,” Proceedings of SPIE 4480, 130–138 (1999).

[14] Lavernier, D., Theiler, J., Szymanski, J., Gokhale, M., and Frigo, J., “FPGA implementation of the pixel
purity index algorithm,” Proceedings of SPIE 4693, 30–41 (2002).

[15] Plaza, A. and Chang, C.-I., “Clusters versus FPGA for parallel processing of hyperspectral imagery,”
International Journal of High Performance Computing Applications 22(4), 366–385 (2008).

[16] “ Xilinx. Available online: http://www.xilinx.com/publications/prod mktg/ virtex5qv-product-table.pdf,”
[17] Garcia, M. and Ustin, S. L., “Detection of interannual vegetation responses to climatic variability using

AVIRIS data in a coastal savanna in California,” IEEE Transactions on Geoscience and Remote Sensing 39,
1480–1490 (2001).

[18] Du, Q. and Chang, C.-I., “Estimation of number of spectrally distinct signal sources in hyperspectral
imagery,” IEEE Transactions on Geoscience and Remote Sensing 42(3), 608–619 (2004).

Proc. of SPIE Vol. 8183 81830F-12

	SPIE Proceedings
	MAIN MENU
	Contents
	Search
	Close

