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Abstract— The relatively recent availability of operational
products from Sentinel-2 and Sentinel-3 missions gives
widespread opportunities to combine data collected from differ-
ent sensors in order to provide products of a higher processing
level. Nonetheless, the availability of these products may be
affected by multiple factors, such as cloud occlusions, band
saturation, geolocation errors or even misaligned detectors. All
these anomalies affecting remote sensing data may eventually
limit the accessibility to fused products because some of the
required information may become partially unavailable for
specific areas of interest. In this scenario, the work presented
here aims at analyzing the effectiveness of several state-
of-the-art regression models in order to restore Sentinel-3
products with partial anomalies from Sentinel-2 integral data.
In particular this work investigates three regression methods,
two linear-regression method and a non-linear artificial neural
networks based method. Obtained results prove that the non-
linear approach and linear RIDGE method are able to carry
out a good estimation of S3 from S2 data.

Index Terms— Remote Sensing, Sentinel-2 (S2), Sentinel-3
(S3), Product Restoration, Data Regression

I. INTRODUCTION

The European Space Agency (ESA) has developed a
new family of Earth observation missions, called Sentinels,
specially designed to provide operational products for the
Copernicus program [1]. Among all the six planned missions,
Sentinel-2 (S2) and Sentinel-3 (S3) have an especial synergy
to generate image fusion products due to the fact that both
missions are focused on the global monitoring of terrestrial
surfaces by means of mid-resolution and high-resolution
Multi-Spectral (MS) optical imagery [2], [3]. On the one
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hand, S2 mission comprises two identical satellites, both
currently under operation, that incorporate a Multi-Spectral
Instrument (MSI) which provides 13 spectral bands ranging
from the visible and near infrared (VNIR) to the shortwave
infrared (SWIR). On the other hand, S3 mission, which only
has one pre-operational satellite at present, is able to provide
data products with 21 VNIR spectral bands captured by the
Ocean and Land Colour Instrument (OLCI).

In addition to the existing radiometric differences, both
MSI and OLCI instruments offer a remarkable spatial res-
olution diversity. Whereas the former provides a spatial
resolution ranging from 10 mpp (meters per pixel) to 60 mpp,
OLCI’s bands are acquired at a 300 mpp spatial resolution.
Precisely, these differences motivate the constitution of high-
level fusion products useful for multiple remote sensing
applications, such as topographic mapping, land use clas-
sification, agriculture and forestry, flood and ice monitoring,
geology, etc.

Regarding the missions’ data availability, ESA has recently
launched the Copernicus Open Access Hub [4], previously
known as Sentinels Scientific Data Hub, in order to provide
complete, free and open access to S2 operational data and S3
pre-operational land products. Even though S3 related prod-
ucts are still in a pre-operational phase, this data access point
brings an excellent opportunity for the scientific community
to start developing new fusion models and methodologies
to deal with future challenges. Nonetheless, the early stage
of the S3 infrastructure occasionally limits the process of
collecting coupled S2 and S3 data over specific areas of
interest. For instance, filtering products by cloud coverage
is one of the main limitations of the pre-operational hub.
That is, S3 products cannot be still filtered by the percentage
of cloud coverage what makes difficult to find S3 images
without clouds given a cloud free S2 product.

Additionally, there are many other factors affecting pre-
operational products that may generate S3 data partially
unavailable, such as band saturation, partial data degradation,
geolocation errors or misaligned detectors. Even though all
these anomalies can occur in S2 products as well, they are
more likely to happen in a pre-operational scenario like in
the S3 case. In fact, it is easy to check this having a look at
the Copernicus Open Access Hub news [4]. During the last
month of the year 2017, the number of anomalies reported
by the two S2 operational satellites has been only one while
the single S3 pre-operational satellite has reported a total of
four anomalies.

In this scenario, this paper is concerned about restoring
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partially either degraded or unavailable S3 data by means
of state-of-the-art regression models. Different sorts of re-
gression algorithms have been widely used in the general
purpose remote sensing literature [5]. Cloud removal [6],
remote sensing data coding [7], air pollution mapping [8]
and remote sensing image classification [9] are some of the
applications where different regression models have been
successfully used. However, there are few research work
done within the specific context of the S2 and S3 missions
and this is precisely the gap that motivates this work.

Some quality works in the literature, such as [10], re-
view several state-of-the-art machine learning regression
algorithms for S2 and S3, nonetheless the evaluation is
exclusively conducted from a biophysical parameter retrieval
perspective and besides they only consider simulated data.
This work pursues a more general objective where the
regression assessment is focused on restoring actual S3 data
by integral S2 operational products in order to alleviate some
of the current S3 pre-operational limitations. That is, the
experimental study presented in this work aims at improving
the availability of coupled S2 and S3 real data useful to
develop further fusion models.

First, we review in sec. II the three regression models
considered in this experimental study, two of them linear
and one non-linear, indicating the employed methodology:
the widely used Principal Component Analysis (PCA), the
RIDGE regression algorithm and the Extreme Learning
Machine (ELM). Sec. III introduces and releases a new
small-scale test database, called ESA1, which consists of
two coupled S2/S3 data products belonging to the Sierra de
Andújar Natural Park in southern Spain. Then, we conduct
an experimental comparison using the aforementioned state-
of-the-art regression algorithms to restore partially unavail-
able S3 data from clean S2 products of the same area.
Experiments reveal that linear RIDGE and non-linear ELM
methods perform the best regression task from S2 data to the
corresponding S3 pixels.

II. METHODOLOGY

This section describes all proposed methods to perform
the regression from S2 to S3. In particular, the principal
component analysis (PCA), the RIDGE regression algorithm
and the extreme learning machine (ELM) artificial neural
network. In all cases, the data is scaled in the range [0, 1],
being 85% the training percentage. Input data x(i) ∈ R1×2925

is obtained from S2 images as patches of 15× 15× 13, and
reshaped to 1 × (15 · 15 · 13) = 1 × 2925 feature vectors,
in order to feed the PCA, RIDGE and ELM methods. The
desired output is the corresponding pixel in S3 y(i) ∈ R1×21,
whose spectrum is extracted to form the corresponding
feature vector, such as {x(i),y(i)}Ni=1.

A. Principal Component Analysis

Traditionally, PCA [11] has been widely used as statis-
tical linear technique to unsupervised data dimensionality
reduction, where a set of N observations X ∈ Rd×N =
[x(1),x(2), ...,x(N)], composed by feature vectors with the

form x(i) ∈ Rd = [x
(i)
1 , x

(i)
2 , ..., x

(i)
d ], is reduce down to its

g basic components, being g < d, as X(new) ∈ Rg×N =
[x(new1),x(new2), ...,x(newN )] applying an orthogonal trans-
formation X(new) = WX , being W ∈ Rg×d the projection
matrix created by the g selected eigenvectors of the input
data covariance matrix. The PCA’s reconstruction error is
defined by:

min
W
‖WT (WX)−X ‖2 (1)

where WT (WX) is the inverse process to the reduction
one. In this work, eq. 1 has been changed in order to feed
PCA with patches of S2 X ∈ R(1×2925)×N , being the
corresponding Y ∈ R(1×21)×N S3 pixels the target output:

min
W
‖WT (WX)−X ‖2 + ‖WX − Y ‖2 (2)

B. RIDGE regression

RIDGE regression is one of the most commonly used
linear regression algorithm to approximate the system equa-
tion XZ = Y . Given N observations X ∈ RN×d =
[x(1),x(2), ...,x(N)] with the corresponding set of targets
Y ∈ RN×g = [y(1),y(2), ...,y(N)], RIDGE tries to find Z
that minimize the cost function 3:

min
Z
‖ XZ − Y ‖2 + ‖ λX ‖2 (3)

where λ = αI is the Tikhonov regularization matrix defined
as a multiple of the identity matrix that prevents overfitting
and underfitting, being α a user-defined penalizing term.
Solving eq. 3, Z is defined as Z = (XTX + λTλ)−1XTY .
In our case, X are reshaped patches from S2 and Y cor-
responding pixels in S3. Cholesky solver has been used in
order to obtain a closed-form solution.

C. Extreme Learning Machine

The Extreme Learning Machines (ELM) is a learning
algorithm that exploits artificial neural networks (ANNs)
to perform data analysis. Suppose a dataset of feature
vectors X ∈ RN×d = [x(1),x(2), ...,x(N)] and the cor-
responding targets Y ∈ RN×g = [y(1),y(2), ...,y(N)], so
{x(i),y(i)}Ni=1. Based on single-hidden layer feed-forward
neural networks (SLFNs) with topology d − L − g (see
Fig. 1), where L is the number of hidden neurons, the
ELM model maps input data X to the L-dimensional hidden
layer random feature space as H(X,W,B) = φ(XW +B),
where W ∈ Rd×L and BRL are random weights and biases
that have been generated based on a continuous sampling
distribution probability and connect the input layer nodes
with the hidden layer ones, H ∈ RN×L is the hidden layer’s
output matrix and φ(·) is an activation function (e.g. sigmoid,
ReLU, tanh...). Knowing that the network output if defined
by Y ' f(X) = Hβ, where f(X) is the network output
(desirably similar to Y ) and β ∈ RL×g is the weights
between the hidden and the output nodes, the goal of the
ELM is to apply the linear system:

H†Y = β (4)

(being H† ∈ RL×N the Moore-Penrose generalized inverse
matrix of H) that calculates the connection weights β
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Fig. 1. Extreme learning machine scheme

between the hidden and the output nodes of the net that
best approximate the output of the hidden layer H to the
desired output Y , while exhibiting the minor norm at the
same time and minimizing the function cost minW,B,β ‖
H(W,X,B)β−Y ‖2. In our case, the classical ELM model
has been adapted in order to accept multispectral patches of
S2 pixels as input data x(i) ∈ R1×2925, being S3 pixels the
target output y(i) ∈ R1×21. Also, eq. 4 has been changed
by:

β =

(
I

C
+HTH

)−1
HTY (5)

being
(
HTH

)−1
HT = H† the Moore-Penrose inverse and

C a regularization term [12]. The chosen topology d− L−
g contains one input layer, being d = 1 × (15 ∗ 15 ∗ 13),
one hidden layer, with L = 2000 hidden nodes, and one
output layer with g = 1× 13 nodes. On the other hand, the
training process starts by feeding the entire network with the
scaled training sample {x(i)}Ni=1 and calculating the final
weights β. The error incurred by the network during the
training phase is calculated by Mean Square Error MSE =
1
N

∑N
i=1

(
f
(
x(i)
)
− y(i)

)2
where y(i) is the desired output,

f
(
x(i)
)

is the network output and N the number of training
samples. Once the network is trained, the test set is presented
to the network. Also, the error incurred by the network during
the test phase is calculated by MSE.

III. RESULTS

A. Experimental environment and datasets

Our experiments have been conducted on a hardware en-
vironment composed by a 6th Generation Intel R© CoreTMi7-
6700K processor with 8M of Cache and up to 4.20GHz (4
cores/8 way multitask processing), 40GB of DDR4 RAM
with a serial speed of 2400MHz, a GPU NVIDIA GeForce
GTX 1080 with 8GB GDDR5X of video memory and
10Gbps of memory frequency, a Toshiba DT01ACA HDD
with 7200RPM and 2TB of capacity, and an ASUS Z170
pro-gaming motherboard. On the other hand, the software
environment is composed by Ubuntu 16.04.4 x64 as operat-
ing system.

The dataset considered in this work, called ESA1, consists
of two coupled S2 and S3 reflectance products belonging

Fig. 2. Sentinel-2 product. Fig. 3. Sentinel-3 product.

to the Sierra de Andújar Natural Park in southern Spain.
Figures 2-3 show a color visualization of the data.

These two products, which were acquired on March 10
2017, have been selected because of the special interest of
this area for the study of some biophysical parameters and
besides there are not anomalies present in this data. Both
S2 and S3 products, downloaded from the Copernicus Open
Access Hub, have been appropriately processed using the
Sentinel Application Platform (SNAP) [4] in order generate
compatible images. That is, the S2 product has been initially
re-sampled to a uniform spatial resolution of 20 mpp. Then,
the S3 image has been projected onto the S2 grid and also
cropped to the corresponding S2 coverage area. Eventually,
each S3 pixel with a size of (1× 21) corresponds to a voxel
(15× 15× 13) in S2.

B. Performance evaluation

In order to perform a quantitative evaluation of the results,
two reference metrics are used, the Spectral Angle Mapper
(SAM) and the Mean Squared Error (MSE). The SAM
metric (Eq. (6)) considers each spectral band as a coordinate
axis and then it computes the average angle between the
reconstructed S3 image (R) and the ground-truth ones (G).

SAM(R,G) =
1

N

N∑
i

arccos
Ri ·Gi

||Ri|| ||Gi||
. (6)

Note that the i subindex is used to denote spectral pixels
and N represents the total number of pixels per band.
Regarding the MSE index, this metric measures absolute
differences between both the reconstructed (R) and the
ground-truth (G) images as Eq. (7) shows,

MSE(R,G) =
1

N ·M

N∑
i

M∑
j

(Ri,j −Gi,j)2, (7)

where M represents the number of spectral bands and the
i, j index is used to denote a specific pixel within the j band.

Table I shows the obtained MSE and SAM results for
each method, where each experiment has been repeated 10
times in order to measure the robustness and stability of the
proposed regression methods. As we can observe, non-linear
ELM model and linear RIDGE regression method are able
to reach the best MSE and SAM values, i.e. they are the best
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method to restore S3 data by integral S2, being the PCA the
worst regression method.

Algorithm MSE SAM
PCA 0.3168 (0.0006) 1.5898 (0.0066)
ELM 0.0055 (8e-06) 0.0969 (0.0016)
Ridge 0.0053 (5e-06) 0.0918 (0.0006)

TABLE I
REACHED MSE AND SAM BETWEEN ORIGINAL S3 AND PREDICTED S3.
EACH EXPERIMENT HAS BEEN EXECUTED 10 TIMES AND THE AVERAGE

RESULTS AND THE STANDARD DEVIATION (IN PARENTHESIS) ARE

REPORTED.

IV. CONCLUSIONS

In this work, we have presented an experimental study
to assess the performance of three different regression algo-
rithms, PCA, ELM and Ridge, in order to restore S3 data
from S2 operational products. The conducted experiments
reveal that both ELM and Ridge are able to generate an
accurate result whereas the PCA approach is unable to
successfully restore S3 data.

One of the main conclusions that arises from this work
is the feasibility of restoring S3 spectral data by taking
advantage of the higher spatial resolution of S2. That is, the
spatial patterns captured by the S2 MSI sensor are useful
to identify spectral signatures over S3 OLCI instrument
which is, precisely, the motivation behind many data fusion
algorithms.

Regarding the performance of the tested methods, PCA has
obtained an utterly non-competitive result due to the fact that
the spatial variability captured by the eigenvectors uncovered
from S2 data is not focused on replicating the spectral
patterns which are observable through the S3 OLCI sensor.
Nonetheless, the ELM and Ridge regression algorithms have
shown to restore the S3 spectra with a high level of accuracy
in terms of spatial and spectral distortions.

As future research lines, we will perform an evaluation of
regression methods that employ both hyperspectral charac-
teristics, spectral and spatial feature information at the same
time, in order to minimize the MSE and SAM measurements
by adding spatial information. In addition, we will also study
the estimation of different biophysical parameters, such as
Leaf Area Index or Chlorophyll content, over the restored
S3 products.
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