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Abstract— During recent years, many regularization tech-
niques have been proposed to deal with ill-posed problems
related to hyperspectral image classification, in which the
limited number of training samples contrasts with the very
high spectral dimensionality. However, the intrinsic structure
of a hyperspectral image often depends on the specific scene
and spectrometer, although regularizers like Ridge, LASSO,
etc, have been widely used in practical applications. Instead
of imposing these regularizers to the probabilistic output of
a classifier, this work evaluates the use of extreme learning
machines (ELM) with output weights of a single-hidden layer
feed-forward neural network (SLFN) regularized with Ridge
and LASSO priors, respectively. Experimental results with
several real hyperspectral images are conducted to compare
the performance and adaptation of these two regularizers with
the the original ELM in classification scenarios.

I. INTRODUCTION

The rapidly developing field of hyperspectral remote sens-
ing has reinforced the application of this technology in
a wide range of fields [1]. In hyperspectral classification,
extreme learning machines [2], as an instance of artificial
neural networks, have been one of the most widely used
classifiers due to their simplified network structure as well
as their high computing performance [3], [4]. One of the
prominent advantages of this classifier is its fast estimation
of the output weights in the learning process against the
singularity of the coefficient matrix.

The issue of singularity, or ill-poseness, of the coeffi-
cient matrix has led to great challenges in hyperspectral
image classification and regression scenarios, due to the
often limited availability of training samples and very high
spectral dimensionality of hyperspectral data. In order to deal
with this problem, various techniques have been developed
in recent years. Intuitively, semi-supervised learning and
active learning techniques have been widely explored to
automatically search and increase the sample volume for
the training set to seek its balance with the high spectral
dimensionality [5], [6]. Dimensionality reduction turns out
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to be another popular method to address the curse of dimen-
sionality via selecting the most relevant bands or features for
training a classifier while discarding the rest [7]. On the other
hand, spectral partitioning, which pursues dimensionality
reduction by reassigning the spectral bands or features into
multiple subgroups, where each subgroup consists of much
less bands/features, provides an extra mechanism to utilize
the original information, especially retaining the physical
information to meet specific practical requirements [8]. In
addition, spectral-spatial classification techniques [9], [10]
has also been proven to be highly effective for improving
the classification performance by including the information
from the spatial domain of the image.

Besides these techniques, regularized methods are cer-
tainly among the most successful ones. These methods
impose prior regularizing terms to the learning model, thus
being able to address ill-posed problems [11]. Meanwhile,
these techniques generally assume certain intrinsic character-
istics in the dataset, which often promote the generalization
capability of the learning model. Such regularized methods
can be straightforwardly used in combination with the rest
of techniques.

Among the regularizing priors, Ridge [12] and least
absolute shrinkage and selection operator (LASSO) [13]
are among the mostly used ones [14], [11]. They address
the singularity issues in regression/learning problems and,
meanwhile, they render information via Ridge or LASSO
regularizing to the coefficient of a learning model. The
success of these regularization methods depends, not only
on specific datasets, but also on the specific classifiers. This
is particularly true for hyperspectral images, whose data
volume is usually huge and with complex structure. Taking
the example of extreme learning, the output weights are the
most relevant variable in the learning process. As an instance
of single-hidden layer feed-forward neural network (SLFN),
the famous ”black box” effect of the single hidden layer
makes the output weight distinct from the coefficients of
other classifiers [2]. Motivated by the aforementioned issues,
this work developed two new extreme learning machines
models based on Ridge and LASSO regularizers in order to
explore their capacity to provide regularized estimations of
the output weights in hyperspectral classification scenarios.
We analyze and compare in detail the performance as well as
the adaptation of both, the original ELM and our regularized
methods, in the context of hyperspectral image classification
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problems.
The remainder of this work is organized as following.

Section II introduces the developed regularized methods
under the ELM framework. Experimental results are further
displayed and discussed in Section III. Finally, Section IV
concludes this work and indicates our future research lines.

II. METHODOLOGY

A. Extreme Learning Machine (ELM)

Based on artificial neural networks (ANNs), the ELM im-
plements a single-hidden layer feed-forward neural network
(SLFN) with topology d − L − g, being d the input layer
nodes, L the hidden layer nodes and g the output layer nodes
(see Fig. 1), whose goal is to find the output weights β
that best approximate the output of the hidden layer to the
desired network output [2]. Given a dataset of m paired data

Fig. 1. Extreme learning machine scheme
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the k possible targets, categories or labels, the desired ELM
output can be calculated as f(x) = H(X,W,B)β, where
X = {x(i)}mi=1 and f(x) ' Y = {y(i)}mi=1 are the input
data and the output targets, β is the output weights that
connect the hidden nodes with the network output nodes,
W and B are the random-selected weights and biases that
connect the input layer nodes with the hidden layer ones
and have been generated based on a continuous sampling
distribution probability, and H is the output matrix calculated
by the hidden layer as H = f(XW+B), where f(·) is an
activation function, such as sigmoid, tanh or ReLU, among
others. In general, the learning problem of an ELM can be
represented by,

Hβ = Y, (1)

whose solution, under the least square error standard, can
usually be approximated via

β̂ = argmin
β
‖Hβ −Y‖2F , (2)

where ‖ · ‖F is the Frobenius norm. The imbalance between
limited training samples and very high spatial dimensionality
of HSI usually lead to the ill-poseness of solving the problem
in (1). Therefore, ELM calculates β that most minimize the

cost while exhibiting the minor norm solving the equation
system 3:

β̂ELM = H†Y =

(
I

C
+HTH

)−1
HTY, (3)

where H† is the Moore-Penrose generalized inverse matrix
of H and C is the corresponding regularization term [3]
to increase the robustness and the generalization capability
of ELM. Also, equation 3 can be modified in order to add
a kernel [4] with the aim of making ELM independent of
random weights and bias, such as β = ( I

C + K)−1T. The
target output can be expressed as:

f(x) = Hβ = h(X)

(
I

C
+HTH

)−1
HTY, (4)

with h(X) being a feature mapped from the input data. The
kernel matrix K can be expressed as KELM = HHT :
Ki,j = k(x(i),x(j)) = h(x(i))×h(x(j)), where k(x(i),x(j))
is the kernel function, being x(i) and x(j) two training
samples of dataset X. Leading this equation to the output
function expressed in 4 we obtain:

f(x(i)) =


k(x(i),x(1))
k(x(i),x(2))

...
k(x(i),x(m))


T (

I

C
+KELM

)−1
Y(i) (5)

The kernel function k(x(i),x(j)) can be implemented as
radial basis function (RBF):

K(x(i),x(j)) = exp(−‖ x
(i),x(j) ‖2

2σ2
) (6)

B. Solution via RIDGE regularization

The RIDGE regularization is one of the most commonly
used linear regression/classification algorithm, which is uti-
lized here to improve the conditioning of the problem (2)
and enforce smoothness if the underlying vector is mostly
continuous,

β̂Ridge = argmin
β
‖Hβ −Y‖2F + λRidge‖β‖2F , (7)

which eases the singularity issue and approximates the
solution via Tikhonov regularizing in the following,

β̂Ridge =
(
HTH+ λRidgeI

)−1
HTY, (8)

where the Tikhonov regularization matrix is defined as a
multiple of the identity matrix that prevents overfitting and
underfitting and λRidge is a user-defined penalizing term. In
our case, Cholesky solver has been further used in order to
obtain a closed-form solution [15].

C. Solution via LASSO regularization

The LASSO regularizer is also considered in this work to
approximate the solution of the linear regression algorithm
of (1), in order to improve the prediction accuracy and inter-
pretability of regression models by altering the model fitting
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process to select only a subset of the provided covariates to
be used in the final model rather than using all of them [13],

β̂LASSO = argmin
β

1

2
‖Hβ −Y‖2F + λLASSO‖β‖1, (9)

where ‖·‖1 is the 1-norm and λLASSO is a tuning parameter
that controls the amount of regularization. In this work,
we solve the object function (9) via the sparse unmixing
by variable splitting and augmented Lagrangian (SUNSAL)
toolbox without imposing nonnegative and sum-to-one con-
straints [14].

III. EXPERIMENTAL RESULTS

A. Experimental environment and datasets

Our experiments have been conducted on a hardware en-
vironment composed by a 6th Generation Intel R© CoreTMi7-
6700K processor with 8M of Cache and up to 4.20GHz (4
cores/8 way multitask processing), 40GB of DDR4 RAM
with a serial speed of 2400MHz, a GPU NVIDIA GeForce
GTX 1080 with 8GB GDDR5X of video memory and
10Gbps of memory frequency, a Toshiba DT01ACA HDD
with 7200RPM and 2TB of capacity, and an ASUS Z170
pro-gaming motherboard. On the other hand, the software
environment is composed by Ubuntu 16.04.4 x64 as oper-
ating system. Also, the proposal has been implemented in
python 2.7, with Numpy as mathematics library.

Our experiments have been carried out using two different
and well-known hyperspectral datasets, described below:

1) AVIRIS Indian Pines: this scene (see Fig. 2) covers
an agricultural site in Northwestern Indiana, and was
collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor [16] in 1992. The data
set of is of size 145×145×220, with spatial resolution
of 20 m per pixel and a spectral range from 0.2 to 2.4
microns. Before classification, 20 spectral bands (i.e.,
104th-108th, 150th-163rd, and 220th) are discarded
due to low SNR. This image contains 16 land-cover
classes.

2) AVIRIS Salinas: this scene (see Fig. 3) was also
collected by the AVIRIS sensor over the Salinas Valley,
California. The data set is of size 512 × 217 × 224,
and it has spatial resolution of 3.7 m per pixel with 16
land-cover classes. Before classification, 20 water ab-
sorption bands were removed (i.e., 108th-112th, 154th-
167th, 224th).

Note that, in this work, we explore the performance and
adaptivity of the considered Ridge and LASSO regularizers
in the task of learning the output weights of the ELM
classifier. Based on the considered hyperspectral images, we
seek to analyze whether output weights fit the underlying
assumptions of these regularization models.

B. Discussion of results

Two experiments have been carried out to test the per-
formance of each method. In the first one, a percentage of
samples per class has been randomly selected as training
data, using 1%, 2%, 3%, 5%, 10% and 15%. On the other

Color Land cover type Samples
Background 10659

Alfalfa 54
Corn-notill 1434
Corn-min 834

Corn 234
Grass/Pasture 497
Grass/Trees 747

Grass/pasture-mowed 26
Hay-windrowed 489

Oats 20
Soybeans-notill 968
Soybeans-min 2468
Soybean-clean 614

Wheat 212
Woods 1294

Bldg-Grass-Tree-Drives 380
Stone-steel towers 95

Total samples 21025

Fig. 2. Ground-truth of the Indian Pines 145× 145× 202 hyperspectral
scene.

Color Land-cover type Samples
Background 56975

Brocoli-green-weeds-1 2009
Brocoli-green-weeds-2 3726

Fallow 1976
Fallow-rough-plow 1394

Fallow-smooth 2678
Stubble 3959
Celery 3579

Grapes-untrained 11271
Soil-vinyard-develop 6203

Corn-senesced-green-weeds 3278
Lettuce-romaine-4wk 1068
Lettuce-romaine-5wk 1927
Lettuce-romaine-6wk 916
Lettuce-romaine-7wk 1070

Vinyard-untrained 7268
Vinyard-vertical-trellis 1807

Total samples 111104

Fig. 3. Ground-truth of the Salinas 512× 217× 204 hyperspectral scene.

hand in second experiment a fixed number of samples per
class has been selected. In this case, we used 1, 3, 5, 10, 20,
50 and 100 samples per class. Also, parameter λ has been
selected via grid-search in the range from 10−7 to 107.

Table I shows the obtained overall accuracies (OAs) for
each experiment over the Indian Pines hyperspectral dataset,
which have been repeated 5 times in order to extract the
standard deviations. After imposing the regularizers of Ridge
and LASSO, respectively, a decrease of performances in
terms of overall accuracies (OAs) can be observed. The
original ELM classifier generally acquires the highest OAs,
although the regularized methods outperforms the original
ELM classifier in some cases. Similar observations can also
be obtained when using the AVIRIS Salinas dataset (see
TableII). As expected, the classification performances of
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different methods show that, although the coefficient smooth-
ness and sparsity of a classifier model have been shown
to be helpful to enhance the probabilistic output, a positive
enhancement to the output weights β has not been observed
in Ridge and LASSO regularizations. This indicates that the
output weights do not contain smoothness and sparsity in the
learning process of ELM with the considered hyperspectral
datasets.

Pixel trainning Original Ridge Lasso
1% 70.06 (0.52) 64.11 (0.90) 66.54 (2.01)
2% 74.61 (1.13) 69.73 (1.08) 70.86 (1.40)
3% 79.59 (0.35) 71.60 (1.27) 73.72 (2.45)
5% 81.64 (1.63) 73.93 (0.83) 77.96 (1.26)

10% 87.00 (0.36) 77.03 (0.73) 81.81 (0.38)
15% 88.67 (0.31) 78.54 (1.15) 83.67 (0.81)

1/class 41.42 (5.18) 45.09 (3.64) 42.71 (4.20)
3/class 54.89 (1.04) 45.03 (3.68) 49.42 (2.40)
5/class 62.91 (0.86) 55.75 (4.98) 52.87 (3.94)

10/class 65.29 (2.22) 65.41 (2.31) 62.93 (1.24)
20/class 74.18 (1.17) 70.49 (2.06) 69.17 (1.24)
50/class 80.74 (1.04) 74.77 (0.92) 75.14 (1.28)
100/class 84.74 (0.41) 76.68 (0.57) 78.51 (0.65)

TABLE I
OVERALL ACCURACIES (AND STANDARD DEVIATION) FOR K-ELM

USING DIFFERENT REGULARIZATION FOR INDIAN PINES SCENE.

On the other hand, Table II presents the OAs reached by
each method over the Salinas valley hyperspectral dataset.

Pixel trainning Original Ridge Lasso
1% 90.80 (0.40) 86.41 (0.35) 88.83 (0.23)
2% 91.65 (0.12) 87.85 (0.34) 90.36 (0.14)
3% 92.19 (0.06) 88.39 (0.34) 90.61 (0.19)
5% 93.14 (0.04) 88.80 (0.31) 91.34 (0.15)

1/class 78.00 (1.81) 79.57 (0.46) 63.78 (3.92)
3/class 80.22 (2.60) 78.22 (2.49) 78.86 (3.02)
5/class 87.01 (0.35) 82.69 (0.98) 79.90 (1.84)

10/class 87.06 (0.33) 83.80 (0.65) 82.81 (1.74)
20/class 89.75 (0.36) 83.54 (2.14) 84.72 (0.72)
50/class 90.54 (0.19) 87.19 (0.55) 87.90 (0.52)
100/class 91.05 (0.30) 87.68 (0.40) 87.38 (0.27)

TABLE II
OVERALL ACCURACIES (AND STANDARD DEVIATION) FOR K-ELM

USING DIFFERENT REGULARIZATION FOR SALINAS SCENE.

IV. CONCLUSIONS

In this work, we developed two ELM instances with
the Ridge and LASSO regularizers in order to explore the
characteristics of the output weights β of the single hidden
layer of the neural network in hyperspectral classification
scenarios. With the two considered hyperspectral images,
smoothness and sparsity have not been significantly observed
in the output weights as other coefficients of the learning
process. In future work, our research line will focus on
exploring in more details the potential characteristics of the
output weights of the single hidden layer of ELMs, as well
as to develop more thorough comparisons with different
types of classifiers when using remotely sensed hyperspectral
imagery.
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