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Abstract

Classification of remotely sensed hyperspectral images is a challenging task due the
enormous amount of information comprised in these images, that contain hundreds
of continuous spectral bands. This creates a need to develop new techniques for
hyperspectral classification using high performance computing architectures. Despite
the availability of multiple algorithms adapted to parallel environments (such as
multicore computers or accelerators like field programmable gate arrays or graphics
processing units, the application of cloud computing techniques has not been as
widespread, although there are many potential advantages in exploiting cloud computing
architectures for distributed hyperspectral image analysis. In this paper, we present
a cloud implementation (developed using Apache Spark) of a successful technique
for hyperspectral image classification: the multinomial logistic regression probabilistic
classifier. Our experimental results suggest that cloud computing architectures allow
for the efficient classification of large hyperspectral image data sets.

Key words: Hyperspectral imaging, multinomial logistic regression, cloud computing,
Apache Spark.
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1 Introduction

Remotely sensed hyperspectral imaging is a popular technique for Earth observation (EO)
[1], which allows for the simultaneous collection of images (at different wavelength channels)
for the same area on the surface of the Earth. A characteristic of hyperspectral imagers is
that they can collect data in thousands of narrow, contiguous spectral bands [2], providing
so-called hyperspectral image data cubes [3].

An important property of hyperspectral instruments is their ability to acquire a
complete reflectance spectrum for each pixel in the image (called contiguous spectral curves
or spectral signatures). These signatures allow us to accurately distinguish different physical
materials. For instance, the NASA’s Jet Propulsion Laboratory’s Airbone Visible/Infrared
Imaging Spectrometer (AVIRIS) [4] measures the solar reflected spectrum from 0.4µm to
2.5µm at intervals of 0.01µm. The EO-1 Hyperion imaging spectrometer also collects bands
in the range of 0.4µm to 2.5µm (more than 200 bands in both cases) [5, 6]. Several new
satellite mission that will be soon operative and ready to collect data in a very similar
spectral range. For instance, the German Environmental Mapping and Analysis Program
(EnMAP [7]) is expected to collect data in the range 0.42µm to 2.45µm, as well as the
Italian PRISMA program [8]. Other spectrometers acquire hyperspectral images in other
regions of the spectrum, for instance the Reflective Optics System Imaging Spectrometer
(ROSIS) takes images with a spectral range from 0.43µm to 0.96µm [9].[2].

Hyperspectral imaging has proved to be useful over a wide range of applications,
such as agriculture, forestry, geology, ecological monitoring and disaster monitoring
[10, 6]. However, due to the great dimensionality of hyperspectral data cubes, analysis
techniques exhibit significant requirements in terms of storage and data processing [11, 12].
Therefore, the development of techniques that are computationally efficient becomes critical
[6, 13, 14, 15].

Many efforts have been made within the field of hyperspectral image classification, both
supervised and unsupervised [16]. Supervised techniques have been generally more popular
due to their higher classification accuracy, but they require sufficient training information in
order to perform properly. One of the supervised classifiers that can perform more accurately
in the presence of limited training samples is the multinomial logistic regression (MLR)
[17]. However, this classifier is computationally expensive, and available implementations
have not considered the possibility of using cloud computing architectures [18]. These
platforms can be greatly beneficial for hyperspectral image classification due to their
advanced capabilities for internet-scale, service-oriented and high-performance computing.
Specifically, the use of cloud computing for the classification of large hyperspectral data
repositories can be considered a natural solution and an evolution of previously developed
techniques for other kinds of computing platforms [19]. Still, there are few efforts in
the recent literature oriented to the exploitation of cloud computing infrastructure for
hyperspectral imaging techniques.
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This work explores the possibility of using a distributed framework for classification
of massive hyperspectral images based on cloud computing architectures. In particular
we have focused on the discriminative MLR classifier [17] to demonstrate the applicability
of utilizing cloud computing technologies to efficiently perform distributed classification of
hyperspectral data.

The remainder of the paper is organized as follows. Section 2 first presents
the theoretical principles of the MLR method (section2.1). Then, it describes our
distributed framework design for this classifier (section 2.2). Finally, it describes our
cloud implementation in detail (section 2.3). Section 3 validates the proposed cloud MLR
algorithm by comparing it with other implementations. Finally, section 4 concludes with
some remarks and hints at plausible future research lines.

2 Methodology

2.1 Multinomial Logistic Regression

To understand the operations of the MLR, we first we need to describe how logistic regression
(LR) works. Given a collection of n linear-separable numeric samples X = {x1, ..., xn} where
each xi ∈ Rd, xi = [xi,1, ..., xi,d], the goal of classification methods is to categorize each
xi into a class or category yi of those available in Y = {y1, ..., yk}, with k < n. But, in
contrast to other classification methods, LR does not try to predict the value of a xi given
a set of inputs. Instead, the output is a probability that the input xi belongs to a certain
class yi. It would be 0 when xi does not belong to yi and 1 if xi belongs to yi. Suppose that
xi = [xi,1, ..., xi,d] and Y = {−,+}, LR assumes that the input d-space can be separated
into two regions by a linear boundary: β0 + β1xi,1 + ... + βdxi,d. This function outputs
a value in (−∞,∞) given an input data point, xi

1. To map the label probabilities with
boundary values, LR applies log-odds functions2 and calculates the predicted probabilities

as P (yi = +|xi, β) =
exp(β0+

∑d
j=1 βjxi,j)

1+exp(β0+
∑d

j=1 βjxi,j)
. The goal of LR is to estimate the coefficients

β = {β0, β1, ..., βd} through maximum likelihood estimation (MLE), that optimizes β in
order to maximize the log likelihood (LL, i.e. the log odds).

MLR extends the binary problem of LR to any number of classes, k > 2. Specifically,

1If xi lies in the region defined by the + class, the function’s value is positive in the range (0,+∞) and
its probability P (yi = +|xi, β) is in (0.5, 1]. If xi lies in the region defined by the − class, the function’s
value is negative in the range (−∞, 0) and its probability P (yi = −|xi, β) = 1−P (yi = +|xi, β) is in [0, 0.5).
Finally if we do not know whats xi is, the function’s value is 0, and probabilities of being + or − are exactly
0.5

2Given a probability function P (x) ∈ [0, 1], the odds ratio is defined as OR(x) = P (x)
1−P (x)

∈ [0,+∞).

Applying the logarithm to OR(x) we obtain log(OR(x)) ∈ (−∞,∞). If the log-odds is log( P (x)
1−P (x)

) = a+bx,

we can transform it into P (x)
1−P (x)

= exp(a+ bx)→ P (x) = exp(a+bx)
1+exp(a+bx)

, i.e the logistic function
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MLR selects one category as the baseline, e.g. the k-th class, and calculates the regression
coefficients for the l = 1, ..., k − 1 non-baseline categories (β(1), ..., β(k−1) with β(l) =

{β(l)0 , ..., β
(l)
d }) against the baseline class. The predicted probabilities are extended to

P (yi = l|xi, B) =
exp
(
β
(l)
0 +

∑d
j=1 β

(l)
j xi,j

)
1+
∑k−1

l′=1

(
exp
(
β
(l′)
0 +

∑d
j=1 β

(l′)
j xi,j

)) , where B is the (d + 1) × (k − 1) matrix

of all the regression coefficients. The goal of MLR is then to estimate B given the samples
dataset X and the categories Y , by minimizing the optimization function:

f(B;X,Y ) = −
n∑
i=1

logP (yi|xiB) +
λ

2

d∑
j=1

k−1∑
l=1

|β(l)j |
2, (1)

where λ is a regularization term added in order to mitigate the overfitting problem.

2.2 Distributed framework design

To create our distributed environment, two frameworks have been used: 1) OpenStack3

and 2) Apache Spark4. Each one of them will be in charge of the correct execution of the
architecture in two aspects:

• On the one hand, OpenStack provides Infrastructure as a Service (IaaS), abstracting
and manages the physical machines that will give the support to the virtual machines.
OpenStack works like a cloud operating system that controls large pools of compute,
storage, and networking resources throughout a datacenter, all managed through a
dashboard that gives administrators control while empowering their users to provision
resources through a web interface.

• On the other hand, Apache Spark is a distributed in-memory processing framework
that works over the virtual machines (managed by OpenStack) and allows to
implement MapReduce5 distributed programming model [18]. Also, Apache Spark
implements a fault-tolerant abstraction for in-memory cluster computing, and provides
fast and general data processing on large distributed platforms. It supports simple
one-pass computations and can also be extended to the case of multi-pass, iterative
algorithms.

3https://wiki.openstack.org/wiki/Main Page
4http://spark.apache.org/
5The MapReduce model takes full advantage of the high-performance capabilities provided by cloud

computing architectures. The operation is easy: a task is processed by two distributed operations, map and
reduce. The datasets are organized as key/value pairs, and the map function processes a key/value pair to
generate a set of intermediate pairs, dividing a task into several independent subtasks to be run in parallel.
The reduce function is in charge of processing all intermediate values associated with the same intermediate
key, then collecting all the subtask results to gather the result for the whole task.
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The full architecture of our newly developed system for hyperspectral image classification
is shown in Fig. 1. In Fig. 2 we display the services offered by OpenStack and the Apache
Spark framework used.

Figure 1: Integrated OpenStack and Apache
Spark framework for Logistic Regression.

Figure 2: Description of the proposed Apache
Spark and Open Stack architecture.

2.3 Cloud Implementation

Proposed cloud MLR divides the execution between one master (Spark driver) and several
slaves (Spark executors). The driver prepares the environment (reserves resources), launches
the executors and initializes β. Each executor loads their corresponding patch of the
hyperspectral image and for each data calculates the loss function and the gradient (Map)
that are summed up (Resume) and sent back to the driver. The driver calculates the loss and
the gradient of regularizer and plugs the gradient and loss of the model and the regularizer
into optimizer to get the new β. If the loss is less than the stopping criterion, the algorithm
ends.

To execute our cloud implementation of MLR we need several parameters: the number
of classes (k), the input training data (a percentage of hyperspectral image’s pixels with
which MLR will train), the number of maximum iterations and the tolerance of the L-BFGS
optimizer. On the other hand, the input data is regularized by L2.
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3 Experimental results

3.1 Experimental Configuration

In order to evaluate the performance of the adopted MLR implementation, we use a
hardware environment composed by a Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz (8 cores),
16 GB RAM, Shared storage, NetApp FAS3140. Virtual nodes have two virtual CPUs,
4GB of RAM and 40 GB hard disk each. In addition, we have developed a parallel
version of the algorithm for comparative purposes. This version has been implemented
on a paltform with Intel(R) Core(TM) i7-4790 CPUs @ 3.60GHz (8 cores), 16 GB RAM,
SanDisk SDSSDA240G. In our experiments, we used Ubuntu 14.04 x64 LTS as operating
system. For the parallel version of MLR, a virtual machine of the cluster with 2 cores, 4GB
of RAM and 40GB of hard disk, and the same software configuration has been used.

Color Land cover type Samples

Background 10776

Alfalfa 46

Corn-notill 1428

Corn-min 830

Corn 237

Grass/Pasture 483

Grass/Trees 730

Grass/pasture-mowed 28

Hay-windrowed 478

Oats 20

Soybeans-notill 972

Soybeans-min 2455

Soybean-clean 593

Wheat 205

Woods 1265

Bldg-Grass-Tree-Drives 386

Stone-steel towers 93

Total samples 21025

Figure 3: Original ground-truth of Small Indian Pines scene, with class labels and original
number of samples per class.

3.2 Hyperspectral data sets

In our experiments, we use two different hyperspectral images. The first one was collected
by AVIRIS [4] in 1992 over a set of agricultural fields with regular geometry and irregular
patches of forest in Northwestern Indiana (Indian Pines image). This scene has 145 × 145
pixels with 224 spectral bands in the range 0.4-2.5µm, with 0.01µm of spectral resolution,
0.020µm moderate spatial resolution and 16 bits of radiometric resolution. 4 zero bands plus
20 bands with lower signal-to-noise ratio (SNR) have been removed, retaining 200 spectral
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channels. The data has 16 ground-truth classes (Fig. 3). Also, we use a larger version of

Color Land cover type Samples Color Land cover type Samples

Background 1310047 BareSoil 57

Buildings 17195 Concrete/Asphalt 69

Corn 17783 Corn? 158

Corn-EW 514 Corn-NS 2356

Corn-CleanTill 12404 Corn-CleanTill-EW 26486

Corn-CleanTill-NS 39678 Corn-CleanTill-NS-Irrigated 800

Corn-CleanTilled-NS? 1728 Corn-MinTill 1049

Corn-MinTill-EW 5629 Corn-MinTill-NS 8862

Corn-NoTill 4381 Corn-NoTill-EW 1206

Corn-NoTill-NS 5685 Fescue 114

Grass 1147 Grass/Trees 2331

Grass/Pasture-mowed 19 Grass/Pasture 73

Grass-runway 37 Hay 1128

Hay? 2185 Hay-Alfalfa 2258

Lake 224 NotCropped 1940

Oats 1742 Oats? 335

Orchard 39 Pasture 10386

pond 102 Soybeans 9391

Soybeans? 894 Soybeans-NS 1110

Soybeans-CleanTill 5074 Soybeans-CleanTill? 2726

Soybeans-CleanTill-EW 11802 Soybeans-CleanTill-NS 10387

Soybeans-CleanTill-Drilled 2242 Soybeans-CleanTill-Weedy 543

Soybeans-Drilled 15118 Soybeans-MinTill 2667

Soybeans-MinTill-EW 1832 Soybeans-MinTill-Drilled 8098

Soybeans-MinTill-NS 4953 Soybeans-NoTill 2157

Soybeans-NoTill-EW 2533 Soybeans-NoTill-NS 929

Soybeans-NoTill-Drilled 8731 Swampy Area 583

River 3110 Trees? 580

Wheat 4979 Woods 63562

Woods? 144

Total samples 1644292

Figure 4: Original ground-truth of Big Indian Pines scene, with class labels and original
number of samples per class.

the Indian Pines scene, with a size of 2678×614 pixels. It was collected over the same area,
but spanning a much larger extent. It contains 220 spectral bands an the total number of
classes is 58 (Fig. 4).

3.3 Performance Evaluation

To evaluate the performance of our cloud implementation of MLR, we make a comparison
between the cloud version and a multi-core parallel implementation of the same MLR
algorithm. Our experiments have been launched for each hyperspectral image, using
different training percentages (15%, 25% and 50% of the training samples available in each
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class). For the cloud version we have considered 2, 4 and 8 distributed nodes. The optimal
number of iterations and λ value are obtained by cross-validation. Each configuration has
been repeated five times, and the results reported are the average across the executions for
statistical consistency.

Training Parallel Distributed
percentage 2 nodes 4 nodes 8 nodes

Time Execution

5% 1.82 (2.143) 16.34 (1.876) 16.90 (2.102) 19.32 (2.201)
15% 4.48 (2.051) 18.65 (2.039) 20.01 (1.872) 23.50 (2.231)
25% 6.84 (1.942) 21.04 (2.052) 22.61 (2.312) 25.32 (2.214)
50% 13.42 (2.161) 30.34 (1.911) 32.39 (1.891) 32.84 (1.857)

Accuracy Results

5% 68.25 (1.0) 67.11 (0.9) 68.19 (1.0) 67.02 (0.8)
15% 77.15 (0.8) 75.74 (0.8) 75.00 (1.0) 73.77 (0.9)
25% 79.58 (0.9) 77.27 (0.9) 76.69 (1.1) 76.58 (0.9)
50% 82.05 (1.4) 78.40 (1.1) 79.36 (1.2) 79.11 (1.0)

Table 1: Average processing time, classification accuracy (and standard deviation) for
different implementations of multinomial logistic regression using the Small Indian Pines
Image.

Figure 5: Classification results for the Small Indian Pines image: classification map without
background (left) and classification map with background (right), obtained using 15%
training.

Table 1 shows the results obtained by different implementations of the MLR using
the Small Indian Pines dataset. The classification accuracies are worse as we add nodes
to the cluster, due to the lack of data within the nodes, and the processing times tend
to be worse too. This is because the nodes have not enough data to optimize. Fig. 5
shows the obtained classification result. As mentioned before, the processing times increase
slightly as we add nodes to the distributed environment (with 8 nodes the weight of the
communication prevents to improve the speed up). However, the increase of training samples
affects non-uniformly the obtained classification results (this depends on the calculation of
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λ).

Training Parallel Distributed
percentage 2 nodes 4 nodes 8 nodes

Time Execution

5% 163.83 (2.620) 169.12 (2.527) 106.22 (1.403) 79.33 (2.300)
15% 400.20 (9.601) 364.00 (4.341) 218.46 (5.231) 127.36 (3.053)
25% 598.31 (3.310) 556.48 (3.254) 327.106 (1.900) 181.65 (1.024)
50% 1208.98 (11.708) 1087 (9.865) 584.65 (5.651) 374.42 (3.643)

Accuracy Results

5% 44.52 (1.1) 42.24 (0.9) 42.47 (0.9) 42.48 (1.0)
15% 45.39 (1.2) 43.06 (1.1) 43.02 (1.3) 43.88 (1.2)
25% 45.52 (1.1) 43.54 (1.2) 43.63 (0.9) 43.95 (1.1)
50% 45.65 (1.3) 44.29 (1.3) 44.34 (1.2) 44.96 (1.3)

Table 2: Average processing time, classification accuracy (and standard deviation) for
different implementations of multinomial logistic regression using the Big Indian Pines
Image.

Figure 6: Classification results for the Big Indian Pines image: classification map without
background (top) and classification map with background (bottom), obtained using 15%
training.

On the other hand, Table 2 shows the results obtained by MLR using the Big Indian
Pines dataset. As we can see, as we increase the number of nodes, time decreases. The
highest speed up is achieved with 8 nodes (a 3.29), while the accuracy results are quite
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acceptable given the complexity of this scene (although is less than in the parallel version).
These results reveal that our cloud implementation benefits from the availability of large
data volumes and complex analysis scenarios, such as the one given by the Big Indian Pines
scene. The complexity of the classification of this scene can be appreciated in Fig. 6.

4 Conclusions and Future Lines

In this paper, we have discussed the possibility of exploiting cloud computing architectures
for hyperspectral image classification. As a case study, we have presented a cloud computing
implementation of the multinomial logistic regression classifier (a technique that has been
used successfully for hyperspectral data interpretation) on the Apache Spark and Openstack
platforms. Our experimental results show the effectiveness of the proposed distributed
implementation with large hyperspectral datasets (i.e., the proposed technique provides
satisfactory results with very large images and complex analysis scenarios given by a large
numbers of samples and classes). As future work, we will implement other techniques
for hyperspectral image classification using cloud computing platforms, as it is our feeling
that there are many open and unexplored possibilities for the exploitation of these kind of
platforms in remotely sensed hyperspectral imaging.
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iterative computation on heterogeneous multiprocessors with ADITHE. Journal of
Supercomputing, 58(2):151–159, 2011.

c©CMMSE ISBN: 978-84-617-8694-7Page 1041 of  2288




