
Proceedings of the 16th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2016
4–8 July, 2016.

Multi-core Implementation of Spatial-Spectral Preprocessing
for Hyperspectral Unmixing

Luis Ignacio Jiménez1, Sergio Bernabé2, Carlos Garćıa2, Javier Plaza1,
Gabriel Mart́ın3, Sergio Sánchez1 and Antonio Plaza1

1 Department of Computer Technology and Communications, University of Extremadura

2 Department of Computer Architecture and Automation, Complutense University of
Madrid

3 Instituto de Telecomunicacões, Lisbon

emails: luijimenez@unex.es, sebernab@ucm.es, garsanca@ucm.es, jplaza@unex.es,
gabriel.hernandez@lx.it.pt, sersanmar@unex.es, aplaza@unex.es

Abstract

Spectral unmixing pursues the identification of spectrally pure constituents, called
endmembers, and their corresponding abundances in each pixel of a hyperspectral im-
age. Most unmixing techniques have focused on the exploitation of spectral information
alone. Recently, some techniques have been developed to take advantage of the com-
plementary information provided by the spatial correlation of the pixels in the image.
Computational complexity represents a major problem in these spatial-spectral tech-
niques, as hyperspectral images contain very rich information in both the spatial and
the spectral domains. In this letter, we develop a computationally efficient implementa-
tion of a spatial-spectral processing (SSPP) algorithm that has been successfully applied
prior to spectral unmixing of hyperspectral data. Our implementation has been opti-
mized for multi-core processors, and is evaluated (using both synthetic and real data)
using an 2×Intel Xeon processor E5-2670 at 2.60GHz. Significant speedups can be
achieved when processing hyperspectral images of different sizes. This allows for the
inclusion of the proposed parallel preprocessing module in a full hyperspectral unmixing
chain able to operate in real time.

Key words: Hyperspectral unmixing, spatial-spectral preprocessing (SSPP), OpenMP,
multi-core processors.

c©CMMSE ISBN: 978-84-608-6082-2688

Multi-core Implementation of Spatial-Spectral Preprocessing

1 Introduction

In hyperspectral unmixing, endmember extraction is the process of collecting pure signature
spectra of the materials present in a remotely sensed hyperspectral scene. These pure
signatures are then used to decompose the scene into a set of so-called abundance fractions
representing the coverage of each endmember in each image pixel.

Several algorithms have been developed for automatic or semi-automatic identification
of endmembers over the last decade [1] which majority have been developed under the pure
pixel assumption, i.e., they assume that the remotely sensed data contain one pure obser-
vation for each different material in the scene [2]. Most of these algorithms rely exclusively
on the exploitation of spectral information in order to select the final set of endmembers.

In order to include also the spatial information, several spatial preprocessing algorithms
have been developed that can be applied prior to any spectral-based endmember extraction
technique. Techniques include the spatial preprocessing (SPP) [3], region-based spatial pre-
processing (RBSPP) [4], and spatial-spectral preprocessing (SSPP) [5]. The goal of these
preprocessing methods is to guide the search for endmembers using not only spectral but
also spatial information, which greatly assists in the selection of more spatially representa-
tive endmembers without the need to modify the endmember identification algorithm (the
preprocessing can be applied as an optional step). As consequence, the spatial prepro-
cessing increase the computational cost to the full spectral unmixing chainmaking efficient
implementations for spatial preprocessing techniques an important goal.

In this work, we present a new parallel implementation of the SSPP algorithm, which
has been shown as one of the most successful spatial preprocessing techniques available
in the literature [5]. Our implementation has been developed for multi-core architectures
where real and synthetic scenes are used to validate the efficacy of the implementation.

The remainder of this manuscript is organized as follows. Section 2 enumerates and
describes the different steps of the SSPP method. Section 3 describes the proposed parallel
implementation for multi-core processors. Section 4 describes the experiments conducted
using real and synthetic data sets intended to evaluate the acceleration achieved by our
parallel implementation. Section 5 concludes the paper with some remarks and hints at
plausible future research lines.

2 Spatial-Spectral Preprocessing

This section briefly outlines the SSPP algorithm in [5]. As shown in the flowchart given in
Fig. 1, the SSPP method consists of the following steps:

Multi-scale Gaussian filtering. This step takes as input the original hyperspectral im-
age Y and returns a filtered version of the image. To perform this step, we first ap-
ply Gaussian filtering to each of the B spectral bands of the hyperspectral image. This

c©CMMSE ISBN: 978-84-608-6082-2689

L.I. Jiménez, S. Bernabé, C. Garćıa, J. Plaza, G. Mart́ın, S. Sánchez, A. Plaza

Spectral purity index
calculation

Spectral Clustering
Multiscale Gaussian

filtering

Spatial homogeneity
calculation

Fusion of spatial and
spectral information

Figure 1: Block diagram illustrating the spatial-spectral preprocessing (SSPP) method.

c©CMMSE ISBN: 978-84-608-6082-2690

Multi-core Implementation of Spatial-Spectral Preprocessing

results in a filtered version YF of the original hyperspectral image. Let us denote by
y(i, j) = [y1(i, j), y2(i, j), · · · , yB(i, j)] the B-dimensional pixel vector at spatial coordinates
(i, j) of the hyperspectral image Y, which can now be defined as a set Y = {y(i, j)}i∈1,··· ,r.
Eq. (1) shows the pixel-level operation that we perform for each k-th spectral band of the
hyperspectral image, with 1 ≤ k ≤ B:

Fk[y(i, j)] =
r∑

i′=1

c∑
j′=1

G(i− i′, j − j′) · yk(i′, j′), with G(i′, j′) =
1

2πσ2
e−

i′2+j′2
2σ2 . (1)

Spatial homogeneity calculation. This step takes as input the filtered hyperspectral
image obtained in the previous step and produces a spatial homogeneity index for each
pixel in the original image Y. To perform this step, we first calculate the root mean square
error (RMSE) [6] between the original hyperspectral image and the filtered image. Eq.
(2) indicates the operation to calculate the RMSE between the pixel y(i, j) in the original
image and the pixel at the same spatial coordinates, yF (i, j), in the filtered image:

RMSE[y(i, j),yF (i, j)] =

(
1

B

B∑
k=1

(yk(i, j)− yFk
(i, j))2

) 1
2

. (2)

The lower the RMSE score, the higher the similarity between the pixel in the original
image and its neighbors. Quite opposite, the higher the RMSE, the lower the similarity of
the pixel in the original image with regards to its neighbours. As a result, the RMSE in Eq.
(2) can be used as a spatial homogeneity index for each pixel y(i, j) in the hyperspectral
image Y.

In the spectral purity index calculation step, we first use principal component analysis
(PCA) [7] to reduce the dimensionality of the hyperspectral image, retaining the first p
principal components (PCs) containing most of the variance in the data. Then, we use the
first PCs as the skewers for which we identify the pixels with maxima and minima projection
values, following a procedure similar to the one adopted by the pixel purity index (PPI)
algorithm in [8]. The pixels with maxima and minima projection values are assigned a
weight of 1. The weight of the mean value between the maxima and minima projection
value is 0. A threshold value is also applied so that the weights lower than this threshold
are assigned the value 0. Finally the spectral purity is calculated as the sum of all the
weights over the first p PCs.

In the spectral clustering, we perform a spectral-based unsupervised clustering of the
original hyperspectral image. This step, which is applied separately from the previous steps,
uses the K-Means algorithm [9] in order to identify p clusters in the hyperspectral image.

Fusion of spatial and spectral information is a step that takes as input the spatial
homogeneity index calculated in the second step and the clusters calculated in fourth step,

c©CMMSE ISBN: 978-84-608-6082-2691

L.I. Jiménez, S. Bernabé, C. Garćıa, J. Plaza, G. Mart́ın, S. Sánchez, A. Plaza

and returns a subset of candidate pixels in the original hyperspectral image which will
be used for endmember identification purposes. For each cluster, a subset of spatially
homogeneous and spectrally pure pixels is selected. To do so, pixels in each cluster are
ranked according to increasing values of their spatial homogeneity and spectral purity.

Finally, an endmember extraction algorithm can be applied to the pixels retained after
the procedure above. The outcome of the process is a set of p endmembers and their
corresponding fractional abundance maps (one per endmember).

3 Parallel Implementation

The parallel implementation of SSPP has been developed using OpenMP which is an API
used to explicity address multithreaded, shared-memory parallelism. In OpenMP the users
specify the region in the code that are suitable for parallel implementation using pragmas
and clauses supported in the gnu or Intel compilers. In the following, we briefly summarize
the main techniques used in the multi-core implementation of the considered algorithm:

1. Multi-scale Gaussian filtering. We have developed an optimization where the most
consuming part using the convolution of two 1-dimensional filters is the central part.
This optimization consists on declare a #pragma omp parallel for schedule (static, 32)
where the loop is divided into 32 equal-size chunks and also, an unrolling is developed
to vectorize this central part to calculate the gaussian filtering. We have empirically
tested that, if the size of the secene is largest, this value should be increased.

2. Spatial homogeneity calculation. The RMSE is required to calculate the spatial ho-
mogeneity index for each pixel in the data set. A reduction process for each pixel
is computed where #pragma omp simd is applied to vectorize the reduction whose
main loop is based on each spectral band. Finally, for each pixel we have used a
#pragma omp parallel for to divide the loop iterations between the spawned threads
and compute the square for each pixel in the scene.

3. Spectral purity index calculation. The PCA operation is required to calculate the
spectral purity index. First of all, we need to calculate the normalized image obtained
by substracting the average of all pixels in the scene to each pixel in the original image.
For this purpose, the reduction process is performed using the #pragma omp parallel
for private (mean), where mean is the average of all pixels in the scene and later. For
this calculation, #pragma omp simd is used to vectorize the loop. The same strategy
is applied to substract the mean value to each pixel in the data set. After that, mkl
and lapack are used to compute matrix multiplications to obatin the reduced image.

4. Spectral clustering and fusion of spatial and spectral information. For both steps,
we have not applied any parallel technique to accelerate the process because the

c©CMMSE ISBN: 978-84-608-6082-2692

Multi-core Implementation of Spatial-Spectral Preprocessing

processing time is lower.

4 Experimental validation

The experiments are carried out using a collection of 24 synthetic hyperspectral images
simulated with different sizes (10000 to 200000 pixels) and number of endmembers (10 to
30). The signatures are obtained from the USGS library and the scenes are generated using
the procedure described in [10] to simulate natural spatial patterns. These images comprise
224 narrow spectral bands between 0.4 to 2.5 μm. On the other hand, we have used the
well-known AVIRIS Cuprite scene, collected by the Airborne Visible Infra-Red Imaging
Specrometer (AVIRIS) in the summer of 1997 and available online in reflectance units after
atmospheric correction. The portion comprises a relatively large area (350 lines by 350
samples and 20-m pixels) and 224 spectral bands between 0.4 to 2.5 μm and a total size of
around 46 MB. Bands 1-3, 105-115, and 150-170 were removed prior to the analysis due to
water absorption and low SNR in those bands prior to the analysis.

In order to evalute the performance, the proposed multi-core implementation has been
tested on the following platform: 2×Intel Xeon processor E5-2670 with 8 cores each, at
2.60 GHz and 32 GB of DDR3 RAM memory. The Figs. 2 and 3 show the processing
times considering different number of endmembers and execution threads. As can be seen,
increasing the number of threads allows a better parallel performance and speedup respect
to our single-threaded optimized implementation. On the other hand, Fig. 4 shows the
execution times obtained for the AVIRIS Cuprite scene.

For illustrative purposes, Table 1 shows the timming results and speedups for each data
set used in the experiments. As shown in Table 1, our data sets could be processed with
significant speedup factor using the Intel Xeon, up to 3 times.

Table 1: Mean execution times (in seconds) and speedups (in the parentheses) for the best
multi-core setting using real and synthetic scenes with different sizes and endmembers.

Image 10 endmembers 20 endmembers 30 endmembers
100×100 - 8 threads 0.0697 (1.68) 0.0697 (1.68) 0.0704 (1.72)
200×100 - 8 threads 0.1136 (1.81) 0.1101 (1.81) 0.1120 (1.82)
300×100 - 8 threads 0.1576 (1.85) 0.1490 (1.93) 0.1483 (1.94)
400×100 - 8 threads 0.1805 (2.02) 0.1830 (1.89) 0.1801 (2.06)
100×500 - 8 threads 0.2112 (2.13) 0.2027 (2.12) 0.2034 (2.07)
200×100 - 8 threads 0.3649 (2.25) 0.3582 (2.22) 0.3591 (2.20)
300×100 - 8 threads 0.5104 (2.26) 0.5028 (2.18) 0.5115 (2.22))
400×100 - 8 threads 0.6494 (2.39) 0.6568 (2.38) 0.6729 (2.39)

AVIRIS Cuprite - threads 0.3579 (2.72) - 19 endmembers

c©CMMSE ISBN: 978-84-608-6082-2693

L.I. Jiménez, S. Bernabé, C. Garćıa, J. Plaza, G. Mart́ın, S. Sánchez, A. Plaza

(a) (b)

(c) (d)

Figure 2: Execution times (seconds) for the multi-core version of the SSPP algorithm,
considering different number of endmembers and sizes: (a) 100×100 pixels. (b) 200×100
pixels. (c) 300×100 pixels. (d) 400×100 pixels.

c©CMMSE ISBN: 978-84-608-6082-2694

Multi-core Implementation of Spatial-Spectral Preprocessing

(a) (b)

(c) (d)

Figure 3: Execution times (seconds) for the multi-core version of the SSPP algorithm,
considering different number of endmembers and sizes: (a) 100×500 pixels. (b) 200×500
pixels. (c) 300×500 pixels. (d) 400×500 pixels.

Figure 4: Execution times (seconds) for the multi-core version of the SSPP algorithm,
considering the AVIRIS Cuprite scene.

c©CMMSE ISBN: 978-84-608-6082-2695

L.I. Jiménez, S. Bernabé, C. Garćıa, J. Plaza, G. Mart́ın, S. Sánchez, A. Plaza

5 Conclusions

A multi-core implementation of the SSPP algorithm for spectral unmixing has been pro-
posed. The optimized version exploits different strategies using OpenMP: vectorization and
shared memory between threads. The obtained results indicate that significant performance
could be obtained using an Intel Xeon processor E5-2670 platform. Further experimenta-
tion with additional real scenes and a comparison with another programming languages are
desirable in future research developments.

Acknowledgements

This work has been supported by Junta de Extremadura (decreto 297/2014, ayudas para
la realización de actividades de investigación y desarrollo tecnológico, de divulgación y
de transferencia de conocimiento por los Grupos de Investigación de Extremadura, Ref.
GR15005) and by the Formación Posdoctoral programme (FPDI-2013-16280). This work
was partially supported by the computing facilities of Extremadura Research Centre for
Advanced Technologies (CETA-CIEMAT), funded by the European Regional Development
Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain. Fund-
ing from the Spanish Ministry of Economy and Competitiveness (MINECO) through the
research contracts TIN2012-32180 and TIN2015-65277-R are also gratefully acknowledged.

References

[1] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and
J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical and sparse
regression-based approaches,” IEEE J. Sel. Topics Appl. Earth Observations Remote
Sens., vol. 5, no. 2, pp. 354–379, 2012.

[2] J. Plaza, E. M. T. Hendrix, I. Garcia, G. Martin, and A. Plaza, “On endmember iden-
tification in hyperspectral images without pure pixels: A comparison of algorithms,”
Journal of Mathematical Imaging and Vision, vol. 42, no. 2-3, pp. 163–175, 2012.

[3] M. Zortea and A. Plaza, “Spatial preprocessing for endmember extraction,” Geoscience
and Remote Sensing, IEEE Transactions on, vol. 47, no. 8, pp. 2679–2693, 2009.

[4] G. Martin and A. Plaza, “Region-based spatial preprocessing for endmember extraction
and spectral unmixing,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 745–749,
2011.

c©CMMSE ISBN: 978-84-608-6082-2696

Multi-core Implementation of Spatial-Spectral Preprocessing

[5] G. Martin and A. Plaza., “Spatial-spectral preprocessing prior to endmember iden-
tification and unmixing of remotely sensed hyperspectral data,” IEEE J. Sel. Topics
Appl. Earth Observations Remote Sens., vol. 5, no. 2, pp. 380–395, 2012.

[6] N. Keshava and J. F. Mustard, “Spectral unmixing,” Signal Processing Magazine,
IEEE, vol. 19, no. 1, pp. 44–57, 2002.

[7] J. A. R. y X. Jia, “Remote Sensing Digital Image Analysis,” in Springer- Verlag, 1999.

[8] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping Target Signatures Via
Partial Unmixing of Aviris Data,” Proc. JPL Airborne Earth Sci. Workshop, pp. 23–
26, 1995.

[9] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,”
Applied statistics, pp. 100–108, 1979.

[10] G. S. Miller, “The definition and rendering of terrain maps,” in ACM SIGGRAPH
Computer Graphics, vol. 20, no. 4. ACM, 1986, pp. 39–48.

c©CMMSE ISBN: 978-84-608-6082-2697

