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Abstract

Morphological building index (MBI) and morphological shadow index (MSI) are re-
cently developed techniques that aim at automatically detect buildings/shadows using
high resolution remotely sensed imagery. Traditional mathematical morphology oper-
ations are usually time-consuming as they are based in the consideration of a wide
range of image-object properties such as brightness, contrast, shapes, sizes and in the
application of series of repeated transformations (e.g. classical opening and closing op-
erators). In the case of MBI and MSI, the computational complexity is also increased
due to the use of multiscale and multidirectional morphological operators. In this pa-
per, we provide a computationally efficient implementation of MBI and MSI algorithms
which is specifically developed for commodity graphic processing units (GPUs) using
Nvidia CUDA. We perform the evaluation of the parallel version of the algorithms us-
ing two different NVidia architectures and three widely used hyperspectral datasets.
Experimental results show that the computational burden introduced when consider-
ing multidirectional morphological operators can be almost completely removed by the
developed implementations.

Key words: mathematical morphology, high resolution, remotely sensed imagery,
graphic processing units (GPUs).

1 Introduction

The efficient and precise location/identification of buildings is an increasingly important
task for a great part of the most developed countries of the world, as it provides crucial
information for population estimation and territorial planning [1]. This is possible due to the
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availability of high-resolution Earth Observation (EO) instruments that now provide almost
complete spatial information about the surface of the Earth that can be efficiently used to
complement available spectral information [2]. This allows for an increase in the separability
of spectrally similar classes. With this purpose, several sophisticated (supervised or semi-
supervised) segmentation techniques have been developed for building extraction [3, 4, 5].

Recently, most efforts have been focused on the generation of a feature index that can
be applied to building detection without the need for training data or complex segmentation
processes. The morphological building/shadow index has been recently proposed with this
aim [6]. The main idea of MBI is to relate the implicit characteristics of buildings (e.g.
brightness, size and contrast) with morphological operators (e.g. top-hat reconstruction,
granulometry and directionality).

As mentioned before, while integrated spatial/spectral developments hold great promise
for Earth science image analysis, they clearly introduce new processing challenges that,
combined with the complex and large size of EO datasets, limits the possibility of utilizing
those algorithms in time-critical applications [7, 8]. Particularly, the use of multiscale and
multidirectional morphological operators introduces a significant computational burden in
MBI algorithm [9] which can be alleviated if parallel implementations are developed.

Even though EO data processing algorithms map nicely to clusters and heterogeneous
networks [10, 11], these systems are generally expensive and difficult to adapt to on-board
data processing scenarios, in which low-weight and low-power integrated components are
essential to reduce mission payload where field programmable gate arrays (FPGAs) and
graphic processing units (GPUs) can further provide a response in (near) real time, which
is believed to be acceptable in many remote sensing applications [12]. In this paper we
present the first GPU-based parallel implementation of the MBI/MSI algorithm for EO
data exploitation using the NVidia CUDA framework.

The remainder of the paper is organized as follows. Section II describes the original
implementation of MBI and MSI algorithms and our proposed C implementation (optimized
for memory usage). Section III briefly introduces GPU architectures and the NVidia CUDA
framework, and further describes the newly proposed GPU implementation for MBI and
MSI algorithms. Section IV evaluates the proposed GPU implementations in terms of
building/shadow detection accuracy and computational performance. Section V concludes
this paper with some remarks and hints at plausible future research lines.

2 Morphological Building/Shadow Index

Morphological building/shadow index is based on the construction of a relationship between
the implicit characteristics of buildings (e.g. brightness, size and contrast) with morpholog-
ical operators (e.g. top-hat reconstruction, granulometry and directionality). Some of the
basics of this relationship are introduced below.
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• Brightness. We can define the brightness of a pixel as the maximum value of the
pixel at all the contained spectral bands. Building areas are characterized by high
brightness scores while shadow areas brightness should be smaller due to their low
spectral reflectance. White/black top-hat transformation will be used to point out
bright/dark structures with a determined size in order to identify buildings/shadows.

• Contrast. Building areas are generally characterized by their high contrast, due to
the difference between the spectral reflectance values of roof and spatially adjacent
shadows. The case of shadows is exactly the opposite (high contrast between shadows
and the neighboring areas) The MBI algorithm is able to characterize the local contrast
of buildings extracting the differential morphological profiles (DMP) of the white top-
hat transformed data. MSI algorithm relies on the extraction of the DMP over the
black top-hat transformed data.

• Shape. The most widely adopted shape descriptor for building areas is the rectangle.
Therefore, the length-width ratio can be used to filter out structures with similar
spectral response.

• Size and directionality. In order to assist with the removal of spectrally similar struc-
tures, a series of linear structuring elements (SEs), designed to measure the size and
directionality of structures, is implemented in both MBI and MSI.

Based on the above concepts, we can describe the steps of the MBI algorithm as follows
(the main differences betwee MSI and MBI are also highlighted):

1. Calculation of the brightness. Using all the spectral bands of the considered image,
we select the brightest component of each pixel as follows:

b(x) = max
1<=k<=K

bandk(x), (1)

where x is the pixel, K is the number of components of the pixel’s spectral signature,
and bandk(x) is the pixel value in the k -th band.

2. The white top-hat by reconstruction for MBI and the black top-hat by reconstruction
for MSI (2). White top-hat is then computed to highlight bright structures:

W − TH(d, s) = b− γreb (d, s), (2)

while the black top-hat aims at highlighting dark structures:

B − TH(d, s) = ϕre
b (d, s)− b, (3)

where γreb represents the opening by reconstruction, ϕre
b represents the closing by

reconstruction, and d denotes the size and directionality of the linear SE.
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3. The morphological profiles (MPs) of the white top-hat are now defined as:{
MPW−TH(d, s) = W − TH(d, s)
MPW−TH(d, 0) = b

(4)

4. To complete the calculation of the MBI and MSI we need to define the differential
morphological profiles (DMP) as:

DMPW−TH(d, s) = |MPW−TH(d, s+Δs)−MPW−TH(d, s)|, (5)

DMPB−TH(d, s) = |MPB−TH(d, s+Δs)−MPB−TH(d, s)|, (6)

where Δs is the interval of the profiles between and smin <= s <= smax.

5. The MBI and MSI are defined as the average of the DMP of the white top-hat and
the black top-hat, respectively:

MBI =

∑
DMPW−TH(d, s)

D ∗ S , (7)

MSI =

∑
DMPB−TH(d, s)

D ∗ S , (8)

where D is the number of the directions applied to the linear SE and S = ((smax −
smin)/Δs) + 1. Buildinds and shadows are respectively represented by larger values
in each index.

Algorithm 1 provides a pseudode description of the original MBI/MSI algorithm im-
plemented in Matlab. When calculating the black top-hat and white top-hat, it should be
noticed that opening and closing by reconstruction morphological operations are comple-
mentary.

For the C version we introduce some changes in order to optimize the code to the new
language (specially focusing on the memory management). In the Matlab version, iteration
t partially repeats operations from the previous iteration (t− 1) oriented to the white top-
hat and black top-hat creation, while in the C implementation, we preserve the operations
already executed in previous iterations due to the absence of memory restrictions. Besides,
we eliminate the creation of the linear SE by applying the direction of it to the erosion
morphological operator. The resulting pseudocode of the C implementation is provded in
Algorithms 2 and 3. Using this latest version as a reference, we have developed a CUDA
version that implements each step as a CUDA kernel. This version is described in the
following section.
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Algorithm 1 Pseudocode of Morphologic Building Index and Morphologic Shadow
Index in Matlab code

image = ReadImage
img = CalculationBrightest/DarkestScene(image)
for s = smin:Δs:smax

for dir = 1 :1 :D
se = CreateStructureElement(dir)
a = W-TH(se,s,img) / B-TH(se,s,imgC )
b = W-TH(se,s+Δs,img) / B-TH(se,s+Δs,imgC )
DMP(dir) = b - a

end
end
DMP = DMP/(D*S)
MBI/MSI =

∑
DMP(dir)

Scale(MBI,0,1)

3 Parallel Implementation

GPUs can be understood in terms of a stream model, under which all data sets are repre-
sented as streams (i.e., ordered data sets), and each of them is processed by a multiprocessor,
which means that a GPU also can be seen as a set of multiprocessors (MPs). Each multi-
processor is characterized by a single instruction multiple data (SIMD) architecture. Each
processor has access to a local shared memory and also to local cache memories in the
multiprocessor, while the multiprocessors have access to the global GPU (device)memory.
Algorithms are constructed by chaining so-called kernels which operate on entire streams
and are executed by a multiprocessor, taking one or more streams as inputs and producing
one or more streams as outputs. The kernels can perform a kind of batch processing ar-
ranged in the form of a grid of blocks, where each block is composed by several threads which
share data efficiently through the shared local memory and synchronize their execution for
coordinating accesses to memory. As a result, there are different levels of memory in the
GPU for the thread, block and grid concepts. There is also a maximum number of threads
that a block can contain but the number of threads that can be concurrently executed is
much larger (several blocks executed by the same kernel can be managed concurrently, at
the expense of reducing the cooperation between threads since the threads in different blocks
of the same grid cannot synchronize with the other threads). Our GPU implementation of
MBI is based in the following kernels.

BrightnessImage: this kernel implements the first step of MBI and MSI algorithm,
where the brightness is calculated according to equation 1. In the case of MSI, a final
step to complement the returned structure is performed. The number of threads is set to
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Algorithm 2 Pseudocode of Morphologic Building Index in C code

image = ReadImage
img = CalculationBrightestScene(image)
for s = smin:Δs:smax

for dir = 1 :1 :D
erode=Erosion(dir, img)
recon=Reconstruction(erode,img)
wth1(dir) = img - recon
if(s != smin)

DMPWTH(dir) += (wth2(dir)-wth1(dir))
else

DMPWTH(dir) = 0
wth2(dir) = wth1(dir)

end
end
MBI =

∑
DMPWTH(dir)

Scale(MBI,0,1)

the maximum allowed by the device and the number of blocks equals the number of pixels
divided by the number of threads.

ErodeOperator : the morphological erosion operator is implemented using different ker-
nels depending on the direction of the linear SE being applied. The original work explains
that the number of directions is set to four (NE, N, NW and W) because changing to an
eight-connected neighborhood resulted in a similar outcome with a significant computational
time increase. As result, one kernel computes the erosion for the four directions storing the
erode images consecutively in memory. This kernel uses a two-dimensional grid setting the
x-dimension to the number of lines and the y-dimension to the number of samples both
divided by the block size for each dimension, which is the same making a square block of
size 32.

Reconstruction: this step performs the morphological reconstruction using two kernels
that performs the raster scan (x forward) and the antiraster scan (x backward) of the four
directions erode images; x forward finds the maximum value within the NE, N, NW, W
neighbors and the origin pixel from the top-left to the bottom-right of the image; and
x backward computes the maximum value within the E, SE, S, SW neighbors and the origin
pixel from the bottom-right to the top-left of the image. The same way as the erosion
kernel, the reconstruction is performed for the four directions considered in the same call.
Both kernels set the number of block to the number of samples divided by a number of
threads empirically set to 32, in order to maintain a balance between blocks and threads.
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Algorithm 3 Pseudocode of Morphologic Shadow Index in C code

image = ReadImage
img = CalculationDarkestScene(image)
for s = smin:Δs:smax

for dir = 1 :1 :D
erode=Erosion(dir, img)
recon=Reconstruction(erode,img)
wth1(dir) = recon - img
if(s != smin)

DMPWTH(dir) += (wth2(dir)-wth1(dir))
else

DMPWTH(dir) = 0
wth2(dir) = wth1(dir)

end
end
MBI =

∑
DMPWTH(dir)

Scale(MSI,0,1)

Substraction: this stage computes, in one kernel called substract, the difference between
consecutive iterations reconstructed images, acumulating the results to perform the aver-
age in a subsequent step. Once the iterave process is finished, other kernel performs the
averaging of the results based in the number of iterations between the minimum,smin, and
maximum, smax, structure size values used.

4 Experimental validation

4.1 Hyperspectral data and hardware architectures

Our experiments have been carried out using three different hyperspectral images. The first
considered hyperspectral image is the well-known Pavia University hyperspectral dataset
(Figure 1a), acquired by the ROSIS optical sensor during a flight campaign over the urban
area of the University of Pavia, Pavia, Italy. The original Pavia University dataset consists
on 610 × 340pixels, with high spatial resolution of 1.3 m per pixel. The number of data
channels in the acquired image is 103 (with the spectral range from 0.43 to 0.86 μm). Nine
thematic land-cover classes are available, from which we select metal sheets, self-blocking
bricks and bitumen to generate the class building (see Figure 1b). In addition, a shadow
class is also provided in the ground-truth information (see Figure 1c).

The second hyperspectral dataset used was acquired by the NSF-funded Center for Air-
borne Laser Mapping (NCALM) over the University of Houston campus and its neighboring
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(a) Pavia University image (b) Building ground-truth (c) Shadow ground-truth

Figure 1: Pavia University hyperspectral dataset. (a) False color composition of the Pavia
University image. (b) Reference spatial distribution of the buildings. (c) Reference spatial
distribution of the shadow class.

area. This hyperspectral data has 144 spectral bands in the 380-1050 nm spectral region
and spatial resolution of 2.5 m. The image size in pixels is 349 × 1905. Figure 2a shows
a false color composite of the image. Ground-truth information is available as 15 different
land-cover classes. The building groud-truth has been generated by the fusion of residential
and commercial original land-cover classes.

The last hyperspectral image scene used for experiments in this work was collected by
the AVIRIS sensor, which was flown by NASAs Jet Propulsion Laboratory over the World
Trade Center area in New York City on 16 September 2001, just 5 days after the terrorist
attacks that collapsed the two main towers and other buildings in the WTC complex.
The selected subset consists of 500 × 1600pixels, 224 spectral bands, and a total size of
(approximately). The spatial resolution is 1.7 m/pixel. Extensive reference information,
collected by U.S. Geological Survey (USGS), is available for the WTC scene.

We have used two different computer architectures for the experimental validation of
the proposed approaches: a compute cluster with 44 NVidia TESLA S2070 GPU nodes (2
M2075 per node), each with an Intel Xeon CPU E5645 at 2.40 GHz and a total of 24 GB
of RAM, divided in 12 modules of 2 GB each (hereinafter Architecture 1) and a desktop
computer (Intel i7 920 CPU at 2.67 GHz and 6 GB of RAM) with an NVidia GTX 580 GPU
equipped with 512 processor cores operating at 1.54 GHz and 1536 MB of RAM memory
(hereinafter Architecture 2).

1http://www.ceta-ciemat.es
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(a) Houston campus image

(b) Building ground-truth

Figure 2: Houston campus hyperspectral dataset. (a) False color composition of the Houston
campus image. (b) Reference spatial distribution of the buildings.

(a) World Trade Center image

(b) Building Index

(c) Shadow Index

Figure 3: False color composition of the World Trade Center hyperspectral dataset acquired
by the AVIRIS instrument.
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4.2 Analysis of algorithm precision

In this section we will focus on analyzing the parallel MBI and MSI implementations using
the two datasets with groud-truth information about building and shadows. Particularly,
Table 1 shows results based on the generation of a binary image applying different threshold
values (th1 = 1/255, th2 = 50/255, th3 = 100/255, th4 = 150/255 and th5 = 200/255) over
the MBI and MSI estimation images over Pavia University and Houston datasets (we remove
all the pixels with a value below the thereshold, considering the range of 0 to 255 based
on the original RGB algorithms scale). Then, we calculate the MBI/MSI values (being 100
the best case and 0 the worst) by comparing the each thresholded image with the ground-
truth. It can be seen that the results obtained by the CPU and GPU implementations
are almost the same (the slight differences are due to the removal of the queue structure,
which seems to benefit the parallel implementations). It should be noticed that no ground-
truth information is available for the shadow class in the Houston dataset and, therefore,
no precision results can be shown for this particular case.

Pavia Univ. (610× 340) Houston Univ. (349× 1905)

Algorithm Implementation th1 th2 th3 th4 th5 th1 th2 th3 th4 th5

MBI
CPU 100 18,79 10,68 2.61 0 100 5.85 4.10 1.31 0
GPU 100 18,24 10,45 2,84 0 100 6,68 4.57 1,79 0

MSI
CPU 100 97.36 47.94 19.64 3.69 – – – – –
GPU 100 97,99 50,05 18,80 6.44 – – – – –

Table 1: Mean execution time (in seconds) for the CPU and GPU implementations along
with the obtained speedup after 10 Monte-Carlo runs over each of the considered architec-
tures over the two processed hyperspectral datasets with available groundtruth.

4.3 Analysis of parallel performance

Table 2 shows the obtained speedups in the two considered architectures for the three
selected scenes. The results obtained by the Architecture 2 are better due to the fact
that the NVidia TESLA S2070 includes error checking and correction (NVidia GTX 580
does not include this characteristic) that guarantees more stable results at the expense of
a slightly reduced performance. The time taken by data transfers between the CPU and
the GPU is included in the execution times. As it can be seen, speedups around ×5 can be
achieved when considering the two large datasets. It is important to emphasize that parallel
implementation is able to overlap the processing of the four considered directions, thus
providing a significant performance improvement with regards to the serial implementation.
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Pavia Univ. (610× 340) Houston Univ. (349× 1905) WTC (500× 1600)

Hardware CPU time GPU time Speedup CPU time GPU time Speedup CPU time GPU time Speedup

MBI
Architec. 1 0.794 0.508 x1.563 2.735 0.608 x4.498 3.850 0.886 x4.345
Architec. 2 0.695 0.426 x1.632 2.575 0.496 x5.188 3.537 0.708 x4.995

MSI
Architec. 1 0.809 0.503 x1.608 2.792 0.605 x4.615 3.920 0.892 x4.395
Architec. 2 0.699 0.427 x1.639 2.625 0.494 x5.314 3.556 0.704 x5.050

Table 2: Mean execution time (in seconds) for the CPU and GPU implementations of
MBI and MSI along with the obtained speedup after 10 Monte-Carlo runs over each of the
considered architectures over the three considered hyperspectral datasets.

5 Conclusions and future reserch lines

In this paper we have presented a GPU implementation of MBI/MSI algorithms for build-
ing/shadow detection in high resolution remote sensing images. The implementation are
based in optimized implementations developed in C, which reduce the amount of mem-
ory required. In addition, an efficient raster image processing scheme is implemented on
the GPU. As a result, we achieve independence between the execution time of the paral-
lel implementation and the number of considered directions when applying the MBI/MSI
multidirectional morphological operators. In our experiments, four different directions have
being processed simultaneously in the GPU implementation, achieving speedups over ×5
for some of the considered images. Future research lines will focus on improving both the
accuracy and the computational performance of the proposed approaches. We will also
explore the use of FPGAs as a specialized device with low power consumption and onboard
processing capabilities in order to accelerate the MBI/MSI algorithms.
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