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Abstract

Remotely sensed hyperspectral imaging offers the possibility to collect hundreds
of images, at different wavelength channels, for the same area on the surface of the
Earth. Hyperspectral images are characterized by their large volume and dimensional-
ity, which makes their processing and storage difficult. As a result, several techniques
have been developed in previous years to perform hyperspectral image analysis on high
performance computing architectures. However, the application of cloud computing
techniques has not been as widespread. There are many potential advantages in ex-
ploiting cloud computing architectures for distributed hyperspectral image analysis. In
this paper, we present a cloud implementation (developed using Apache Spark) of the
popular K-means algorithm for unsupervised hyperspectral image clustering. The ex-
perimental results suggest that cloud architectures allow for the efficient distributed
processing of large hyperspectral image data sets.
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1 Introduction

Hyperspectral images comprise hundred of contiguous spectral bands, thus imposing sig-
nificant requirements in terms of storage and data processing. These requirements have
increased exponentially with the technological advances in satellite and airbone remote
sensing, leading to the creation of high-dimensional hyperspectral data repositories [1].

The availability of new hyperspectral missions is now generating a continuous stream
of multi/hyperspectral data, and this has introduced important challenges for scalable and
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efficient processing of hyperspectral data in the context of different applications [1]. For
instance, the NASA Jet Propulsion Laboratory’s Airbone Visible/Infrared Imaging Spec-
trometer (AVIRIS) [2] has a data collection rate of 2.5 MB/s (nearly 9 GB/hour). A similar
case is the space-borne Hyperion instrument [1], which collects almost 71.9 GB/hour (over
1.6 TB/day). Most of the satellite missions that will be soon in operation, such as the envi-
ronmental mapping and analysis program (EnMAP)1 present similar data collection ratios.
Hyperspectral data repositories are becoming increasingly massive and often distributed
among several geographic locations due to their volume, which makes hard to meet the
storage and computational requirements of large-scale hyperspectral data processing appli-
cations without resorting to distributed computing facilities.

In recent years, cloud computing platforms have been adopted for remotely sensed data
processing. The cloud is now a standard for distributed computing due to its advanced ca-
pabilities for internet-scale computing, service-oriented computing, and high-performance
computing. The use of cloud computing for the analysis of large hyperspectral data reposito-
ries can be considered a natural solution and an evolution of previously developed techniques
for other kinds of computing platforms [3]. However, there are few efforts in the recent lit-
erature oriented to the exploitation of cloud computing infrastructure for hyperspectral
imaging techniques in general, and for unsupervised clustering algorithms in particular.

Clustering can be defined as a segmentation process in which pixels are assigned into a
group that represents a specific land-cover class [4]. Themain advantage of clustering is that
there is no need for labeled samples which are common in supervised classification techniques
[5]. In this regard, clustering offers an unsupervised alternative that has been widely used
in various fields. However, clustering is also a very challenging task due to the large spectral
variability and complex spatial structures present in hyperspectral images. A widely used
family of clustering algorithms is represented by centroid-based clustering methods such
as K-means [4], which assumes that similar pixels always form clusters in feature space.
When applied to hyperspectral images, these methods can provide satisfactory results but
are hampered by their large computational complexity.

In this paper we explore the possibility of using a distributed framework for massive
hyperspectral image processing based on cloud computing. We use unsupervised clustering
as a case study, focusing on the K-means algorithm to demonstrate the applicability of
utilizing cloud computing technologies to efficiently perform distributed parallel processing
of hyperspectral data and accelerate computations.

The remainder of the paper is organized as follows. Section II presents the distributed
framework design that will be used in our implementation. Section III presents the K-
means algorithm and its distributed implementation. Section IV experimentally assesses
the proposed method in terms of both accuracy and computational performance. Finally,
section IV concludes with some remarks and hints at future research lines.

1http://www.enmap.org/
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2 Distributed framework design

In order to develop a distributed framework for implementing the K-means algorithm on
cloud computing architectures, two main issues need to be addressed: 1) the distributed
programming model and 2) the computing engine.

For distributed programming, we resort to the MapReduce model [3], taking full ad-
vantage of the high-performance capabilities provided by cloud computing architectures.
In this model, a task is processed by two distributed operations: map and reduce. The
datasets are organized as key/value pairs, and the map function processes a key/value pair
to generate a set of intermediate pairs, dividing a task into several independent subtasks
to be run in parallel. The reduce function is in charge of processing all intermediate values
associated with the same intermediate key, then collecting all the subtask results to gather
the result for the whole task.

Regarding the distributed computing engine, a first solution considered was Apache
Hadoop2 due to its reliability and scalability, as well as its completely open source nature.
However, Apache Hadoop only supports simple one-pass computations and is generally not
appropriate for iterative algorithms such as K-means. Apache Spark3 is a newly developed
computing engine for large-scale data processing on cloud computing architectures, which
implements a fault-tolerant abstraction for in-memory cluster computing, and provides fast
and general data processing on large distributed platforms. It not only supports simple one-
pass computations, but can also be extended to the case of multi-pass, iterative algorithms.

With the aforementioned issues inmind, the design of our distributed parallel framework
for hyperspectral data clustering using Apache Spark is graphically sketched in Fig. 1.

As shown by Fig. 1, the architecture has two main parts:

• The hardware zone: it contains the physical machines that support our virtual ma-
chines, which are created in the OpenStack4 platform, a cloud operating system that
controls large pools of compute, storage, and networking resources throughout a dat-
acenter, all managed through a dashboard that gives administrators control while
empowering their users to provision resources through a web interface.

• The platform zone: the Apache Spark framework in Fig. 1) is installed over a set of
Ubuntu Linux virtual machines, created by OpenStack. Our cluster has various types
of nodes. The K-means algorithm is designed using the MLib machine learning library
5, and the implementation is embedded into a joint Spark and OpenStack framework,
as illustrated graphically in Fig. 2. When we launch an instance of K-means, the
master node manages the resources of the cluster and the slaves (workers) perform

2http://hadoop.apache.org
3http://spark.apache.org/
4https://wiki.openstack.org/wiki/Main Page
5https://spark.apache.org/docs/latest/mllib-guide.html
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individual tasks on the data. The driver node divides the work into tasks, and the
master node coordinates the allocation of tasks with the idea that all the task will be
executed in the worker nodes by the executors, following the MapReduce model.

Figure 1: Integrated Apache Spark and Open-
Stack framework used for the implementation
of K-means.

Figure 2: Description of the Apache Spark
architecture used in our experiments.

3 The K-means clustering algorithm

K-means is one of the most widely used unsupervised algorithms to group data in a
specified number of clusters. The procedure begins with a set of data or observations,
X = [x1, x2, ..., xn], in Rd (so xi = [xi1, xi2, ..., xid], with i = 1, 2, ..., n), that needs to be
grouped into a number of clusters (k <= n). Iteratively, K-means calculates the centers of
the k groups, optimizing the error of each group as follows:

min
k∑

j=1

nk∑
i=1

‖ x
j
i − Cj , ‖

2 (1)

where ‖ xji −Cj ‖
2 is the distance between a data point xji of the cluster j (nk is the number

of observations within each cluster) and the cluster center Cj .
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The K-means algorithm strongly depends on the choice of the initial centers (K-means
can converge to a local minimum). So, a proper initialization will result in a final best
solution. In order to obtain a set of good initial cluster centers, several methods have been
proposed. One of them is the K-means++ method [6]. This algorithm obtains a set of k
initial centers which are generally very close to the final solution by the following five steps:

1. An initial point is chosen from the set of samples X = [x1, x2, ..., xn] by an uniform
random variable. This point c1, is the first center.

2. For each sample xi, the distance, D(x), between xi and the center, C1, is calculated.

3. Then, a new candidate to become center is randomly selected using the probability-

weighted distribution D(x)2∑
k

i=0 D(xi)2
.

4. Steps 2 and 3 are repeated until k initial centers have been selected.

5. Once the k initial centers have been chosen, we apply the standard K-means algorithm.

4 Parallel/distributed implementation of K-means

4.1 Distributed implementation on Apache Spark

Apache Spark implements a parallel version of the K-means++ method, called k-means||
[7] using the MapReduce model of computation. K-means|| is very similar to K-means++
with the difference that, instead of choosing a single point after calculating the probability
distribution of each of the points in the data set, several clusters are chosen at each iteration.
At the end of the parallel algorithm O(k log n) points are obtained, which are clustered in
k centers. This process is illustrated in Algorithm 1.

In order to use the K-means method in Apache Spark, the user must specify the fol-
lowing parameters: number of desired clusters, k; maximum number of iterations that the
algorithm can be executed, maxIterations; and number of times to execute the K-means
algorithm completely, runs6. The initializationMode indicates the type of initialization (if
completely random or with K-means|| method. Also, a set of initial centers can be intro-
duced using the initialModel option. Finally, the number of steps to be executed during the
K-means++ phase, initializationSteps, and a pre-defined error threshold for convergence,
ε, should also be specified.

6Since the K-means may not find the optimal overall solution, it is recommended to run it several times
to converge to a better final solution.
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Algorithm 1 K-means|| algorithm

1: procedure K-means||(k, l) � k → number of clusters, l → Θ(K)
2: C ← uniform rand(X)
3: ψ ← φX(C)
4: for O(logψ) do

5: C ′ ← x ∈ X with p(x) = l·D(x)2

φX(C) � Probability-weighted distribution

6: C ← C
⋃
C ′

7: end for
8: For x ∈ C, set wx to be the number of points in X

closer to x than any other point in C
9: Reclusted (C, k)

10: end procedure

4.2 Paralllel implementation on Scikit-Learn

Scikit is a Python Library for machine learning. This library contains its own k-means++
version, as an option of the kmeans class into the sklearn.cluster package, allowing the
parallel execution of K-means method with the parameter n jobs. The operation is quite
similar to Spark, since the usermust indicate the number of clusters, n clusters; the number
of iterations of one complete execution of the K-means algorithm, max iter; and the number
of times the k-means will run with different centers, n init7. Much like Apache Spark, Scikit
has the option to initialize the first set of centroids randomly, using k-means++ or through
an array of data, called init. Finally, we must indicate the tol or relative increment in the
results before declaring convergence, and the number of CPUs that will be used during the
execution, n jobs.

5 Experiments

5.1 Hyperspectral datasets

The images used in our experiment were collected by the Airborne Visible-Infrared Imaging
Spectrometer (AVIRIS) [2]. The well-known Indian Pines dataset was adquired in 1992
over an agricultural site composed of agricultural fields with regular geometry and with a
multiple crops:

1. The first scene has a size of 145x145 pixels, and it was collected over a mixed forest
and agriculture area. It has 220 spectral bands in the range from 400 to 2500 nm,
with spectral resolution of 10 nm, moderate spatial resolution of 20 nm, and 16 bits

7After iterating, the algorithm takes only the best solution reached.
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radiometric resolution. After an initial analysis, 8 bands have been removed due to
noise, ending up with a total of 212 bands. About half of the pixels in the image
(10366 of 21025) contain ground-truth information, which comes in the form of a
single label assignment having a total of 16 ground-truth classes.

2. The second scene has a much larger size of 2678x614 pixels. It was collected over
the same area, but spanning a much larger extent. It contains 220 spectral bands in
the range from 400 to 2500 nm, with spectral resolution of 10 nm, moderate spatial
resolution of 20 nm and 16 bits of radiometric resolution. The percentage of pixels
with ground truth information is 20.33% (334245 out of 1644292 pixels) and the total
number of classes is 58.

5.2 Experimental Configuration

The distributed environment in which we have tested our implementation is the one de-
scribed in section 2. As mentioned in that section, the cloud computing platform used for
experimental evaluation OpenStack. This software is a collection of Open Source technolo-
gies that provide a scalable deployment of a cloud computing environment. Our environment
is composed of Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz (8 cores), 16 GB RAM, Shared
storage, NetApp FAS3140.

The virtual nodes that we use over the hardware specified have two virtual CPUs, 4GB
of RAM and 40 GB hard disk each. In addition, we have developed a parallel version of
the algorithm for comparative purposes. This version has been implemented on a palt-
form with Intel(R) Core(TM) i7-4790 CPUs @ 3.60GHz (8 cores), 16 GB RAM, SanDisk
SDSSDA240G.

In our experiments, we used Java 1.8.0 92-b14, Ubuntu 14.04 x64 LTS as operating
system, Python 2.7.10, Scikit Learn 0.14.1 version and the newest (under-development)
Apache Spark 2.11.

5.3 Description of experiments

5.3.1 Single vs multiple cores

In a first experiment, we considered the small Indian Pines image and launched 50 executions
of the algorithm changing the number of cores between 1 and 4. In this test, we set the
tolerance threshold to 1e-15, we performed 10 iterations with different centroid seeds, and
used k-means++ to select initial cluster centers. The obtained results are summarized in
Table 1, which reports on the learning fit, the prediction accuracy, the clustering accuracy
and the reliability (average and standard deviation). As shown in this table, the values
remain constant as we increase the number of cores except the trainning of the model. The
fit time is reduced until 3 cores are used (see Fig. 3a). At that point, there is no difference
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to add more workers because the algorithm no longer is able to parallelize more information
and therefore the speedup remains constant.

To validate the results obtained from K-means++, we used a confusion matrix [8] which
is graphically represented in Fig. 3c. The confusion matrix indicates the agreement between
the ground-truth classes and the clusters identified in the process, which appears to indicate
a good fit between each ground-truth class and at least one of the identified clusters. Finally,
the clusters obtained by the K-means++ algorithm for the small Indian Pines image are
shown in Fig. 4. The figure shows the clusters with the background of the image removed
(i.e., those pixels that do not have associated ground-truth) and also without removing the
background.

Cores
AVG Std AVG Std AVG Std AVG Std
Fit Fit Predict Predict Accuracy Accuracy Reliability Reliability

1 3.1055 0.2826 0.0508 0.0010 0.5446 0.0019 0.4770 0.0058
2 2.1135 0.1846 0.0606 0.0028 0.5456 0.0029 0.4772 0.0067
3 1.7955 0.1387 0.0612 0.0028 0.5452 0.0022 0.4770 0.0059
4 1.6213 0.1282 0.0620 0.0037 0.5453 0.0017 0.4779 0.0054

Table 1: Summary of the execution of K-means in multiple cores with the small Indian
Pines image.

(a) Time to training (b) Time to clustering (c) Confusion matrix

Figure 3: Graphical representation of the time to train, time to clustering and the confusion
matrix obtained after applying the K-means algorithm to the small Indian Pines image

(a) Without background (b) With background

Figure 4: Clustering results obtained with the small Indian Pines image
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5.3.2 Single vs multiple nodes

In this experiment, we launch 50 executions with the large Indian Pines image changing
the number of slave nodes to 1, 2, 3 and 4. We select a tolerance threshold of 1e-15 and
10 run with different centroid seeds and using the k-means|| algorithm. Here, we use the
large Indian Pines data set. The results obtained are shown in Table 2. In the table, we
can observe how the values remain constant as we increase the number of nodes (except the
trainning model). The fit time is reduced exponentialy (see Fig. 5a). Moreover, to validate
the results obtained from K-Means, we show the confusion matrix for the large Indian Pines
image in Fig. 6a. The final clusters obtained by the algorithm are shown in Fig. 7.

Nodes
AVG Std AVG Std AVG Std AVG Std
Fit Fit Predict Predict Accuracy Accuracy Reliability Reliability

1 336.0076 4.5684 0.0000305 0.00000522 0.4118 0.0132 0.2547 0.0043
2 191.1449 3.0629 0.0000293 0.00000415 0.4107 0.0153 0.2543 0.0046
3 122.8018 2.8471 0.0000289 0.00000335 0.4149 0.0114 0.2542 0.0050
4 95.9846 3.2338 0.0000293 0.00000502 0.4127 0.0120 0.2536 0.0048

Table 2: Summary of the execution of K-means in multiple nodes with the large Indian
Pines image.

(a) Time to training (b) Time to clustering

Figure 5: Confusion matrix obtained after applying the K-means algorithm to the large
Indian Pines image.

Figure 6: Graphical representation of the time to train and time to clustering after applying
the K-means algorithm to the large Indian Pines image.
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Figure 7: Clustering results obtained with the large Indian Pines image.

5.4 Parallel vs distributed

Finally we compare the parallel and distributed implementations of K-means. Table 3
shows the timing average (in seconds) measured after the parallel/distributed execution of
K-means using both images and multiple cores/nodes. Figs. 8 and 9 respectively provide
a graphical representation of the times for fitting and predicting for the parallel and dis-
tributed version with both images. Finally, we show in Fig. 10 a graphical representation
of speedup evolution in all cases.

Image used small Indian Pines image large Indian Pines image
Cores Par Par Dist Dist Par Par Dist Dist

or nodes Fit Predict Fit Predict Fit Predict Fit Predict

1 3.1055 0.0508 8.4701 0.0000279 694.8973 1.7438 336.0076 0.0000305
2 2.1135 0.0606 5.7111 0.0000278 409.5856 2.0710 191.1449 0.0000293
3 1.7955 0.0612 5.7370 0.0000289 357.4873 1.9692 122.8018 0.0000289
4 1.6213 0.0620 5.7213 0.0000287 327.6066 1.9747 95.9846 0.0000293

Table 3: Timing average (in seconds) measured after the parallel/distributed execution of
K-means using both images and multiple cores/nodes (Par refers to the parallel version and
Dist refers to the distributed version).

(a) Fitting (b) Predicting

Figure 8: Graphical representation of the times for fitting and predicting with the small
Indian Pines image for the parallel and distributed implementation of K-means.
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(a) Fitting (b) Predicting

Figure 9: Graphical representation of the times for fitting and predicting with the large
Indian Pines image for the parallel and distributed implementation of K-means.

(a) Speedup (fitting) (b) Speedup (predicting)

Figure 10: Graphical representation of the speedup for fitting and predicting with the Indian
Pines images for the parallel and distributed implementation of K-means.

6 Conclusions and future lines

In this paper, we have discussed the possibility of exploiting cloud computing architectures
for hyperspectral image processing. As a case study, we have presented a cloud computing
implementation of the K-means algorithm on Spark platform. Clustering has the advan-
tage that it can be performed in unsupervised fashion. Our experimental results show the
effectiveness of the proposed distributed implementation, not only in terms of clustering ac-
curacy but also in terms of computational performance. As future work, we will implement
other algorithms for hyperspectral data processing.
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