
GPU IMPLEMENTATION OF SPATIAL PREPROCESSING FOR SPECTRAL UNMIXING OF
HYPERSPECTRAL DATA

Jaime Delgado*, Gabriel Martin**, Javier Plaza*, Luis Ignacio Jimenez* and Antonio Plaza*

*Hyperspectral Computing Laboratory, University of Extremadura, Caceres, Spain.
**Instituto de Telecomunicações, Av Rovisco Pais 1, 1049-001, Lisbon, Portugal.

ABSTRACT

The integration of spatial information into spectral unmixing
process has attracted much attention in recent years. Several
approaches have been developed to incorporate spatial con-
siderations into the endmember extraction/estimation proce-
dure. Spatial preprocessing algorithms are one of the most
commonly adopted techniques to guide endmember identifi-
cation algorithms in terms of the spatial characteristics of the
hyperspectral data. Particularly, spatial preprocessing algo-
rithm (SPP) consists on a preprocessing technique that can
be used prior to most of existing spectral-based endmember
extraction process, thus promoting the selection of endmem-
bers from the most spatially homogeneous regions of the data
set. This paper presents a parallel implementation of SPP al-
gorithm which is tested over two different graphic processing
units (GPUs) architectures: NVidiaTMGeForce GTX 580 and
NVidiaTMGeForce GTX 870M. Experimental validation us-
ing a hyperspectral data set collected by AVIRIS sensor shows
that it is possible to achieve real-time performance.

Index Terms— Hyperspectral imaging, Spectral unmix-
ing, Spatial preprocessing, GPU

1. INTRODUCTION

Spectral unmixing amounts at estimating the abundance of
pure spectral signatures (called endmembers) in each mixed
pixel of a hyperspectral image, where mixed pixels arise due
to insufficient spatial resolution and other phenomena [1]. A
challenging problem is how to automatically identify end-
members, as the presence of mixed pixels generally prevents
the localization of pure spectral signatures in transition ar-
eas between different land-cover classes. A possible strategy
to address this problem is to guide the endmember identifi-
cation process to spatially homogeneous areas, expected to
contain the purest signatures available in the scene [2, 3]. For
this purpose, several spatial preprocessing methods have been
used prior to endmember identification [4, 5, 6]. For instance,

This work was supported by the Portuguese Science and Tech-
nology Foundation under Projects: UID/EEA/50008/2013 and
SFRH/BPD/94160/2013.

the spatial preprocessing (SPP) [4] introduces the spatial in-
formation in the endmember extraction process, so that the
preprocessing can be combined with classic methods for end-
member extraction. In this way, the endmembers can be ob-
tained based on spatial and spectral features. However the
inclusion of SPP in the unmixing chain increases the com-
putational cost, and the overall processing time for a given
scene [6]. In order to address this issue, several high per-
formance computing architectures have been proposed in or-
der to reduce the processing time of the hyperspectral linear
spectral unmixing chain [7]. For instance, graphics process-
ing units (GPUs) have been used in order to perform the lin-
ear spectral unmixing chain in real time [8, 9, 10]. However,
no spatial preprocessing techniques have been developed us-
ing high performance computing architectures as of yet. The
aim of this work is to develop several implementations of the
SPP algorithm using GPUs to drastically reduce its process-
ing time. The proposed implementation achieves real-time
performance.

2. SPATIAL PREPROCESSING (SPP)

The main idea behind the SPP framework is to estimate,
for each input pixel vector, a scalar factor ρ which is inti-
mately related to the spatial similarity between the pixel and
its spatial neighbors, and then use this scalar factor to spa-
tially weight the spectral information associated to the pixel
[4]. Let yi,j represents the pixel in spatial coordinates i, j.
With this notation in mind, the scalar factor is calculated as
follows:

α(i, j) =
i+d∑

r=i−d

j+d∑
s=j−d

β[r − i, s− j] · γ[yi,j ,yr,s], (1)

where yi,j is the pixel at spatial coordinates i, j for which
we are calculating the scalar factor, and yr,s are the spatial
neighbours. Here d represents half of the window size, so
that the window size ws = 2 ·d+1. The γ function computes
the spectral angle between the pixel and the neighbours and
finally the β function computes a weight factor basing on the
distance between the pixel and the neighbour. The spectral

5043978-1-4799-7929-5/15/$31.00 ©2015 IEEE IGARSS 2015

angle is computed as follows:

γ[yi,j ,yr,s] = arccos
< yi,j ,yr,s >

||yi,j || · ||yr,s||
, (2)

where < ·, · > denotes the dot product between two vectors
and ||· || denotes de euclidean norm of a vector. As we can see
in (3) the closest neighbours are given more relevance. Also
the β function is normalized to sum to one as follows:

β(a, b) ∝ 1

a2 + b2
(3)

Once the scalar factor has been computed, every pixel is dis-
placed to the simplex centroid depending on the scalar factor.
Expressions (4) and (5) shows how to displace the image pix-
els depending on the scalar factor.

ρ(i, j) = (1 + 2
√
α(i, j))2 (4)

yi,j
′ =

1

ρ(i, j)
(yij − c) + c (5)

Here, c is the simplex centroid, computed as the average of all
the image pixels. yi,j

′ is the new displaced pixel and yi,j is
the original pixel at the coordinates i, j. Finally, nl and nc are
the number of lines and columns of the image, respectively.

3. GPU ARCHITECTURE

The architecture of a GPU can be seen as a set of multipro-
cessors (MPs). Each multiprocessor is characterized by a sin-
gle instruction multiple data (SIMD) architecture, i.e., in each
clock cycle each processor executes the same instruction but
operating on multiple data streams. Each processor has access
to a local shared memory and also to local cache memories in
the multiprocessor, while the multiprocessors have access to
the global GPU (device) memory. We can see a representa-
tion of the GPU physical model in Fig. 1. Unsurprisingly, the
programming model for these devices is similar to the archi-
tecture lying underneath. GPUs can be abstracted in terms of
a stream model, under which all data sets are represented as
streams (i.e., ordered data sets). Algorithms are constructed
by chaining socalled kernels which operate on entire streams
and which are executed by a multiprocessor, taking one or
more streams as inputs and producing one or more streams as
outputs. Thereby, data-level parallelism is exposed to hard-
ware, and kernels can be concurrently applied without any
sort of synchronization. The kernels can perform a kind of
batch processing arranged in the form of a grid of blocks,
where each block is composed by a group of threads that share
data efficiently through the shared local memory and synchro-
nize their execution for coordinating accesses to memory. We
can see a representation of the GPU logical model in Fig. 2

Fig. 1. Physical model of the GPU architecture.

Fig. 2. Logial model of the CUDA GPU architecture.

5044

4. GPU IMPLEMENTATIONS

In this section we describe the parallel implementations of
SPP in the GPU. The parallel implementation of the algorithm
is divided in four main kernels:

1. The first kernel computes the centroid of the simplex
c. Here the number of blocks is equal to the number
of bands and each block computes the average of each
band using a reduction kernel.

2. The second kernel computes the euclidean norms of
each image pixel that will be used to compute the γ
function in (1). Here the number of threads T is set to
the maximum value supported by the GPU. Each thread
will compute the euclidean norm of a vector so the
number of blocks B will be the number of image pixels
divided by the number of threads: B = �(nl · nc)/T �.

3. The third kernel computes the similarity factor α(i, j)
for each pixel as given by the expression (1). In this
kernel there are as many blocks as pixels: B = nl ·
nc, and there are as many threads as the window size:
T = ws2 = (2d+ 1)

2. In this kernel each thread
will compute the dot product between the central and
the corresponding neighbour pixel in the window <
yi,j ,yr,s >, then computes γ[yi,j ,yr,s] as in (2). Af-
ter that the kernel weights this value using the β func-
tion (precomputed using the CPU). Finally the kernel
performs a reduction to sum all the values inside the
window, as a result the kernel obtains α(i, j).

4. The fourth kernel computes the displacement to the
centroid for each pixel as in (5). In this kernel each
thread will compute the displacement of one pixel.
The number of threads used is the maximum allowed
by the GPU and the number of blocks is the num-
ber of image pixels divided by the number of threads
B = �(nl · nc)/T �.

5. EXPERIMENTAL RESULTS

The hyperspectral image scene used for experiments in this
work was collected by the AVIRIS instrument, which was
flown by NASAs Jet Propulsion Laboratory over the World
Trade Center area in New York City on 16 September 2001,
just 5 days after the terrorist attacks that collapsed the two
main towers and other buildings in the WTC complex 1. The
full data set selected for experiments consists of 614 × 512
pixels, 224 spectral bands, and a total size of (approximately)
140 Mbytes. The spatial resolution is 1.7 m/pixel. The left-
most part of Fig. 3 shows a false color composite of the
data set selected for experiments using the 1.682, 1.107 and
655nm channels, displayed as red, green and blue, respec-
tively.

1http://speclab.cr.usgs.gov/wtc/

Fig. 3. False color composition of an AVIRIS hyperspectral
image collected by NASA’s Jet Propulsion Laboratory over
lower Manhattan on 16 September 2001 (left). Location of
termal hot spot fires in World Trade Center area(right).

The GPU implementation of P-SPP algorithm has been
tested on two different computers, the first one was a desk-
top computer with a GPU NVidiaTMGTX 580, which fea-
tures 512 processor cores operating at 1.54 GHz, with single
precision floating point performance of 1581.1 Gflops, total
dedicated memory of 1,536 MB, 2,004 MHz memory (with
384-bit GDDR5 interface) and memory bandwidth of 192.4
GB/s 2. The GPU is connected to an Intel core i7 920 CPU
at 2.67 GHz with eight cores, which uses a motherboard Asus
P6T7 WS SuperComputer. The second computer is a laptop
computer with a GPU NVidiaTMGTX 870M, which features
1344 processor cores operating at 967 MHz, with single pre-
cision floating point performance of 2599 Gflops, total dedi-
cated memory of 3072 MB, 5000 MHz memory (with 192-bit
GDDR5 interface) and memory bandwidth of 120 GB/s3. The
GPU is connected to an Intel i7-4710MQ at 3.5 GHz with four
cores.

It is important to emphasize that our GPU versions of P-
SPP provide exactly the same results as the serial version of
the SPP algorithm. Hence, the only difference between the se-
rial and parallel algorithms is the time they need to complete
their calculations. The serial algorithm was executed in one
of the available cores of the desktop computer, and the paral-
lel times were measured in the considered GPU platform. For
each experiment, 10 runs were performed and the mean val-
ues are reported (these times were always very similar, with
differences on the order of a few milliseconds only). Table I
summarizes the obtained results by the C implementation and
by the GPU implementation. An optimization has been con-
sidered for the CPU implementation, namely the inclusion of
the –O3 optimization flag in the compiler.

At this point, it should be noted that the cross-track line
scan time in AVIRIS, a push-broom instrument, is quite fast
[11] (8.3 ms to collect 512 full pixel vectors). This introduces

2http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-580
3http://www.geforce.com/hardware/notebook-gpus/geforce-gtx-870m

5045

Table 1. Mean execution times for the parallel and serial
implementations of the SPP algorithm after 10 Monte-Carlo
runs.

window size 3 5 7 9 11 13 15

SPP 7.86 18.63 38.87 77.72 141.80 211.27 286.97

P-SPP GTX580 0.69 0.71 0.78 0.87 1.06 1.32 1.62

Speedup 11.32 26.06 50.12 89.77 133.29 159.66 176.77

P-SPP GTX870M 0.98 1.03 1.06 1.29 1.60 2.07 2.47

Speedup 8.03 18.16 36.80 60.29 88.85 102.11 116.28

the need to process the considered scene (614 × 512 pixels
and 224 spectral bands) in <5.09s to fully achieve real-time
performance. As we can see in Table I, the execution times
for the P-SPP algorithm is in real time with both GPUs for
all the considered window sizes. The speedups increase when
the windows size increases, which is expected due to the fact
that the windows are processed in parallel and the bigger are
the windows more computations are performed in parallel. It
is important to note that in the best case the speedup is about
177 times faster than the normal version.

6. CONCLUSIONS

We have presented a GPU implementation of a spatial pre-
processing (SPP) algorithm for including spatial information
in spectral unmixing of hyperspectral data. The proposed im-
plementation is scalable and highly efficient, achieving real-
time results. Further work will be focused on embedding
the spatial preprocessing into a full hyperspectral unmixing
chain and the development of other implementations for the
full chain on hardware devices such as FPGAs or multi-GPU
systems.

7. REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Par-
ente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral
unmixing overview: Geometrical, statistical and sparse
regression-based approaches,” IEEE J. Sel. Topics Appl.
Earth Observations Remote Sens., vol. 5, no. 2, pp. 354–
379, 2012.

[2] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spa-
tial/spectral endmember extraction by multidimensional
morphological operations,” IEEE Trans. Geosci. Re-
mote Sens., vol. 40, pp. 2025–2041, 2002.

[3] D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris,
and J. Feng, “Integration of spatial–spectral information
for the improved extraction of endmembers,” Remote
Sens. Environ., vol. 110, no. 3, pp. 287–303, 2007.

[4] M. Zortea and A. Plaza, “Spatial preprocessing for end-
member extraction,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, pp. 2679–2693, 2009.

[5] G. Martin and A. Plaza, “Region-based spatial prepro-
cessing for endmember extraction and spectral unmix-
ing,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp.
745–749, 2011.

[6] G. Martin and A. Plaza., “Spatial-spectral preprocess-
ing prior to endmember identification and unmixing of
remotely sensed hyperspectral data,” IEEE J. Sel. Top-
ics Appl. Earth Observations Remote Sens., vol. 5, no.
2, pp. 380–395, 2012.

[7] Sergio Bernabe, Sergio Sanchez, Antonio Plaza, Se-
bastián López, Jón Atli Benediktsson, and Roberto
Sarmiento, “Hyperspectral unmixing on gpus and multi-
core processors: A comparison,” IEEE J. Sel. Topics
Appl. Earth Observations Remote Sens., vol. 6, no. 3,
pp. 1386–1398, 2013.

[8] S. Sanchez, A. Paz, G. Martin, and A. Plaza, “Paral-
lel unmixing of remotely sensed hyperspectral images
on commodity graphics processing units,” Concurrency
and Computation: Practice and Experience, vol. 23, no.
13, pp. 1538–1557, 2011.

[9] Sergio Sánchez, Rui Ramalho, Leonel Sousa, and An-
tonio Plaza, “Real-time implementation of remotely
sensed hyperspectral image unmixing on gpus,” Jour-
nal of Real-Time Image Processing, pp. 1–15, 2012.

[10] José MP Nascimento, José M Bioucas-Dias, Jose M Ro-
driguez Alves, Vı́tor Silva, and Antonio Plaza, “Parallel
hyperspectral unmixing on gpus,” IEEE Geosci. Remote
Sens. Lett., vol. 11, no. 3, pp. 666–670, 2013.

[11] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G.
Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust,
B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and Or-
lesa Williams, “Imaging spectroscopy and the airborne
visible/infrared imaging spectrometer (aviris),” Remote
Sens. Environ., vol. 65, pp. 227–248, 1998.

5046

