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ABSTRACT

Hyperspectral unmixing is a very important task for remotely sensed hyperspectral data exploitation. It amounts
at estimating the abundance of pure spectral signatures (called endmembers) in each mixed pixel of the original
hyperspectral image, where mixed pixels arise due to insufficient spatial resolution and other phenomena. A
challenging problem in spectral unmixing is how to automatically derive endmembers from hyperspectral im-
ages, particularly due to the presence of mixed pixels which generally prevents the localization of pure spectral
signatures in transition areas between different land-cover classes. A possible strategy to address this problem
is to guide the endmember extraction process to spatially homogeneous areas. For this purpose, several pre-
processing methods (intended to be applied prior to the endmember extraction stage) have been developed in
the literature. However, most of these methods only include spatial information during the preprocessing and
disregard spectral information until the subsequent endmember extraction stage. In this paper, we develop a
new joint spatial and spectral preprocessing method which can be combined with any endmember extraction
algorithm from hyperspectral images. The proposed method is intended to retain spectrally pure pixels which
belong to spatially homogeneous areas. Our assumption is that spectrally pure signatures are more likely to be
found in spatially homogeneous areas rather than in transition areas between different land-cover classes, which
are expected to be dominated by mixed pixels. Our experimental results, conducted with a variety of hyper-
spectral images, reveal the robustness of the proposed method when compared to other similar preprocessing
strategies.

Keywords: Hyperspectral image analysis, endmember extraction, spectral unmixing, spatial preprocessing,
spatial-spectral preprocessing.

1. INTRODUCTION

Spectral mixture analysis (also called spectral unmixing) has been an alluring exploitation goal from the earliest
days of hyperspectral imaging1 to our days.2, 3 No matter the spatial resolution, the spectral signatures collected
in natural environments are invariably a mixture of the signatures of the various materials found within the
spatial extent of the ground instantaneous field view of the imaging instrument.4 The availability of hyperspectral
imagers with a number of spectral bands that exceeds the number of spectral mixture components5 has allowed
to cast the unmixing problem in terms of an over-determined system of equations in which, given a set of pure
spectral signatures (called endmembers) the actual unmixing to determine apparent pixel abundance fractions
can be defined in terms of a numerical inversion process.6

A standard technique for spectral mixture analysis is linear spectral unmixing,7 which assumes that the col-
lected spectra at the spectrometer can be expressed in the form of a linear combination of endmembers weighted
by their corresponding abundances. Over the few years, many techniques have been developed for spectral-based
endmember extraction8, 9 but only a few methods have been designed under the assumption that spatial infor-
mation can help in the process of extracting spectral endmembers. Techniques include automatic morphological
endmember extraction (AMEE),10 spatial-spectral endmember extraction (SSEE),11 spatial preprocessing (SPP)
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using a sliding-window approach,12 and a region-based spatial preprocessing (RBSPP) approach.13 The first two
approaches are endmember extraction algorithms themselves, while the latter two approaches are preprocessing
modules that can be combined with any other spectral-based endmember extraction algorithm. Although these
approaches have been shown in previous work to be effective in spatial-spectral characterization prior to spectral
unmixing, their performance is generally sensitive to noise. Further, these approaches treat the spatial and
the spectral information separately, but in some cases fusing both sources of information when performing the
preprocessing can be beneficial in order to avoid discarding important information.

In this work, we discuss a noise-robust spatial preprocessing (NRSPP) module which can be used in combi-
nation with available endmember extraction algorithms and which fuses both spatial and spectral information at
the preprocessing level. The method first derives a spatial homogeneity index which is relatively insensitive to
the noise present in the original hyperspectral data. Then, it fuses this index with a spectral-based unsupervised
clustering technique, obtaining a set of pure regions which are used to guide the subsequent endmember searching
process, which can be conducted using any traditional algorithm for endmember extraction. The remainder of
the abstract is organized as follows. Section 2 describes related work, including spectral and spatial-spectral
based techniques for endmember extraction. In section 3, we describe the proposed method in step-by-step
fashion using a synthetic hyperspectral image to illustrate the outcome of each step. In section 4, we provide an
experimental comparison of the proposed method with other spatial-spectral approaches such as AMEE, SSEE,
SPP and RBSPP using both synthetic and real hyperspectral data collected by the Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS).5 This section also discusses future research avenues.

2. RELATED WORK

In this section, we describe in more detail a selected spectral-based endmember extraction algorithm called or-
thogonal subspace projection (OSP),14 two spatial-spectral endmember extraction algorithms (AMEE, SSEE)
and two spatial preprocessing techniques (SPP and RBSPP) that will be used in our comparison in this paper.
The reasons for our selection are: 1) the OSP algorithm represents a class of convex geometry-based and tech-
niques which have been successful in endmember extraction; 2) the AMEE and SSEE are two of few algorithms
designed to consider simultaneously the spectral and spatial information in the search for endmembers; and 3)
the SPP and RBSPP are the only two spatial preprocessing algorithms prior to endmember extraction available
in the literature. These techniques will be compared with our newly developed NRSPP method in this work.

2.1 Orthogonal subspace projection (OSP)
This algorithm starts by selecting the pixel vector with maximum length in the scene as the first endmember.
Then, it looks for the pixel vector with the maximum absolute projection in the space orthogonal to the space
linearly spanned by the initial pixel, and labels that pixel as the second endmember. A third endmember is found
by applying an orthogonal subspace projector to the original image,14 where the signature that has the maximum
orthogonal projection in the space orthogonal to the space linearly spanned by the first two endmembers. This
procedure is repeated until a desired number of endmembers are found.15

2.2 Automatic Morphological Endmember Extraction (AMEE)
The automatic morphological endmember extraction (AMEE)10 algorithm runs on the full data cube with no
dimensional reduction, and begins by searching spatial neighborhoods around each pixel vector in the image for
the most spectrally pure and mostly highly mixed pixel. This task is performed by using extended mathematical
morphology operators16 of dilation and erosion, where dilation selects the most spectrally pure pixel in a local
neighborhood around each pixel vector and erosion selects the most highly mixed pixel in the same neighborhood.
Each spectrally pure pixel is then assigned an eccentricity value, which is calculated as the spectral angle distance
(SAD)6, 17 between the most spectrally pure and mostly highly mixed pixel for each given spatial neighborhood.
This process is repeated iteratively for larger spatial neighborhoods up to a maximum size that is pre-determined.
At each iteration the eccentricity values of the selected pixels are updated. The final endmember set is obtained
by applying a threshold to the resulting greyscale eccentricity image, which results in a large set of endmember
candidates. The final endmembers are extracted after applying the OSP method to the set of candidates in order
to derive a final set of spectrally distinct endmembers, where the number of endmembers to be found is an input
parameter to the OSP algorithm.
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2.3 Spatial Spectral Endmember Extraction (SSEE)

The spatial-spectral endmember extraction tool (SSEE) uses spatial constraints to improve the relative spectral
contrast of endmember spectra that have minimal unique spectral information, thus improving the potential for
these subtle, yet potentially important endmembers, to be selected. With SSEE, the spatial characteristics of
image pixels are used to increase the relative spectral contrast between spectrally similar, but spatially inde-
pendent endmembers. The SSEE algorithm searches an image with a local search window centered around each
pixel vector and comprises four steps.11 First, the singular value decomposition (SVD) transform is applied to
determine a set of eigenvectors that describe most of the spectral variance in the window or partition. Second,
the entire image data are projected onto the previously extracted eigenvectors to determine a set of candidate
endmember pixels. Then, spatial constraints are used to combine and average spectrally similar candidate end-
member pixels by testing, for each candidate pixel vector, which other pixel vectors are sufficiently similar in
spectral sense. Instead of using a manual procedure as recommended by the authors in,11 we have used the OSP
technique in order to derive a final set of spectrally distinct endmembers, where the number of endmembers to
be derived is an input parameter to the OSP algorithm.

2.4 Spatial Pre-Processing (SPP)

The SPP12 serves as a preprocessing module which can be combined with existing spectral-based algorithms
such as OSP. The method estimates, for each input pixel vector, a scalar factor which is intimately related to the
spatial similarity between the pixel and its spatial neighbors, and then uses this scalar factor to spatially weight
the spectral information associated to the pixel. The idea behind the SPP is to center each spectral feature
in the data cloud around its mean value, and then shift each feature straight towards the centroid of the data
cloud. The shift is proportional to a similarity measure calculated using both the spatial neighborhood around
the pixel under consideration and the spectral information associated to the pixel, but without averaging the
spectral signature of the pixel. The correction is performed so that pixels located in spatially homogenous areas
are expected to have a smaller displacement with regards to their original location in the data cloud than pure
pixels surrounded by spectrally distinct substances. Resulting from the above operation, a modified simplex is
formed, using not only spectral but also spatial information. It is important to notice that the modified simplex
is mainly intended to serve as a guide for a subsequent competitive endmember extraction process, conducted
in this work using the OSP algorithm. However, such modified simplex is not intended to replace the simplex
in the input hyperspectral scene. To achieve this, the spatial coordinates of the endmembers extracted from the
preprocessed image are retained, but the spectral signatures associated to those spatial coordinates are obtained
from the original hyperspectral scene.

2.5 Region-Based Spatial Pre-Processing (RBSPP)

The RBSPP13 also uses spatial information as a guide to exploit spectral information more effectively by ad-
equately exploiting spatial context in adaptive fashion. This approach first adaptively searches for the most
spectrally pure regions (understood as groups of several contiguous pixel vectors with similar spectral content)
by using a hybrid procedure that combines unsupervised clustering and orthogonal subspace projection concepts.
After estimating the number of endmembers using an agreement between the virtual dimensionality (VD)18 and
the hyperspectral signal identification by minimum error (HySime)19 concepts, the method performs unsuper-
vised clustering using the ISODATA algorithm20 and finally applies the OSP algorithm to the mean spectra of
the resulting regions in order to find a set of spatially representative regions with associated spectra which are
both spectrally pure and orthogonal between them. Once the aforementioned region-based preprocessing has
been completed, a spectral-based endmember extraction algorithm such as the OSP can now be applied to the
set of pixels associated to the retained spatially connected regions to produce the final set of endmembers.

3. PROPOSED METHOD

In this section we describe the considered spatial-spectral preprocessing approach. As shown by the flowchart in
Fig. 1, the proposed method consists of four steps that can be summarized as follows:
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Figure 1. Block diagram illustrating a noise-robust spatial preprocessing method (NRSPP) prior to endmember extraction
and spectral unmixing.

1. Multi-scale Gaussian filtering. First, we apply multidimensional Gaussian filtering using different values of
parameter σ, which results in different filtered versions of the original hyperspectral image. Here, higher σ
values lead to more spatial smoothing.

2. Spatial homogeneity calculation. Next, we calculate the root mean square error (RMSE)6 between the
original hyperspectral image and each of the filtered images resulting from the previous step. Then, for
each pixel in the hyperspectral image we calculate a spatial homogeneity index as the average value of the
corresponding values after calculating the per-pixel error scores using different values of σ.

3. Spectral clustering. In parallel to the first two steps, we perform a spectral-based unsupervised clustering of
the original hyperspectral image. Here, we simply used the ISODATA algorithm21 applied to a transformed
version of the original image obtained using the minimum noise fraction (MNF) transform,22 where the
number of components retained was set to the number of endmembers in the input data, estimated using the
virtual dimensionality (VD) concept.18 Let us denote this value as p. Then, for the ISODATA algorithm,
the minimum number of classes was set to p and the maximum number of classes was set to 2p, which
empirically resulted in good results.

4. Fusion. For each cluster in the spectral classification map, a subset of spatially homogeneous pixels are
selected. Parameter α ∈ [0, 100] defines the percentage of pixels that will be selected per cluster. For
selection, pixels are ranked according to increasing values of their spatial homogeneity as calculated in the
previous step. The selected pixels for each cluster are now averaged, then we apply the OSP algorithm
over the averaged signatures to select the most extreme clusters and remove the clusters with mixed pixels.

Finally, endmember extraction is applied to the retained pixels after the procedure above, called NRSPP due
to its robustness in the presence of noise, by assuming that every time an endmember pixel is selected from a
certain cluster, all remaining pixels in the same cluster are excluded from the endmember searching process. The
outcome of the process is a set of p fractional abundance maps (one per endmember).

4. EXPERIMENTS WITH SYNTHETIC DATA

A database of five 100 × 100-pixel synthetic hyperspectral scenes has been created using fractals to generate
distinct spatial patterns. Several natural objects can be approximated by fractals to a certain degree, including
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Figure 2. Synthetic images used in experiments, where spatial patterns were generated using fractals.

clouds, mountain ranges, coastlines, vegetables, etc. thus providing a baseline for simulating spatial patterns
often found in nature. In this work, we used fractals to simulate linear mixtures of a set of endmember signatures
randomly selected from a spectral library compiled by the U.S. Geological Survey (USGS)∗ and made up of a
total of 420 signatures. Fig. 2 displays the five fractal images used in the simulations. These images are further
divided into a number of clusters using the k-means algorithm,23 where the number of clusters extracted from
the five fractal images was always larger than the number of endmember signatures, fixed in our experiments to
p = 9, and the abundance proportions in the regions associated to each cluster have been set so that pixels closer
to the border of the region are more heavily mixed, while the pixels located at the center of the region are more
spectrally pure in nature (the images does not contain any completely pure pixels, a situation often encountered
in real-world analysis scenarios). Zero-mean Gaussian noise was added to the synthetic scenes in different signal
to noise ratios (SNRs) –from 30:1 to 110:1– to simulate contributions from ambient and instrumental sources,
following the procedure described in.14 Fig. 3 shows the spectra of the USGS signatures used in the simulation
of one of the synthetic scenes (labeled as “Fractal 1” in Fig. 2). The full database of synthetic scenes is available
online†. The abundance maps associated to each reference USGS signature in the construction of the “Fractal
1” synthetic scene are also displayed in Fig. 3, where the fractional abundances in each pixel of the scene are
positive and add up to unity, ensuring that all pixel instances in the synthetic fractal image strictly adhere to a
fully constrained linear mixture model.7

In order to illustrate the performance of the proposed NRSPP, we show the individual outcome of each
processing step for the “Fractal 1” in Fig. 2. Fig. 4 shows the outcome of applying Gaussian filtering with
different values of σ for the synthetic image simulated with SNR=70:1. Figs. 5(a-c) respectively show the
outcome of calculating the RMSE between the original image and the images obtained after Gaussian filtering
in Fig. 4. Figs. 5(d-h) respectively show the spatial homogeneity images obtained for the synthetic image with
SNR values ranging between 30:1 and 110:1. As shown by Figs. 5(d-h), the spatial homogeneity calculation
is robust in the presence of noise. Fig. 5(i) shows the outcome of the unsupervised clustering procedure with
ISODATA for the synthetic image with SNR=70:1. Finally, Figs. 5(j-n) shows the clusters (obtained after
applying spatial-spectral fusion) from the image with SNR=70:1 after considering values of α from 50 to 90.

Table 1 shows the RMSE scores after reconstructing the synthetic scene (simulated with different SNR values)
using the endmembers extracted by several methods, including the spectral-based OSP, several preprocessing
versions applied prior to OSP (SPP, RBSPP and NRSPP), and two spatial-spectral endmember extraction
algorithms (AMEE and SSEE). In our experiments, we always derive p = 9 endmembers using the different
tested methods and then estimate their fractional abundances in the original hyperspectral image using fully
constrained linear spectral unmixing (FCLSU).7 Then, we reconstruct the original image using the derived
endmembers and fractional abundances, and measure the error with regards to the original hyperspectral scene
using RMSE. Table 1 indicates that the NRSPP provides the best overall results (lower RMSE values) across all

∗http://speclab.cr.usgs.gov/spectral-lib.htm
†http://www.umbc.edu/rssipl/people/aplaza/fractals.zip
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Figure 3. USGS library signatures (top) and fractional abundance distributions (bottom) considered for generating the
simulated hyperspectral scene labeled as “Fractal 1” in experiments.

Figure 4. Gaussian filtering of the synthetic hyperspectral image “Fractal 1” in Fig. 3

Table 1. RMSE scores measured after applying several endmember extraction algorithms to the “Fractals 1” synthetic
scene in Fig. 3.

Algorithm SNR=30:1 SNR=50:1 SNR=70:1 SNR=90:1 SNR=110:1
OSP 0.3469 0.0372 0.0084 0.0066 0.0063
SPP+OSP 0.3498 0.0423 0.0149 0.0132 0.0132
RBSPP+OSP 0.3469 0.0372 0.0087 0.0070 0.0059
NRSPP+OSP 0.3464 0.0363 0.0068 0.0050 0.0047
AMEE 0.4767 0.3294 0.3190 0.3187 0.3187
SSEE 0.3472 0.0439 0.0075 0.0282 0.0090
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(a) Δ1 = RMSE(X, X1) (b) Δ2 = RMSE(X, X2) (c) Δ3 = RMSE(X, X3)

(d) SNR=30:1 (e) SNR=50:1 (f) SNR=70:1 (g) SNR=90:1 (h) SNR=110:1

(i) Clustering (j) α = 50 (k) α = 60 (l) α = 70 (m) α = 80 (n) α = 90

Figure 5. (a-c) Outcome of calculating the RMSE between the original synthetic image and the images obtained after
Gaussian filtering in Fig. 4. (d-h) Spatial homogeneity scores for different SNR values. (i) Spectral clustering of the
image with SNR=70:1. (j-n) Regions obtained after fusing (f) and (i) considering different values of α.

tested methods, regardless of the considered SNR in the simulation. This is due to the fact that the endmembers
extracted by this method are more spatially representative, thus leading to better unmixing accuracy and lower
per-pixel reconstruction errors.

5. EXPERIMENTS WITH REAL DATA

In this experiment we use the well-known AVIRIS Cuprite data set, available online in reflectance units‡ after
atmospheric correction. This scene has been widely used to validate the performance of endmember extraction
algorithms. The portion used in experiments corresponds to a 350 × 350-pixel subset of the sector labeled as
f970619t01p02 r02 sc03.a.rfl in the online data. The scene comprises 224 spectral bands between 0.4 and 2.5
μm, with full width at half maximum of 10 nm and spatial resolution of 20 meters per pixel. Prior to the
analysis, several bands were removed due to water absorption and low SNR in those bands, leaving a total of 192
reflectance channels to be used in the experiments. The Cuprite site is well understood mineralogically,24 and
has several exposed minerals of interest included in the USGS spectral library. A few selected spectra from the
USGS library, corresponding to highly representative minerals in the Cuprite mining district, are used in this
work to substantiate endmember signature purity.

Fig. 6 shows the error maps obtained after reconstructing the AVIRIS Cuprite scene using p = 19 endmembers
extracted by different methods (this value of p was estimated using a consensus between the VD and HySime
concepts). The parameters of all tested methods were optimized empirically and we only report the best results
obtained. For instance, in the NRSPP the optimal values were α = 70 and σ was set to the same values used
in Fig. 4 for the synthetic image experiments. Fig. 6 reveals that the application of NRSPP as preprocessing
results in more robust reconstruction results than those found by using other methods due to the improved
spatial representativeness of the derived endmembers and to the better characterization of noise, which results
in lower per-pixel reconstruction errors when compared to other methods.

6. CONCLUSIONS AND FUTURE RESEARCH

The incorporation of spatial information in hyperspectral unmixing is a desirable goal which can better model
spectral variability observed in natural scenes. In this paper, we have developed a noise-robust spatial-spectral

‡http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Figure 6. Errors measured for various endmember extraction algorithms after reconstructing the AVIRIS Cuprite scene.

preprocessing method which can be used prior to endmember extraction and spectral unmixing of remotely
sensed hyperspectral images. It considers spatial and spectral information simultaneously and fuses both sources
of information at the preprocessing level. The proposed method shows some advantages over other existing
approaches, in particular, when the noise level in the hyperspectral data is relatively high. Additional experiments
exploring the combined use of prescreening methods to filter out mixed pixels prior to applying the proposed
method will be conducted in future research, as well as tests with more endmember extraction algorithms and
hyperspectral scenes.
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