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ABSTRACT
In order to provide a careful description of the interactions
among endmembers in hyperspectral images, a new method
for adaptive design of mixture models for hyperspectral un-
mixing is introduced. Specifically, the proposed approach re-
lies on exploiting geometrical features of hyperspectral signa-
tures in terms of nonorthogonal projections onto the space in-
duced by the endmembers’ spectra. Then, an iterative process
is deployed in order to understand the order of local nonlin-
earity that is displayed by each endmember over every pixel.
Experimental results show that the proposed approach is ac-
tually able to retrieve thorough information on the nature of
the nonlinear effects over the image while providing excellent
performance in reconstructing the given dataset.

Index Terms— Nonlinear hyperspectral unmixing, adap-
tive fitting, iterative nonlinearity detection, nonorthogonal
projection

1. INTRODUCTION

Accurately estimating the elements in Earth observations is
crucial when assessing specific features such as air quality
index, water pollution estimate and urbanization process be-
havior. Moreover, physical-chemical composition can be
retrieved from hyperspectral images when proper unmixing
architectures are employed [1]. Specifically, when linear
and nonlinear combinations of endmembers are accurately
characterized, hyperspectral unmixing plays a key-role in un-
derstanding and quantifying phenomena occurring over the
instantaneous field-of-view (IFOV). Thus, reliable detection
of nonlinear reflectance behavior can play a key-role in en-
hancing hyperspectral unmixing performance. Several papers
have recently addressed the topic of nonlinearity detection
in hyperspectral images. For instance, a posteriori statistical
tests have been used to understand bilinearity [2], [3], [4].
In [1], a semi-supervised approach to address the higher or-
der nonlinearity detection issue has been proposed. Indeed,
a framework for efficient p-linear unmixing that considers
a pre-processing step to estimate the nonlinearity order of

each pixel is introduced. Hence, an artificial neural network
(ANN) is properly trained and set to perform a reliable esti-
mation of the order of the nonlinear interactions that occur
over every pixel of the hyperspectral scene. This architecture
delivers an effective improvement in hyperspectral unmixing
performance, as it prevents overfitting effects to impact onto
the characterization process.

Although the aforementioned methods might actually
provide enhancement in understanding and quantifying the
nonlinear reflectance interactions, computational complexity
still represents an issue for actual implementation and de-
velopment of those algorithms. Further, they do not avoid
the occurrence of local overfitting that is delivered by in-
accuracy in determining the order of the nonlinearity each
endmember is involved in. Hence, efficient methods that aim
to face the nonlinearity detection issue within hyperspectral
images must be based onto new strategies, which can actu-
ally deliver solid improvements in spectral unmixing. In this
paper, a new method for adaptive design of mixture models
for hyperspectral unmixing is introduced. Specifically, the
proposed approach relies on exploiting geometrical features
of hyperspectral signatures in terms of nonorthogonal pro-
jections onto the space induced by the endmembers’ spectra.
Then, an iterative process is deployed in order to understand
the order of local nonlinearity that is displayed by each end-
member over every pixel. Experimental results show that the
proposed approach is actually able to retrieve thorough infor-
mation on the nature of the nonlinear effects over the image
while providing excellent performance in reconstructing the
given dataset. The paper is organized as follows. Section
2 describes the proposed method. Section 3 describes the
experimental results. Finally, Section 4 concludes with some
final remarks.

2. METHODS

Let Y = {y
l
}l=1,...,P be a P -pixel image, where y

l
=

[yln ]n=1,...,N is the N -band spectral signature of the l-th
pixel. Then, let M = {mr}r=1,...,R be the set of the end-



members that can be drawn over Y according to an endmem-
ber extraction algorithm (EEA). Moreover, let us consider
the fully constrained least squares (FCLS) [5] optimization
algorithm in order to unmix the given image. Hence, when
we run FCLS over the l-th pixel considering the endmember
spectra inM, we obtain

y
l

= ŷ(L)

l
+ n̂ =

R∑
r=1

âlrmr + n̂, (1)

where âl = [âlr]r=1,...,R are the coefficients that drive the
linear mixture as estimated by the FCLS, i.e.,

∑R
r=1 âlr = 1

and âlr ≥ 0 ∀r. Moreover, n̂ is the noise residual that results
from the FCLS linear unmixing. Hence, we can consider ŷ(L)

l
as the best linear approximation of y

l
when we employ FCLS

unmixing as driven by the endmember spectra.
Let us consider now the set M′(2) of the spectral signa-

tures provided by the extracted endmembers and their second-
order combinations, i.e.,M′ = M∪M(2), whereM(2) =
{M(2)

r′ = m2
r′}r′=1,...,R where m2

r′ = mr′ � mr′ . Thus,
when we run FCLS according to theM′ set of endmembers,
we obtain the following equation:

y
l

= ŷ′
(L)

l
+ ŷ′

(NL)

l
+ n̂′ =

R∑
r=1

â′lrmr +
R∑

r′=1

β̂′lr′m
2
r′ + n̂′,

(2)
where â′l = [â′lr]r=1,...,R and β̂′

l
= [β̂′lr′ ]r=1,...,R are

the coefficients that drive the linear and bilinear mixture
as estimated by the FCLS, respectively, i.e.,

∑R
r=1 â

′
lr +∑R

r′=1 β̂
′
lr′ = 1, â′lr ≥ 0 ∀r, β̂′lr′ ≥ 0 ∀r′. Moreover, n̂′

is the noise residual that results when FCLS unmixing is fed
by the M′ set of endmembers. Let us now assume that the
l-th pixel results from a linear combination of the endmember
spectra inM, i.e., y

l
=

∑R
r=1 alrmr +n, where n represents

the noise delivered by acquisition system. In that case, the

following equation holds: lim||n||2↓0 ||ŷ(L)

l
− ŷ′

(L)

l
||2 = 0. In

other words, when the l-th pixel represents a linear mixture
of the R endmembers in the scene, the contribution provided

by ŷ′
(NL)

l
in (2) is negligible. Therefore, if we are interested

in understanding whether the l-th pixel can be considered as
a result of a linear combinations of reflectances, in the ideal
case (i.e., when the pixel noise is not relevant), we can just

compute the Euclidean distance between ŷ(L)

l
and ŷ′

(L)

l
and

call for a linear mixture on the l-th pixel if it is equal to zero.
On the other hand, if the target pixel spectrum results from

a nonlinear combination of endmembers, the aforesaid prop-
erty does not hold anymore. Indeed, let us consider the mis-
match between the linear contributions in (1) and (2), i.e.,
ŷ(L)

l
−ŷ′

(L)

l
= δ̂ =

∑R
r=1 δ̂rmr, where δ̂r = âlr−â′lr. Thus,

in order to retrieve a reliable and efficient metric for under-
standing and quantifying the effective nonlinear contribution
provided by each endmember to the l-th pixel mixture, we

can consider the displacement between ŷ(L)

l
and ŷ′

(L)

l
from a

geometrical point of view.
Further, by considering (1) and (2), the following equation

holds:

δ̂ = ŷ′
(NL)

l
+ δn = ŷ′

(NL)

l
+ (n̂′ − n̂). (3)

Therefore, we can assume that if the most of the δ̂
displacement is collected by the nonlinear contributions in

ŷ′
(NL)

l
, then the l-th pixel might represent a nonlinear com-

bination of the endmembers in the scene. On the other hand,
if the δ̂ difference is mostly delivered by the noise residual
difference in δn = n̂′ − n̂, then we can assume that the non-
linear contributions as estimated by FCLS can be considered
as negligible, s.t. the mixture provided by l-th pixel is carried
by the linear combinations of the endmember spectra.

Moreover, let us take a look to the local contributions car-
ried by each endmember to the reconstructed spectral signa-
ture after FCLS unmixing as in (2). If we apply the afore-
mentioned rule to the local scale, we can assume that a given
endmember is not involved in any nonlinear spectral mixture
within the target pixel signature as long as the major amount
of the displacement in δ̂ is collected by the δn projection onto
the direction marked by the given endmember itself. Further,
if we iterate this process for investigating several nonlinear-
ity orders, we can retrieve a new criterion for identifying the
best approximating polynomial mixture model for the given
hyperspectral signature.

Hence, in order to design a reliable overall metric of this
effect, we must define a measure on which we could obtain
coherent and thorough estimates and evaluations on the be-
havior of the displacements in (3). In that sense, the quan-
tities in (3) must be referred to a mutual vectorial field, s.t.
distance and difference definitions can be delivered accord-
ing to Euclidean geometry [6]. Thus, in order to deliver this
new common environment for the signatures in (3), we might
need to consider every quantity in (3) as an object in another
space where likelihoods can be safely computed according to
Euclidean distances geometry [6].

In that sense, considering the subspace induced by the
endmember signatures inMmight help to achieve a thorough
improvement in terms of reliability and accuracy of the inves-
tigation. Specifically, reducing the N -dimensional space to
theM subspace induces a hull where each endmember spec-
trum represents one of the basis. Therefore, as |mr ·ms| ≥ 0
∀mr,ms ∈ M, it is possible to achieve a close set where
Euclidean geometry applies [6].

Indeed, as δ̂ is defined as a weighted sum on the endmem-
bers in M, we can consider δ̂r as the projection of the dis-
placement âl− â′l onto the basis of theM-induced subspace
as determined by the r-th endmember. Thus, in order to ob-
tain a coherent computation for volume comparison onto a
consistent domain, it is necessary to evaluate the contribution



provided by ŷ′
(NL)

l
and δn onto each endmember basis of the

M vectorial field [6], i.e., we can rewrite (3) as follows:

δ̂ =
R∑

r=1

δ̂rmr =
R∑

r=1

πr(ŷ′
(NL)

l
)mr +

R∑
r=1

πr(δn)mr, (4)

where πr(z) identifies the nonorthogonal projection of z onto
the direction imposed by the r-th endmember. Hence, (4) pro-
vides a coherent and consistent representation of each term
in (3) onto the common domain delivered by theM-induced
subspace. Actually, as typically the endmembers inM are not
perfectly orthogonal to each other, the computation of the πr
coefficients in (4) can not be performed according to orthog-
onal projection algorithms. Thus, in order to obtain the ac-
curate estimation of each πr, we can write a proper system of
linear equations in order to take advantage of the properties of
Clifford algebra [6]. Specifically, let us consider aN -element
array z as defined as z =

∑R
r=1 πr(z)mr. Then, let us con-

sider R linear equations obtained from the aforementioned
representation of z by considering the inner product of every
term onto an endmember, i.e., the i-th linear equation would
be written as z ·mi =

∑R
r=1 πr(z)mr ·mi. Hence, we can

write the whole system in matrix form as AM×π(z)T = bT ,
where AM = {AMjk

}(j,k)∈{1,...,R}2 , AMjk
= mj · mk,

π(z) = [πi(z)]i=1,...,R, b = [bi]i=1,...,R, bi = z ·mi.
Then, we can use Cramer’s rule in order to retrieve the

elements in π(z) [6]. Specifically, let us consider AM =
[AM1

| · · · |AMj
| · · · |AMR

], where AMj
identifies the j-th

column of AM. Thus, let us define A(h)

M as the matrix that
we obtain by replacing the h-th column of AM with bT , i.e.,

A(h)

M = [AM1
| · · · |AMh−1

|bT |AMh+1
| · · · |AMR

]. Hence,
by Cramer’s rule, it is possible to state:

πh(z) = det[A(h)

M ] · (det[AM])−1. (5)

Therefore, we can obtain the nonorthogonal projections
in (4) by operating on matrices induced by inner products in
the endmembers’ space. Once the π(z) coefficients are com-
puted, the terms in (3) are mapped onto a coherent space.
Hence, it is possible to retrieve local contributions of each
endmember to the nonlinear mixture in the target pixel spec-
trum by considering the distance of each corresponding ele-
ment in the three terms of (4). Then, to consider the local con-
tribution provided to the nonlinearity of the system by each
endmember we have to take into account the corresponding

nonorthogonal projections delivered by ŷ′
(NL)

l
and δn. In-

deed, once the spectral signatures are represented as elements
in the space induced by the endmembers, we can compare
coherent quantities deployed over the directions of the new
space bases. Specifically, if we compute the distances of the
projections over the r-th endmember direction delivered by

ŷ′
(NL)

l
and δn to δ̂r, we can recover a reliable likelihood of

the r-th endmember to be involved in nonlinear combinations
collected in the target spectral signature. I.e., let us define

∆r = |δ̂r − πr(ŷ′
(NL)

l
)| − |δ̂r − πr(δn)|. Thus, we can as-

sume that the r-th endmember is involved in the second order
nonlinear effects that gathered in y

l
if ∆r < 0.

It is possible to notice that the aforementioned scheme
is able to retrieve information on the bilinear effects deliv-
ered by the endmembers in M since it relies on the non-

linear unmixing representation in (2). Specifically, ŷ′
(NL)

l
and δn result from unmixing y

l
using the endmembers in

M′ =M∪M(2). However, if we aim at acquiring informa-
tion on the actual order of the nonlinear effects that are driven
by each endmember, we can iterate the proposed approach by
extendingM′ with the higher order contributions of the end-
members for which ∆r < 0. The general extension of this
approach would turn into setting M′ at the k-th step of the
process toM′∪M(k)

, whereM(k)
collects the k-linear con-

tribution of the endmembers that have been considered as in-
volved in the nonlinear effects at the (k−1)-th step, i.e., those
for which ∆r < 0 at the (k − 1)-th step. This process would
iterate until ∆r > 0 ∀r. Hence, the hyperspectral mixture
model that would result from this procedure might represent
an instance of a multiple p-linear mixture model (mpLMM),
as the nonlinearity order of each endmember contribution is
set independently, i.e., (2) would turn at the end of the process
into the following equation:

y
l

=

R∑
r=1

â′lrmr +

R∑
r′=1

plr′∑
k′=2

β̂′lr′k′m
k′

r′ + n̂′, (6)

where plr′ identifies the order of the r′-th endmember’s con-
tribution to the nonlinear mixture of the l-th pixel. Thus, the
proposed method aims at leveraging the computational cost
by focusing only on he endmembers that are estimated to be
involved in the nonlinear effects that are recorded in the tar-
get pixel signature. Moreover, by adapting the nonlinearity
order of each endmember share, the aforementioned frame-
work aims at providing a careful description of the mixture
combinations that occur onto the given IFOV. The next Sec-
tion reports the performance in detecting the pixels that re-
sult from linear mixtures on the given hyperspectral scene as
achieved by the aforementioned method.

3. EXPERIMENTAL RESULTS

We tested the new aunmixing technique using an image over
the World Trade Center area in New York City (Fig. 1(a)),
collected by the AVIRIS instrument on 16 September 2001,
just 5 days after the terrorist attacks that collapsed the two
main towers and other buildings in the WTC area. The full
data set considered consists on 614 × 507 pixels, with N =
224 bands and a spatial resolution of 1.7 m/pixel. Fig. 1(a)



shows a false color composite of the area using the 1.682,
1.107 and 655 nm channels, displayed as red, green and blue
respectively. Extensive reference information, collected by
the U.S. Geological Survey (USGS), is available for the WTC
scene. Ten endmembers of the WTC scene have been ex-
tracted using the orthogonal subspace projection (OSP) algo-
rithm [7].

Fig. 1(b) reports the reconstruction error (RE) perfor-
mance as provided over the WTC image by the polytope de-
composition (POD) method, ANN+POD architecture [1] and
the proposed algorithm based on mpLMM. Specifically, POD
have been used when the hyperspectral mixture is modeled
by means of a 5-linear mixture model. On the other hand,
the nonlinearity order used to unmix each pixel according to
the ANN+POD scheme is set as in Fig. 2(a). Finally, Fig.
2(b), (c) and (d) report the nonlinearity orders of three end-
members over each pixel as estimated by means of the pro-
posed approach. Moreover, the maximum value of nonlin-
earity that has been discovered by the proposed framework is
5. RE results show how the proposed approach is actually
able to outperform the other higher order nonlinear hyper-
spectral unmixing architectures that have been introduced in
[1]. Apparently, the proposed algorithm is actually able to de-
tect the nonlinearities over the image. Moreover, the proposed
method aims at avoiding the local overfitting provided by the
p-linear mixture model when an higher nonlinearity order is
applied to endmembers that poorly contribute to the overall
nonlinear combinations which occur over each pixel (see Fig.
2). Thus, the proposed approach can be actually used for en-
hancing higher order nonlinear hyperspectral unmixing by an
accurate detection of the nature of the reflectance combina-
tions occurring over the considered image.

Fig. 1. (a): RGB composite of the WTC image. (b): recon-
struction error performance as delivered by the polytope de-
composition (POD) method, the ANN+POD architecture [1]
and the proposed approach based on multiple p-linear mixture
model (mpLMM).

4. CONCLUSION

A novel iterative method for designing mixture models for hy-
perspectral unmixing is introduced. The proposed approach

Fig. 2. (a): Nonlinearity order as estimated by the scheme
in [1] on each pixel of the WTC image. (b), (c), (d): Non-
linearity orders estimated by the proposed method for three
endmembers over the same image.

aims at understanding the the order of local nonlinearity that
is displayed by each endmember over every pixel by project-
ing every quantity in the unmixing formula onto the space
spanned by the given endmember set. Experimental results
show that the proposed approach is actually able to retrieve
thorough information on the nature of the nonlinear effects
over the image while providing excellent performance in re-
constructing the given dataset.
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