
FAST SPATIAL-SPECTRAL PREPROCESSING FOR ENDMEMBER EXTRACTION AND
SPECTRAL UNMIXING USING GRAPHIC PROCESSING UNITS

L. I. Jiménez1, G. Martı́n2, S. Sánchez1, J. Plaza1, A. Plaza 1

1 Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain
2Instituto de Telecomunicações, Lisbon, Portugal

ABSTRACT

Linear spectral unmixing consists on the identification of
spectrally pure constituents, called endmembers and their cor-
responding proportions or abundances using a linear model.
Traditionally, most of the attention has been focussed on the
exploitation of spectral information when identifying a set
of endmembers and, only recently, some techniques try to
take advantage of complementary information such as the one
provided by the spatial correlation of the pixels in the im-
age. Computational complexity represents a major problem in
most of these spatial-spectral based techniques, as hyperspec-
tral images provide very rich information in both the spatial
and the spectral domain. In this paper we provide a compu-
tationally efficient implementation of a spatial-spectral pro-
cessing (SSPP) algorithm which can be used prior to end-
member identification and spectral unmixing. Specifically we
present an implementation optimized for commodity graphics
processing units (GPUs), which is evaluated using two differ-
ent GPU architectures from NVidia: GeForce GTX580 and
GeForce GT740. Our experimental validation reveals that
significant speedups can be achieved when processing hyper-
spectral images of different sizes.

Index Terms— Hyperspectral imaging, spatial-spectral
preprocessing, graphics processing units (GPUs).

1. INTRODUCTION

The wealth of spectral information provided by hyperspec-
tral instruments has promoted the application of hyperspec-
tral imaging techniques in many different areas of interest,
transforming it into a commodity product available to broad
user community [1]. In hyperspectral imaging, endmember
extraction is the process of selecting a collection of pure sig-
nature spectra of the materials present in a remotely sensed
hyperspectral scene. These pure signatures are then used to
decompose the scene into a ser of so-called abundance frac-
tions by means of a spectral unmixing algorithm.

Linear mixture modeling is the most widely used spec-
tral umixing approach. Several algorithms for automatic or
semiautomatic spectral endmember identification have been
developed over the last decade. Classic techniques include,

among many others, the pixel purity index (PPI) [2], the ver-
tex component analysis (VCA) [3], the orthogonal subspace
projection (OSP) [4], the N-FINDR algorithm [5], or the it-
erative error analysis (IEA) [6]. A majority of algorithms
have been developed under the pure signature assumption,
i.e., they assume that the remotely sensed data contain one
pure observation for each different material in the scene [7].
Most importantly, all the aforementioned algorithms rely ex-
clusively on the exploitation of spectral information in order
to select the final set of endmembers. With the aim of tak-
ing advantage also of spatial information, several techniques
have also been proposed in the literature, such as the auto-
matic morphological endmember extraction (AMEE) [8] or
the spatial-spectral endmember extraction (SSEE) [9]. Fur-
ther, several preprocessing algorithms have been developed
that can be applied prior to any spectral endmember extrac-
tion technique like spatial preprocessing (SPP) [10] or spatial-
spectral preprocessing (SSPP) [11]. The goal of these prepro-
cessing methods is to guide the spectral endmember search
procedure using spatial-based considerations. The spatial pre-
processing algorithm adds extra computational cost to the un-
mixing process. The generation of efficient implementations
for these techniques has become an important goal.

In this paper, we present a parallel design for commod-
ity graphics processing units (GPUs) of the SSPP algorithm,
which is one of the most successful spatial preprocessing
strategies available in the literature [11]. Our implementa-
tion is evaluated on two different NVidia GPU architectures:
GeForce GTX580 and GeForce GT740 using hyperspectral
imagery with different spatial dimensions. Our experimental
validation reveals that significant speedups can be achieved
for the SSPP, enabling the possibility to embed it into a full
hyperspectral unmixing chain with real-time expectations.

2. SPATIAL-SPECTRAL PREPROCESSING

In this section we describe the considered SSPP approach.
As shown by the flowchart in Fig. 1, the proposed method
consists of four steps that can be summarized as follows:

1. Multi-scale Gaussian filtering. This step takes as input
the original hyperspectral image and returns a set of fil-

7038978-1-5090-3332-4/16/$31.00 ©2016 IEEE IGARSS 2016

SSPP
Hyperspectral
image with b

spectral bands

Spectral purity index
calculation

Spectral Clustering
Multiscale Gaussian

filtering

Spatial homogeneity
calculation

Fusion of spatial and
spectral information

Spatial Spectral

Fig. 1. Block diagram illustrating our spatial-spectral prepro-
cessing (SSPP) method.

tered hyperspectral images. To perform this step, we
first apply Gaussian filtering to each of the b spectral
bands of the original hyperspectral image using differ-
ent values of σ in the Gaussian filter, which results in
different filtered versions of the original hyperspectral
image.

2. Spatial homogeneity calculation. This step takes as in-
put the set of filtered hyperspectral images obtained in
the previous step and produces a spatial homogeneity
index for each pixel in the original image. To perform
this step, we first calculate the root mean square error
(RMSE) [12] between the original hyperspectral image
and each of the filtered images (the lower the RMSE
score is in a pixel, the higher the similarity between the
pixel in the original image and its neighbours). As a
result, the RMSE can be used as a spatial homogeneity
index for each pixel in the hyperspectral image.

3. Spectral purity index calculation. For this step we use
a PCA-reduced version of the original hyperspectral
image. First, we calculate the p first components and
then calculate the maxima and minima projection val-
ues by means of a dot product computation, using the
first principal components as the directions for which
we identify the pixels with maxima and minima pro-
jection values. The pixels with maxima and minima
projection are assigned a weight of 1. The weight of
the mean value between the maxima and minima pro-
jection value is 0. A threshold value is also applied so
that the weights lower than this threshold are assigned
the value 0. Finally the spectral purity index will be the
sum of all the weights over the firs p principal compo-
nents.

4. Spectral clustering. In parallel to the previous steps,
we perform a spectral-based unsupervised clustering of
the original hyperspectral image. This step, which is
applied in parallel to the first two steps, takes as in-
put the original hyperspectral image and returns a set
of clusters in which the original image is partitioned.
Spectral-based unsupervised ISODATA algorithm [13]
is used in [11], where the minimum number of classes
was set to p and the maximum number of classes was
set to 2p. Resulting from this step, a number of clus-
ters (comprised between p and 2p) are identified in the
original hyperspectral image.

5. Fusion of spatial and spectral information. This step
takes as input the spatial homogeneity index calculated
in the second step and the clusters calculated in third
step, and returns a subset of pixels in the original hyper-
spectral image which will be used for endmember iden-
tification purposes (combining the spatial and the spec-
tral information obtained in the previous steps). For
each cluster in the spectral classification map, a sub-
set of spatially homogeneous pixels is selected. On
the other hand, a subset of spectrally pure pixels is se-
lected for each cluster. For selection, pixels are ranked
according to increasing values of their spatial homo-
geneity and spectral purity as calculated in the previous
step. Finally, endmember extraction can be applied to
the pixels retained after the procedure above.

3. GPU IMPLEMENTATION

In this section we describe the parallel implementation of the
SSPP algorithm using NVidia Compute Unified Device Ar-
chitecture (CUDA). We will focus only on steps 1-3 of the
algorithm, as they are the most expensive from a computa-
tional point of view. It should also be noticed that, in order
to achieve the optimal overlapping between CPU and GPU
code, some parts of the parallel implementation will remain
in the CPU (such as the filter creation or the calculation of
the RMSE scores). The proposed parallel version of SSPP is
based on six main CUDA kernels:

1. The first and second kernels compute the multi-scale
Gaussian filtering (convolutionRowSymmGPU and
convolutionColSymmGPU), calculating the image sym-
metric Gaussian filtering using the convolution of two
1-dimensional filters. Here the number of threads is set
to 128 and the number of blocks equals the number of
pixels divided by the number of threads. As mentioned
before, Gaussian filtering is applied to each of the spec-
tral bands of the image so each of the two kernels is b
times.

2. The third kernel, AvgXCUDA calculates the normalized
image obtained by subtracting the average pixel to the

7039

original image using a reduction operation. The num-
ber of blocks is set to the number of bands b and the
number of threads is set to the maximum allowed by
the GPU.

3. We have also developed a kernel called BitonicSort to
replace Quicksort algorithm (previously executed in the
CPU) to execute a more effective bitonic sort in the
GPU with very low latency [14], obtaining much better
performance. In this case the number of threads is set
to 256 and the number of blocks is calculated according
to Eq. (1) below:

nblocks = exp(log2�
npixels

nthreads
�) (1)

4. After executing the principal component analysis step,
the rest of the spectral purity index calculation has
been implemented though kernels minimaxbands and
weights. The first one calculates the maxima and min-
ima projections in the PCA domain, using a reduction
operation. The second kernel obtains the weights of
each minima and maxima projections on each principal
component. The grid dimension of the inimaxbands
kernel is set to the number of estimated endmembers
(principal components), while the grid dimension in
the weights kernel is obtained by dividing the number
of pixels by the block size, which in both cases is set to
the maximum allowed by the GPU architecture.

4. EXPERIMENTAL RESULTS

A collection of 24 synthetic hyperspectral images has been
used for validation. These scenes are composed of known
pure spectral signatures of different sizes, in the range be-
tween 10000 and 200000 pixels, synthesized from spectral
signatures extracted from the USGS spectral library [15]. The
procedure for constructing the images is described in 2 (more
details about the procedure can be found in [11, 16]). In all
cases, the images contain sets of (10, 20, 30) endmembers
randomly selected from the USGS library, and their spectral
resolution is of 221 narrow spectral bands between 0.4 and
2.5 micrometers per scene.

The GPU implementation of SSPP has been tested on two
different architectures: a desktop computer (Intel core i7 920
CPU at 2.67 GHz and 6 GB of RAM) with a GPU NVidia
GTX 580, which features 512 processor cores operating at
1.54 GHz, and a laptop computer (Intel core i7-4700MQ at
2.4 GHz and 8 GB of RAM) with a GPU Nvidia GT740, with
384 processor cores at 993 MHz.

The serial algorithm was executed in one of the available
cores of computer, and the parallel times were measured in
the considered GPU platform. The speedups are calculated
between each pair CPU/GPU (regarding its counterpart). For

Fig. 2. Block diagram describing the procedure for generating
synthetic hyperspectral images

Table 1. Mean execution times and speedups for the parallel
version of the SSPP algorithm executed on the Nvidia GT740
GPU after 10 Monte-Carlo runs.

Endmembers
10 20 30

Image size time speedup time speedup time speedup
100× 100 0.283 2.634 0.273 2.783 0.272 2.836

200× 100 0.382 3.706 0.363 4.020 0.374 3.973

300× 100 0.466 4.510 0.454 4.731 0.462 4.755

400× 100 0.570 4.869 0.556 5.123 0.551 5.270

100× 500 0.667 5.187 0.672 5.293 0.656 5.546

200× 500 1.117 6.124 1.116 6.289 1.127 6.381

300× 500 1.568 6.518 1.562 6.753 1.563 6.918

400× 500 2.002 6.839 1.992 7.045 1.991 7.245

each experiment, 10 runs were performed and the mean val-
ues are reported (these times were always very similar, with
differences on the order of a few milliseconds only).

Tables 1 and 2 show the execution times and speedups
obtained by GPU implementation (executed in the GT740 and
GTX580 respectively) regarding the C version (executed in
one core of the laptop and desktop computer) considering a
set of different size images containing different number of
endmembers.

As revealed by Tables 1 and 2, it is easy to achieve a
reasonable speedup when executing our parallel SSPP algo-
rithm by simply combining the CPU core with the available
GPU on each of the compared computers. Considering that
the serial implementation needs 7.076 seconds in the desk-
top computer and 14.426 seconds in the laptop computer to
process the largest synthesized image (400× 500 pixels), we
obtain an speedup of almost 10×. Last but not least, the real
time requirements of a standard imaging spectrometer such as
AVIRIS establish that we need to process a 614× 512 pixels
of 224 spectral bands in less than 5.09 seconds, which means

7040

Table 2. Mean execution times and speedups for the par-
allel version of the SSPP algorithm executed on the Nvidia
GTX580 GPU after 10 Monte-Carlo runs.

Endmembers
10 20 30

Image size time speedup time speedup time speedup
100× 100 0.213 1.965 0.215 1.945 0.211 1.997

200× 100 0.244 3.107 0.234 3.239 0.236 3.260

300× 100 0.267 4.085 0.262 4.215 0.256 4.321

400× 100 0.300 4.795 0.296 4.896 0.287 5.100

100× 500 0.317 5.626 0.311 5.812 0.309 5.922

200× 500 0.426 8.238 0.424 8.491 0.419 8.570

300× 500 0.548 9.550 0.540 9.757 0.539 9.815

400× 500 0.734 9.309 0.754 9.342 0.753 9.392

that the proposed GPU implementation allow us to perform
the spatial-spectral preprocessing of the image in real-time
performance. Further, the SSPP method can also be integrated
in a full hyperspectral unmixing chain without reducing the
expectation of the full chain to be conducted also in real time.

5. CONCLUSIONS AND FUTURE LINES

In this paper, we have presented a new GPU implementation
of a spatial-spectral preprocessing (SSPP) algorithm. The
obtained experimental results indicate that it is possible to
achieve significative speedups by overlapping the execution
of the algorithm in CPU/GPU. Future work will be focused
on the improvement of this implementation by studying dif-
ferent parallelization schemes, generating CUDA versions for
the last steps of the SSPP algorithm. We also plan to develop
other implementations of full spectral unmixing chain (in-
cluding spatial preprocessing), using hardware devices such
as field programmable gate arrays (FPGAs).

6. REFERENCES

[1] A. Goetz; G. Vane; J. Solomon and B. Rock, “Imaging
spectrometry for earth remote sensing,” Science, vol.
228, no. 4704, pp. 1147–1153, 1985.

[2] J. W. Boardman, F. A. Kruse, and R. O. Green, “Map-
ping Target Signatures Via Partial Unmixing of Aviris
Data,” Proc. JPL Airborne Earth Sci. Workshop, pp.
23–26, 1995.

[3] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex
Component Analysis: A Fast Algorithm to Unmix Hy-
perspectral Data,” IEEE Trans. Geosci. Remote Sens.,
vol. 43, no. 4, pp. 898–910, 2005.

[4] J. C. Harsanyi and C.-I Chang, “Hyperspectral im-
age classification and dimensionality reduction: An or-
thogonal subspace projection approach,” IEEE Trans.
Geosci. Remote Sens., vol. 32, pp. 779–785, 1994.

[5] M.E. Winter, “N-FINDR: an algorithm for fast au-
tonomous spectral end-member determination in hyper-
spectral data,” in Proceedings of SPIE, 1999, vol. 3753,
pp. 266–270.

[6] R. A. Neville, K. Staenz, T. Szeredi, J. Lefebvre, and
P. Hauff, “Automatic endmember extraction from hyper-
spectral data for mineral exploration,” Proc. 21st Cana-
dian Symp. Remote Sens., pp. 21–24, 1999.

[7] J. Plaza, E. M. T. Hendrix, I. Garcia, G. Martin, and
A. Plaza, “On endmember identification in hyperspec-
tral images without pure pixels: A comparison of algo-
rithms,” Journal of Mathematical Imaging and Vision,
vol. 42, no. 2-3, pp. 163–175, 2012.

[8] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spa-
tial/spectral endmember extraction by multidimensional
morphological operations,” IEEE Trans. Geosci. Re-
mote Sens., vol. 40, pp. 2025–2041, 2002.

[9] D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris,
and J. Feng, “Integration of spatial–spectral information
for the improved extraction of endmembers,” Remote
Sens. Environ., vol. 110, no. 3, pp. 287–303, 2007.

[10] M. Zortea and A. Plaza, “Spatial preprocessing for end-
member extraction,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 8, pp. 2679–2693, 2009.

[11] G. Martin and A. Plaza., “Spatial-spectral preprocess-
ing prior to endmember identification and unmixing of
remotely sensed hyperspectral data,” IEEE J. Sel. Top-
ics Appl. Earth Observations Remote Sens., vol. 5, no.
2, pp. 380–395, 2012.

[12] N. Keshava and J. F. Mustard, “Spectral unmixing,”
IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57,
2002.

[13] J. A. Richards and X. Jia, Remote Sensing Digital Image
Analysis: An Introduction, Springer, 2006.

[14] I. Buck; T. Purcell, GPU Gems, chapter A toolkit for
computation in GPU, pp. 621–636, Nvidia, 2004.

[15] R. N. Clark; G.A. Swayze; A. Gallagher; T.V.V. King,
“The u. s. geological survey, digital spectral library:
Version 1: 0.2 to 3.0 microns,” Open File Report 93-
592, U.S. Geological Survey, 1993.

[16] J. Sevilla; A. Plaza, “A new digital repository for hy-
perspectral imagery with unmixing-based retrieval func-
tionality implemented on gpus,” IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, vol. 7, no. 6, pp. 2297–2304, 2014.

7041

