
Proceedings of the 17th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2017
4–8 July, 2017.

Yinyang K-means clustering for hyperspectral image analysis

Mercedes Eugenia Paoletti1, Juan Mario Haut1, Javier Plaza1 and
Antonio Plaza1

1 Department of Technology of Computers and Communications, University of
Extremadura, Escuela Politecnica, Avda. de la Universidad s/n

emails: mpaolett@alumnos.unex.es, juanmariohaut@unex.es, jplaza@unex.es,
aplaza@unex.es

Abstract

Hyperspectral images are widely used in remote sensing applications due to their
wealth of information in the spectral domain, that allows for very detailed scene
classification. Clustering is one of the most used unsupervised techniques for the analysis
of these scenes. Popular clustering techniques such as K-means are computationally
expensive, particularly when applied to hyperspectral images characterized by their
large dimensionality. An efficient implementation of K-means is the so-called Yinyang
K-means, which outperforms K-means algorithms by clustering the centers in the initial
stage, and leveraging efficiently maintained lower and upper bounds between each point
and the cluster centers. In this work, we have adapted an efficient implementation of
this algorithm using graphics processing units (GPUs) for hyperspectral image analysis.
We have carried out a comparison of this technique with other existing implementations
with the aim of demonstrating its usefulness in hyperspectral imaging. Our obtained
results suggest that this technique is ideal for working with big hyperspectral data
repositories.

Key words: Hyperspectral imaging, k-means clustering, YinYang K-means, GPUs.

1 INTRODUCTION

Current Earth observation (EO) sensors acquire and produce high-dimensional data cubes
with hundreds of spectral channels and millions of pixels. For instance, NASA’s Jet
Propulsion Laboratory’s Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) [1]
measures the solar reflected spectrum from 400nm to 2500nm at intervals of 10nm. The

c©CMMSE ISBN: 978-84-617-8694-7Page 1625 of 2288

Yinyang K-means clustering for hyperspectral image analysis

EO-1 Hyperion imaging spectrometer collects bands in the range of 400nm to 2500nm
too [2, 3]. The resulting hyperspectral datasets [4] provide information corresponding to
large observation areas on the surface of the Earth, using hundreds of contiguous spectral
bands. As a result, these instruments can produce three-dimensional data cubes with size
significantly larger than traditional images. These images can be exploited in many practical
applications, such as monitoring and management of the environment and agriculture, urban
and regional planning, detection of relevant geological zones (e.g. mineral detection) or
defense and intelligence issues (e.g. target detection or mine detection).

However, hyperspectral images present many challenges in terms of storage and
processing due to their large dimensionality. In addition, modern sensors are producing
an almost continuous stream of data [3]. For example, AVIRIS has a data collection rate
of 2.5 MB/s and Hyperion collects almost 71.9 GB/hour. On the other hand, most of the
satellite missions that will be soon in operation, such as the environmental mapping and
analysis program (EnMAP http://www.enmap.org/) present similar data collection ratios.
This creates the need for scalable and efficient processing techniques for hyperspectral data
in the context of different applications [3].

Many techniques (supervised and unsupervised) have been developed to address the
aforementioned challenges. One of the most widely used unsupervised methods is clustering,
which aims to organize the data so that pixels with similar spectral content are clustered
together in the same class [5]. In this case, there is no need for labeled samples which
are common in supervised techniques [6]. Although clustering offers an unsupervised
alternative that has been widely used in various fields, it is also a very challenging task
due to the large spectral variability and complex spatial structures present in hyperspectral
images. The most popular and widely used family of clustering algorithms is represented
by centroid-based clustering methods such as K-means [7].

K-means assumes that similar pixels always form clusters in feature space. By applying
this method to hyperspectral images we can obtain satisfactory results, but K-means is
hampered by its computational complexity. There are a handful of studies which aim
to address this issue, either adapting the algorithm to parallel processing structures such
as field-programmable gate array (FPGAs) [5, 8]or cloud computing architectures [9].
Other works aim at developing improved implementations such as K-means++ [10, 11],
the AFKMC2 [12], the K-means projective clustering [13] or the filtered K-means [7].
The Yinyang K-means [14] is a recent improvement of K-means. This method features a
space-conscious elastic design that adaptively uses the upper and lower bound based filters
while maintaining various space constraints. The upper and lower bound based filters are
continuously and carefully maintained, and provide an efficient evolvement and interplay
mechanism.

Our main goal in this paper is to adapt the Yinyang K-means to hyperspectral image
processing. The implementation that we have adopted is optimized for GPUs using

c©CMMSE ISBN: 978-84-617-8694-7Page 1626 of 2288

M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza

NVIDIA Compute Device Unified Architecture (CUDA). To test the effectiveness of the
implementation, we have compared it with other existing k-means implementations and
made an exhaustive analysis of the pros and cons of all the implementations used.

The remainder of the paper is organized as follows. Section 2 will delve into the K-means
method and the improvements provided by the Yinyang K-means version, presenting its
theoretical foundations. Section 3 validates the Yinyang K-means algorithm by comparing
it with other implementations in terms of execution times. Finally, section 4 concludes with
some remarks and hints at plausible future research lines.

2 K-means method: an overview

2.1 The K-means clustering algorithm

K-means is one of the easiest unsupervised learning algorithms and most widely used method
to group data in a specified number of clusters. Suppose a set of n observations X =
(x1, x2, ..., xn), where each observation is xi ∈ Rd, i.e. xi = [xi1 , xi2 , ..., xid] (where d is
the number of spectral channels). The goal is to group each observation into a number
of clusters k fixed a priori (k <= n). Iteratively, K-means calculates the centers of the k
groups, optimizing the error of each group as min

∑k
j=1

∑nk
i=1 ‖ x

j
i−cj , ‖2 where ‖ xji−Cj ‖2

is the euclidean distance between a data point xji of the cluster j (nk is the observations
within each cluster) and the cluster center cj , which if it is the point that minimizes the
equation also called centroid of cluster j.

K-means algorithm successfully performs the task of obtaining useful information from
the dataset, such as the best distance metric for the data [15]. However, the results can
vary greatly due to a small change in parameters and in the choice of the initial centers.
So, a proper initialization will result in a final best solution. In order to obtain a set of
good initial cluster centers, several methods have been proposed, as K-means++ [10, 11].
This algorithm obtains a set of k initial centers which are generally very close to the final
solution.

2.2 Yinyang K-means method

The main problem with the traditional K-means implementation is that it performs a lot of
redundant work when recalculating distances corresponding to samples which are not going
to change the cluster. With this in mind, Yinyang K-means optimizes two important points
in the K-means algorithm: the assignment steps and the update steps. In order to do that,
it implements two filters and a new center update method.

In the standard K-means, the assignment step computes the distances between every
point xi and every cluster center cj in order to find out the closest center to each point.

c©CMMSE ISBN: 978-84-617-8694-7Page 1627 of 2288

Yinyang K-means clustering for hyperspectral image analysis

The Yinyang K-means instead uses two filters to detect which distance calculations are
unnecessary and avoids computing them. These filters are based on the triangle inequality:

• Group filtering groups the k clusters into t groups G = g1, g2, ..., gt, where each gi ∈ G
is a set of the clusters and t must no be greater than k/10. t provides a design knob for
controlling the space overhead and redundant distance elimination. For each group,
it calculates:

1. Upper bound: for each point x in cluster j (j = j(x)) it sets the upper bound to
uj(x) = d(x, j(x)), i.e. the distance between x and cluster. The upper bound is
updated as uj′(x) = uj(x) + δ(j), where δ(j) is the distance of the cluster j.

2. Lower bound: for each point x in cluster j (j = j(x)) it sets the lower bound
lj(x, gi) as the shortest distance between x and all centers in gi excluding j(x).
The lower bound is updated as lj′(x, gi) = lj(x, gi)−maxc∈giδ(c), δ(c) = d(c, c′)
is the shift of cluster center due to the center update.

If the updated lower bound is major than the updated upper bound, lj′(x, gi) > uj′(x),
no reassignment is needed for point x and all the group-level comparisons can be
avoided.

• Local filtering is used for get the new centroid of a cluster, avoiding unnecessary
distance operations. A new center c′ ∈ g′i cannot be the closest center to a point x if
there is another center p′ 6= c′ such that d(x, p′) < lj(x, gi)− δ(c)

On the other hand, in the updating step, K-means computes the new center
for each cluster. In Yinyang K-means new centers are computed as c′ =
c·|V |−(

∑
y∈V−OV y)+

∑
y′∈V ′−OV y′

|V ′| where V ′ and V denote a cluster in the current and previous

iteration, OV is V ∩ V ′, c is the old center and c′ is the new center.

2.3 Parallel GPU Yinyang K-means

The parallel implementation of Yinyang K-means that we have adopted is available in a
library. It has been optimized for low memory consumption and use of a large number of
clusters, bearing in mind the limitations of the K-means algorithm related to the calculation
of the centroids that requires having all the data be available in the same place. In the
context of the CUDA-based GPU implementation, if the data occupies a large amount of
storage, it is impossible to store them in the memory of a single GPU, so it is necessary to
cut the samples into as many intervals as GPUs are available. As a result, in our adopted
implementation each GPU will work with its own interval, calculating the distances and the
local centroids, writing the local assignments and broadcasting its results to other GPUs.

The parameters used by our adopted implementation are the number of clusters, k, the
number of cluster groups (t), and the value for tolerance, which will be used by the algorithm

c©CMMSE ISBN: 978-84-617-8694-7Page 1628 of 2288

M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza

to stop its execution (if the number of reassignments drop below the tolerance value). The
parallel Yinyang K-means execution is initialized with random centroids (or it can also
be initialized by intelligently produced centroids such as those produced by K-means++)
and calculates the Euclidean distance (L2) to perform the centroid selection calculations as
d2(
−→x ,−→y) = 2

√∑
i(xi − yi)2.

The output of the method is a vector of centroids and a vector with the cluster index
for each sample (numerical labels for each pixel).

3 Experiments and results

3.1 Experimental Configuration

In order to evaluate the performance of the adopted Yinyang K-means implementation,
we use a hardware environment composed by a 6th Generation Intel R© CoreTMi7-6700K
processor with 8M of Cache and up to 4.20GHz (4 cores/8 way multitask processing), 32GB
of DDR4 RAM with a serial speed of 2400MHz, a GPU NVIDIA GeForce GTX 1080 with
8GB GDDR5X of video memory and 10Gbps of memory frequency, a Toshiba DT01ACA
HDD with 7200RPM and 2TB of capacity, and an ASUS Z170 pro-gaming motherboard. On
the other hand, the software environment is composed by Ubuntu 16.04.4 x64 as operating
system, CUDA 8 and Python.

3.2 Hyperspectral data sets

In our experiments, we use four different hyperspectral images. The first one was collected by
AVIRIS [1] in 1992 over a set of agricultural fields with regular geometry and with a multiple
crops and irregular patches of forest in Northwestern Indiana. This scene, Indian Pines,
has 145x145 pixels with 224 spectral bands in the range from 400 to 2500nm, with 10nm
of spectral resolution, 20nm moderate spatial resolution and 16 bits radiometric resolution.
4 zero bands plus 20 bands with lower signal-to-noise ratio (SNR) have been removed,
retaining 200 spectral channels. Dataset has 16 ground-truth classes(Fig. 1).

Also, we use a larger version of the Indian Pines scene. This one has a much larger
size of 2678× 614 pixels. It was collected over the same area that small Indian Pines, but
spanning a much larger extent. It contains 220 spectral bands in the range from 400 to
2500 nm, with spectral resolution of 10 nm, moderate spatial resolution of 20 nm and 16
bits of radiometric resolution. The total number of classes is 58. (Fig. 4).

The third dataset was collected by AVIRIS over Salinas Valley, California (Fig. 3). The
area covered has 512 × 217 samples and the spatial resolution is 3.7 m per pixel. 204 out
of the 224 bands are kept after 20 water absorption bands are removed. Dataset has 16
land-cover classes.

c©CMMSE ISBN: 978-84-617-8694-7Page 1629 of 2288

Yinyang K-means clustering for hyperspectral image analysis

Figure 1: Ground-truth of
small Indian Pines scene.

Figure 2: Ground-truth of
University of Pavia.

Figure 3: Ground-truth of
Salinas scene.

Figure 4: Ground-truth of big Indian Pines scene.

The fourth hyperspectral dataset was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor [16] during a flight campaign over Pavia, northern Italy. The
dataset covers an urban environment, with various solid structures, natural objects and
shadows (9 classes in total). The scene (see Fig. 2) contains 103 spectral bands of 610×340
pixels in the spectral range from 0.43 to 0.86µm, with spatial resolution of 1.3m/pixel.

3.3 Performance evaluation

In order to evaluate the performance of parallel Yinyang K-means, several experiments
have been executed. The first one is a comparison between the GPU version of Yinyang

c©CMMSE ISBN: 978-84-617-8694-7Page 1630 of 2288

M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza

K-means and other iterative and parallel GPU implementations of the original (Lloyd)
K-means algorithm setting the maximum number of centroids to the number of classes.
The tolerance value was set to 0.001. To complete the experiment, we have tested two
initiations of centroids: 1) completely random and 2) K-means++ method. Each version
has been executed 10 times and the average times are reported for statistical significance.
The obtained results are reported in Table 1.

Initialization Lloyd Iterative Lloyd CUDA Yinyan CUDA

Small Indian Pines
Time Speed up Time Speed up Time Speed up

k-means++ 0.183 (0.015) 1 0.421 (0.062) 0.435 0.441 (0.066) 0.415
random 0.185 (0.007) 1 0.520 (0.050) 0.355 0.511 (0.056) 0.361

Pavia University
Time Speed up Time Speed up Time Speed up

k-means++ 0.238 (0.017) 1 0.839 (0.189) 0.283 0.837 (0.242) 0.284
random 0.223 (0.07) 1 0.998 (0.124) 0.223 1.088 (0.159) 0.205

Salinas
Time Speed up Time Speed up Time Speed up

k-means++ 0.726 (0.078) 1 2.436 (0.616) 0.298 2.083 (0.567) 0.348
random 0.715 (0.5) 1 1.978 (0.331) 0.361 2.231 (0.384) 0.320

Big Indian Pines
Time Speed up Time Speed up Time Speed up

k-means++ 38.584 (2.694) 1 46.167 (10.158) 0.836 40.085 (10.753) 0.963
random 37.217 (2.960) 1 69.518 (6.057) 0.535 56.321 (11.650) 0.661

Table 1: Average time executions (standard deviation) and speed-up for each
implementation of K-means initialized with random centroids and K-means++.

Figure 5: Small Indian Pines Yinyang K-means classification results: the confusion matrix
and the classification maps without background and with background.

For small Indian Pines image, the fastest K-mean implementation is the original Lloyd

c©CMMSE ISBN: 978-84-617-8694-7Page 1631 of 2288

Yinyang K-means clustering for hyperspectral image analysis

Figure 6: Pavia University Yinyang K-means classification results: the confusion matrix
and the classification maps without background and with background.

Figure 7: Salinas Yinyang K-means classification results: the confusion matrix and the
classification maps without background and with background.

iterative version with K-means++ initialization. It is 2.41 times faster than the Yinyang
cuda implementation with K-means++ initialization and 2.79 times faster than the same
algorithm with random initialization. This is due to the small size of the image (only
145 × 145 pixels in only 16 groups), which is not enough to get the most out of GPU
versions. In Fig. 5 we can see the classification results of Yinyang K-means. The confusion

c©CMMSE ISBN: 978-84-617-8694-7Page 1632 of 2288

M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza

matrix is a typical mechanism to evaluate unsupervised clustering methods, where in our
representation warm colors indicate a high value and warm colors indicate a low value. The
two classification maps show the clustering result without and with background pixels. As
we can observe, the obtained result is reasonable for a K-means method, despite some noise
at the borders of the classes.

For Pavia University dataset, the fastest implementation is also the iterative version
and, among the two parallel GPU versions, the original LLoyd algorithm is faster than
Yinyang. In this case we have more data than Indian Pines, but still enough complexity
(only 9 centroids). In Fig. 6 we can observe the confusion matrix of the classification with
Yinyang, whose results are better than in the Small Indian Pines. The classification maps
reveal less noise at the borders.

For Salinas we have similar results: although we have a lot of data, the complexity is
not enough (only 16 centroids). So, the iterative version is still the fastest. But we can see
that Yinyang with K-means++ initialization is better than the original Lloyd algorithm
parallelized in GPU: the differences between GPU versions are already starting to appear.
In Fig. 7 we can see that the classification results with Yinyang are better than in the small
Indian Pines and Pavia University images. Specifically, border pixels are better identified.

Finally, for big Indian Pines the fastest implementation is the iterative Lloyd algorithm
(2678 × 614 with 58 centroids), but if we compare the two GPU versions, the YinYang is
faster than the parallel GPU Lloyd. Since the classification results are similar to the ones
already reported for the small Indian Pines image, we do not include these results for space
considerations.

In summary, our results indicate that YinYang K-means works better than the CUDA
version of Lloyd algorithm when more data needs to be processed, but higher complexity
appears to be needed in order to improve the iterative version. So, we repeated the first
experiment increasing the number of centroids to be calculated in a second experiment,
which compares the parallel GPU implementation of Yinyang K-means with the same
implementations of the original K-means algorithm, using a maximum number of centroids
set to one hundred times the number of classes in each scene (i.e. 1600, 900, 1600 and 5800
centroids, respectively). Again, this is intended to increase the analysis complexity. The
tolerance value is 0.001 in all cases. Again,we tested with random and K-means++ [10, 11]
initializations. The obtained results are reported in Table 2.

For small Indian Pines dataset the fastest implementation is the Yinyang K-means
with random initialization. It reaches a speed up of 7.071 over the iterative version. In
the first experiment, with 16 classes the execution times were 0.441 and 0.511, at this time
with 1600 centroids to calculate the execution times of Yinyang increase in just one second.
However for iterative version, it needed 0.183-0.185 seconds and now it needs 6 seconds
more. Also, for Pavia University scene Yinyang K-means is the fastest implementation,
with K-means++ initialization. With the same number of pixels and 900 centroids, Yinyang

c©CMMSE ISBN: 978-84-617-8694-7Page 1633 of 2288

Yinyang K-means clustering for hyperspectral image analysis

Initialization Iterative CUDA Yinyan CUDA

Small Indian Pines
Time Speed up Time Speed up Time Speed up

k-means++ 6.034 (0.310) 1 1.912 (0.134) 3.191 1.542 (0.024) 3.956
random 6.687 (0.245) 1 1.131 (0.050) 5.410 0.865 (0.025) 7.071

Pavia University
Time Speed up Time Speed up Time Speed up

k-means++ 14.124 (0.845) 1 4.166 (0.221) 3.350 2.884 (0.266) 4.839
random 12.941 (0.780) 1 3.526 (0.278) 4.119 2.573 (0.209) 5.644

Salinas
Time Speed up Time Speed up Time Speed up

k-means++ 40.308 (1.938) 1 13.230 (0.767) 3.077 5.879 (0.196) 6.926
random 37.507 (2.460) 1 13.630 (1.229) 3.155 5.602 (0.146) 7.678

Big Indian Pines
Time Speed up Time Speed up Time Speed up

k-means++ 2331.929 (233.417) 1 461.223 (11.586) 5.022 121.726 (1.909) 19.029
random 2022.694 (260.634) 1 463.165 (16.392) 5.132 113.459 (3.653) 20.952

Table 2: Average time executions (standard deviation) and speed-up for each
implementation of K-means initialized with random centroids and K-means++.

K-means needs only two more seconds. The iterative version needs 12 or 14 seconds more,
from the first experiment where it needed 0.23-0.22 seconds. For Salinas dataset we observe
the same behavior: with 1600 centroids to calculate, the fastest one is Yinyang in GPU
reaching a speedup of 7.678. For the big Indian Pines image, Yinyang K-means reaches
a significant speedup: a 20.95. These results show that, the more the complexity of the
analysis, the better the performance of the Yinyang GPU which is intended for big data
problems involving not only massive data repositories but also complex analysis scenarios.

4 Conclusions and Future Lines

In this paper, we have proved a recent variant of K-means, the Yinyang K-means algorithm,
to hyperspectral image analysis, in particular a parallel GPU implementation, which
has been shown to obtain good processing results in hyperspectral image analysis when
compared with other popular K-means implementations. Specifically, our experimental
results show the effectiveness of the parallel GPU implementation of Yinyang K-means
using four different hyperspectral scenes. The algorithm performs particularly effectively
when we need to process big data and calculate a large set of centroids. The method not
only improves as more data become available, but also with the increase of the complexity of
the clusterization. On the other hand, the ranking results are in line with those obtained by
any K-means algorithm. As future work, we are planning on using the Yinyang K-means in

c©CMMSE ISBN: 978-84-617-8694-7Page 1634 of 2288

M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza

conjunction with other techniques for hyperspectral image classification (e.g. supervised and
semi-supervised techniques) with the aim of improving the obtained classification results.

Acknowledgements

This work has been supported by Ministerio de Educación (Resolución de 26 de diciembre
de 2014 y de 19 de noviembre de 2015, de la Secretaŕıa de Estado de Educación, Formación
Profesional y Universidades, por la que se convocan ayudas para la formación de profesorado
universitario, de los subprogramas de Formación y de Movilidad incluidos en el Programa
Estatal de Promoción del Talento y su Empleabilidad, en el marco del Plan Estatal de
Investigación Cient́ıfica y Técnica y de Innovación 2013-2016). This work has also been
supported by Junta de Extremadura (decreto 297/2014, ayudas para la realización de
actividades de investigación y desarrollo tecnológico, de divulgación y de transferencia de
conocimiento por los Grupos de Investigación de Extremadura, Ref. GR15005).

References

[1] Robert O. Green, Michael L. Eastwood, Charles M. Sarture, Thomas G. Chrien, Mikael
Aronsson, Bruce J. Chippendale, Jessica A. Faust, Betina E. Pavri, Christopher J.
Chovit, Manuel Solis, Martin R. Olah, and Orlesa Williams. Imaging spectroscopy
and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing
of Environment, 65(3):227–248, 1998.

[2] Amin Beiranvand Pour and Mazlan Hashim. ASTER, ALI and Hyperion sensors data
for lithological mapping and ore minerals exploration. SpringerPlus, 3(1):130, 2014.

[3] A. Plaza, J. Plaza, A. Paz, and S. Sanchez. Parallel Hyperspectral Image and Signal
Processing. IEEE Signal Processing Magazine, 28(3):119–126, 2011.

[4] Chein-I Chang. Hyperspectral Imaging: Techniques for Spectral Detection and
Classification. Springer US, 2003.

[5] Miriam Leeser, Pavle Belanovic, Michael Estlick, Maya Gokhale, John J Szymanski,
and James Theiler. Applying Reconngurable Hardware to the Analysis of Multispectral
and Hyperspectral Imagery. In International Society for Optics and Photonics, editor,
International Symposium on Optical Science and Technology, pages 100–107, 2002.

[6] Antonio Plaza, Javier Plaza, Gabriel Mart́ın, and Sergio Sánchez. Hyperspectral
Data Processing Algorithms. In Alfredo Huete Prasad S. Thenkabail, John G. Lyon,
editor, Hyperspectral Remote Sensing of Vegetation, chapter 5, pages 121–137. Taylor
& Francis, 2011.

c©CMMSE ISBN: 978-84-617-8694-7Page 1635 of 2288

Yinyang K-means clustering for hyperspectral image analysis

[7] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko,
Ruth Silverman, and Angela Y Wu. An Efficient k-Means Clustering Algorithm:
Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881–892, 2002.

[8] Abel Guilhermino, Da S Filho, Alejandro C Frery, Cristiano Coêlho De Araújo, Haglay
Alice, Jorge Cerqueira, Juliana A Loureiro, Manoel Eusebio De Lima, Maria Das,
Graas S Oliveira, and Michelle Matos Horta. Hyperspectral Images Clustering on
Reconfigurable Hardware using the K-Means Algorithm. In 16th Annual Symposium
on Integrated Circuits and Systems Design (SBCCI), pages 8–11, Sao Paulo (Brasil),
2003.

[9] J.M. Haut, M. Paoletti, J. Plaza, and A. Plaza. Cloud implementation of the K-means
algorithm for hyperspectral image analysis. Journal of Supercomputing, 73(1), 2017.

[10] David Arthur and Sergei Vassilvitskii. k-means++: The Advantages of Careful Seeding.
In ACM, editor, Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[11] Olivier Bachem, Mario Lucic, S Hamed Hassani, and Andreas Krause. Approximate
K-Means++ in Sublinear Time. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 1459–1467, Phoenix, Arizona, 2016. AAAI Press.

[12] Olivier Bachem, Mario Lucic, S Hamed Hassani, and Andreas Krause. Fast and
Provably Good Seedings for k-Means, 2016.

[13] K. Agarwal, Pankaj and Nabil H. Mustafa. K-Means Projective Clustering. In
Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 155–165, Paris- France, 2004. ACM.

[14] Yufei Ding, Yue Zhao, Ncsuedu Xipeng Shen, Madanlal Musuvathi, and Microsoftcom
Todd Mytkowicz. Yinyang K-Means: A Drop-In Replacement of the Classic K-Means
with Consistent Speedup. In Proceedings of the 32nd International Conference on
Machine Learning, page 579587, Lille, France, 2015. JMLR: W&CP.

[15] Justin Sunu. Applications of K-means and Spectral Clustering to Hyperspectral Video
Sequences. PhD thesis, California State University, Long Beach, 2014.

[16] B. Kunkel, F. Blechinger, R. Lutz, R. Doerffer, and H. van der Piepen. ROSIS
(Reflective Optics System Imaging Spectrometer) - A candidate instrument for polar
platform missions. In J. Seeley and S. Bowyer, editors, Optoelectronic technologies for
remote sensing from space, pages 134–141, 1988.

c©CMMSE ISBN: 978-84-617-8694-7Page 1636 of 2288

