
ON THE OPTIMIZATION OF MEMORY ACCESS TO INCREASE THE PERFORMANCE OF
SPATIAL PREPROCESSING TECHNIQUES ON GRAPHICS PROCESSING UNITS

J. Delgado1, G. Martı́n2, J. Plaza1, L. I. Jiménez1 and A. Plaza 1

1 Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain
2Instituto de Telecomunicações, Lisbon, Portugal

ABSTRACT

The use of spatial information prior to spectral unmixing
of hyperspectral data is a very active research line in recent
years. There are many approximations that consider spatial
characteristics of the data in order to guide the endmember
identification/extraction procedure. In particular, the spatial
preprocessing (SPP) algorithm can be used prior to most ex-
isting spectral-based endmember identification techniques,
thus promoting the selection of endmembers in spatially rep-
resentative parts of the scene. The main concern regarding
SPP and this kind of preprocessing techniques is that they
are computational expensive, adding a significant burden to
the spectral unmixing process which should be alleviated.
In this paper we revisit and enhance a previously developed
implementation of SPP for graphical processing units (GPUs)
in order to increase its performance by exhaustively using the
level one (L1)-cache level of the GPU. The performance of
the proposed implementation is evaluated using an NVidiaT-
MGeForce GTX 580. Our experimental validation reveals
that real-time processing performance can be obtained for
real hyperspectral data sets collected by the Airborne Visible
Infra-Red Imaging Spectrometer (AVIRIS).

Index Terms— Spectral unmixing, endmember iden-
tification, spatial preprocessing, graphics processing units
(GPUs).

1. INTRODUCTION

Spectral mixture analysis aims at expressing the spectral sig-
natures collected over a certain region as a linear/nonlinear
mixture of the various materials found within the spatial ex-
tend of the ground instantaneous field of view of the imaging
instrument [1, 2, 3]. Generally, this mixture occurs due to the
insufficient spatial resolution of the acquisition instrument,
and affects the correct localization of pure spectral signatures
in spectrally heterogeneous areas of the analyzed scene. A
well known possibility is, therefore, to guide the endmember
identification process to spatially homogeneous areas, which
are more likely to contain most of the purest signatures avail-
able in the scene [4, 5]. For this purpose, several spatial
preprocessing (SPP) algorithms [6, 7, 8] have been used in

combination with traditional endmember identification tech-
niques [9], thus allowing that the pure signatures be obtained
using spatial and spectral features. As mentioned before, the
main problem of these techniques is that they add extra com-
putational costs to the unmixing processing chain. Despite
the availability of several techniques to accelerate the perfor-
mance of spectral unmixing algorithms on GPUs [10, 11],
very few efforts have been devoted to the generation of ef-
ficient implementations of SPP techniques to be used prior
to spectral unmixing [12]. In this paper we revisit the GPU-
based parallel implementation of the SPP algorithm in [12],
implementing a different version that incorporates a more ef-
ficient memory management strategy. The presented imple-
mentation has been tested on two different NVidia GPU ar-
chitectures: GeForce GTX 580 and GeForce GTX870M, us-
ing hyperspectral data collected by NASA’s AVIRIS over the
Cuprite mining district in Nevada. Our experimental valida-
tion shows that a significant reduction in the execution time
can be achieved by taking advantage of the L1-cache level of
the GPU.

2. SPATIAL PREPROCESSING ALGORITHM

The goal of the original SPP algorithm is to spatially weight
the spectral information of each pixel in the scene [6]. Fig. 1
illustrates a toy example based on two bands of a hyperspec-
tral dataset. The idea behind SPP is to center each spectral
feature in the data cloud around its mean value, and then shift
each feature toward the centroid of the data cloud. Each spec-
tral feature is shifted proportionally to a similarity measure
calculated using the spectral information of the pixel under
consideration and a spatial neighborhood around it [6, 12]. In
the end, pixels located in spatially homogeneous areas (such
as pixel 1 in Fig. 1) are expected to have a smaller displace-
ment regarding their original location than pure anomalous
pixels (pure pixels surrounded by spectrally different mate-
rials, such as pixels 2 and 3 in Fig. 1). As a result, a new
simplex (in blue in Fig. 1) is generated with regards to the
original one (in red in Fig. 1), taking into account not only
spectral but also spatial information.

Let yi,j represent the pixel in spatial coordinates i, j.
With this notation in mind, the scalar factor is calculated as

6541978-1-5090-3332-4/16/$31.00 ©2016 IEEE IGARSS 2016

Fig. 1. Graphical illustration of the spatial preprocessing
(SPP) technique.

follows:

α(i, j) =

i+d∑
r=i−d

j+d∑
s=j−d

β[r − i, s− j] · γ[yi,j ,yr,s], (1)

where yi,j is the pixel for which we are calculating the scalar
factor, and yr,s are the spatial neighbours. Here d represents
half of the window size, so that the full window size is ws =
2 ·d+ 1. The γ function computes the spectral angle between
the pixel and its neighbors, and the β function computes a
weight factor based on the distance between the pixel and the
neighbors. The spectral angle is computed as follows:

γ[yi,j ,yr,s] = arccos
< yi,j ,yr,s >

||yi,j || · ||yr,s||
, (2)

where < ·, · > denotes the dot product between two vectors
and || · || denotes the euclidean norm of a vector. As we can
see in (3) the closest neighbours are given more relevance.
Also the β function is normalized to sum to one as follows:

β(a, b) ∝ 1

a2 + b2
. (3)

Once the scalar factor has been computed, every pixel is dis-
placed to the simplex centroid depending on the scalar factor.
Expressions (4) and (5) show how to displace the image pixels
depending on the scalar factor, as detailed in [13].

ρ(i, j) = (1 + 2
√
α(i, j))2 (4)

yi,j
′ =

1

ρ(i, j)
(yi,j − c) + c (5)

Here, c is the simplex centroid, computed as the average of all
the image pixels; yi,j

′ is the new displaced pixel and yi,j is
the original pixel at the spatial coordinates i, j. Finally, nl and
nc are the number of lines and columns of the hyperspectral
image, respectively.

3. GPU IMPLEMENTATION

The parallel implementation is based on four main kernels:

1. The first kernel computes the centroid of the simplex c.

2. The second kernel computes the euclidean norms of
each image pixel (Φ) that will be used to compute the
γ function in (2).

3. The third kernel, which is the most time consuming
one, computes the similarity factor α(i, j) for each
pixel as given by the expression (1). In this kernel
there are as many blocks as pixels: B = nl · nc,
and there are as many threads as the window size:
T = ws2 = (2d+ 1)

2. Each of the threads of the
kernel compute the dot product between the central and
the corresponding neighbor pixel in the window given
by < yi,j ,yr,s >, then computes γ[yi,j ,yr,s] as in
(2). After that, the kernel weights this value using the
β function (precomputed using the CPU). Finally the
kernel performs a reduction to sum all the values inside
the window, as a result the kernel obtains α(i, j).

4. The fourth kernel computes the displacement to the
centroid for each pixel as in (5).

In this work, we focus on improving the performance
of the third kernel (as it is the most time-consuming one).
Specifically, we reworked an straightforward parallel imple-
mentation of the SPP [12] in order to compute the similarity
factor α(i, j) for each pixel taking advantage of a more effi-
cient memory management during this process. To achieve
this, we considered two implementation strategies.

3.1. One pixel per block

The most straightforward parallel implementation is the one
that processes one pixel per each block using the main mem-
ory to store the required data. This kernel uses the shared
memory and the GPU registers to store temporal data, but Y,
β and Φ matrices are stored and read from the global (video)
memory of the GPU. In this case, the grid configuration is
a mesh of nl × nc blocks, each one containing ws × ws
threads. As we can see in Fig. 2, different blocks will access
the neighboring pixels in order to process the corresponding
pixels (i.e. P1 and P2). As shown in Fig. 2, both of them
need to process their overlapping neighbors (represented in
yellow color), thus the memory access to those neighbors are
duplicated. If we extrapolate this issue to the case of several

6542

blocks, it results in a significant decrease of parallel perfor-
mance.

3.2. Several pixels per block

Trying to avoid the aforementioned issue, we propose a sec-
ond implementation which processes several pixels per each
block. The main goal of this implementation is to use the first
level of cache memory in the GPU to cache the memory ac-
cesses to Y. It should be noted that both L1-cache and shared
memory are much faster than the local and global memories.
In the previous version each block is in charge of process-
ing one pixel, thus, they cannot use the shared memory or
the L1-cache to avoid several repeated memory accesses, as
illustrated in Fig. 2.

The latest NVidia architectures (Kepler and Fermi) in-
clude cache systems and, therefore, if we process several pix-
els in the same block (see red region in Fig. 2), the access to
the neighbors of the pixels in the block (see orange region in
Fig. 2), which correspond to overlapping neighbors, will be
effectively cached, thus improving the performance. In Fig.
2, when the pixel P1 is processed, the memory in blue will be
accessed. Thus it is likely that, when the pixel P2 in green is
processed, the yellow memory positions are already in the L1-
cache (see Fig. 2). Furthermore, the access to the β matrix
can be also cached for the pixels processed inside the same
block. The number of pixels processed by each block will be
P = bTmax/ws

2c, where Tmax is the maximum number of
threads supported by the architecture. Therefore, the number
of blocks in the optimized version will be B = (nl · nc)/P
and each block will contain T = ws2 · P threads.

4. EXPERIMENTAL RESULTS

The dataset used in our experiments was collected by the
AVIRIS instrument, operated by the NASA’s Jet Propulsion
Laboratory, over the Cuprite mining district in Nevada (avail-
able online 1). The portion used in experiments corresponds
to a 350 × 350-pixel subset, which comprises 188 spectral
bands in the range from 400 to 2500 nm and a total size of
around 50 MB.

The GPU implementations of SPP have been tested on a
desktop computer with a GPU NVidia GTX 580, which fea-
tures 512 processor cores operating at 1.54 GHz. The GPU is
connected to an Intel core i7 920 CPU at 2.67 GHz with eight
cores.

It is important to emphasize that according to our experi-
ments, we can assume that the difference between serial and
GPU implementations are negligible. Hence, the only rele-
vant difference between the serial and parallel algorithms is
the time they need to complete their calculations. The serial
algorithm was executed in one of the available cores of the
desktop computer, and the parallel times were measured in

1http://aviris.jpl.nasa.gov

Table 1. Mean execution times for the parallel and serial
implementations of the SPP algorithm after 10 Monte-Carlo
runs.

window size 3 5 7 9 11

SPP 7.86 18.63 38.87 77.72 141.80

1-pixel/block 0.69 0.71 0.78 0.87 1.06
Speedup 11.39 26.24 49.83 89.33 133.77

N -pixels/block 0.35 0.42 0.53 0.89 1.31

Speedup 22.45 44.35 73.33 87.32 108.24

the considered GPU platform. For each experiment, 10 runs
were performed and the mean values are reported (these times
were always very similar, with differences on the order of a
few milliseconds only).

Table 1 summarizes the obtained results by the C imple-
mentation and by the two GPU implementations. An opti-
mization has been considered for the CPU implementation,
namely the inclusion of the –O3 optimization flag in the com-
piler. Best execution times and speedups for each GPU and
window size are highlighted in bold typeface.

As revealed by Table 1, the N -pixels/block version per-
forms substantially better than the 1-pixel/block for reason-
able window sizes. At this point, it is worth noting that selec-
tion of very large window sizes make no sense, due to the fact
that the pixels located far away are still considered neighbors,
but very low weights are assigned to the pixels near the bor-
der of the window as defined in Eq. (3). These results clearly
indicate the importance of efficiently using the cache mem-
ory in order to achieve the best possible performance of GPU
implementations.

5. CONCLUSIONS AND FUTURE LINES

In this paper, we have presented a new GPU implementation
of a spatial preprocessing algorithm based on efficient mem-
ory management policy. The experimental results indicate
that it is possible to increase the parallel performance of the
algorithm by making an adequate use of L1-cache memory.
This is an important contribution, as the new generations of
GPUs are all including cache memories with different lev-
els and it is of particular importance to adequately exploit
these cache memories in order to optimize the implementa-
tions. Future work will be focused on the improvement of
this implementation studying different L1-cache configura-
tion parameters, and also on the development of other im-
plementations of the full spectral unmixing chain (including
spatial preprocessing) on alternative hardware devices such as
field programmable gate arrays (FPGAs).

6. REFERENCES

[1] N. Keshava and J. F. Mustard, “Spectral unmixing,”
IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57,

6543

Fig. 2. Illustration of the memory accessed when there is one pixel per block and when there are several pixels per block.

2002.

[2] A. Marinoni; J. Plaza; A. Plaza; P. Gamba, “Nonlin-
ear hyperspectral unmixing using nonlinearity order es-
timation and polytope decomposition,” IEEE Journal of
Selected Topics in Applied Earth Observations and Re-
mote Sensing, vol. 8, no. 6, pp. 2644–2654, 2015.

[3] J. Plaza; R. Pérez; A. Plaza; P. Martı́nez; D. Valencia,
“Mapping oil spills on sea water using spectral mixture
analysis of hyperspectral image data,” in Proceedings of
SPIE Optics East 2005, III Conference on Chemical and
Biological Standoff Detection, J. O. Jensen and J. Thri-
ault, Eds., 2005, vol. 5995, pp. 79–86.

[4] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spa-
tial/spectral endmember extraction by multidimensional
morphological operations,” IEEE Trans. Geosci. Re-
mote Sens., vol. 40, pp. 2025–2041, 2002.

[5] D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris,
and J. Feng, “Integration of spatial–spectral information
for the improved extraction of endmembers,” Remote
Sens. Environ., vol. 110, no. 3, pp. 287–303, 2007.

[6] M. Zortea and A. Plaza, “Spatial preprocessing for end-
member extraction,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 8, pp. 2679–2693, 2009.

[7] G. Martin and A. Plaza, “Region-based spatial prepro-
cessing for endmember extraction and spectral unmix-
ing,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp.
745–749, 2011.

[8] G. Martin and A. Plaza., “Spatial-spectral preprocess-
ing prior to endmember identification and unmixing of
remotely sensed hyperspectral data,” IEEE J. Sel. Top-
ics Appl. Earth Observations Remote Sens., vol. 5, no.
2, pp. 380–395, 2012.

[9] J. Plaza; E. M. T. Hendrix; I. Garcı́a; G. Martı́n; A.
Plaza, “On endmember identification in hyperspec-
tral images without pure pixels: A comparison of algo-
rithms,” J. Math. Imag. Vis, vol. 42, no. 2, pp. 163–175,
2012.

[10] G. M. Gallicó; S. Lopez; B. Aguillar; J. F. López; R.
Sarmiento, “Parallel implementation of the modified
vertex component analysis algorithm for hyperspectral
parallel implementation of the modified vertex compo-
nent analysis algorithm for hyperspectral unmixing us-
ing opencl,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 7, no. 8,
pp. 3650–3659, 2014.

[11] A. Plaza; J. Plaza; A. Paz; S. Sánchez, “Parallel hy-
perspectral image and signal processing,” IEEE Signal
Processing Magazine, vol. 28, no. 3, pp. 119–126, 2011.

[12] J. Delgado; G. Martin; J. Plaza; L. I. Jimenez; A.
Plaza, “Gpu implementation of spatial preprocessing for
specgtral unmixing of hyperspectral data,” in Proceed-
ings of the 2015 IEEE International Geoscience and Re-
mote Sensing Symposium (IGARSS), IEEE, Ed., 2015,
pp. 5043–5046.

[13] M. Zortea and A. Plaza, “Spatial preprocessing for end-
member extraction,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, pp. 2679–2693, 2009.

6544

