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Abstract— Computational advances have allowed for the de-
velopment of deep learning (DL) applied to remote sensing data
and, particularly, to hyperspectral image (HSI) classification.
Deeper architectures are able to establish a better separation
of the characteristics of the data, allowing for a better and
accurate performance. However, it is known that employing
very deep architectures with many abstraction levels can result
in a loss of information due to the fact that deep networks often
normalize each data individually, without considering the set
of adjacent data. To address this issue, this paper implements
a self-normalizing neural network (SNN) in order to extract
high-level abstract representations without losing information
due to the data initialization. The selected activation function
(scaled exponential linear units or SELU) normalizes the data
considering their neighborhood’s information and a special
dropout technique (α-dropout), obtaining good classification
performance while maintaining the data characteristics across
the successive layers. Obtained results show that the proposal
improves the performance with few training samples.

I. INTRODUCTION
Remote sensing (RS) allows us to obtain information about

Earth’s surface through airborne and spaceborne sensors that
operate from the visible to the middle infrared wavelength
range [1], obtaining images with different spatial and spectral
resolutions [2]. In particular hyperspectral images (HSI) can
be considered cubes of images of n1×n2 pixels with thou-
sands of narrow spectral bands d, containing a very detailed
information about the properties of the objects appearing
in the image since this objects have different spectroscopic
features [3], creating distinctive spectral signatures [4].

Nowadays, improvements in spatial resolution and grow-
ing revisit frequencies have exponentially increased data
availability. For instance, the ESA Sentinel-1 generates about
1.5GB of data per day; the NASA EOSDIS project produces
about 16 TB of data per day, and the NASA Jet Propulsion
Laboratorys Airbone Visible/Infrared Imaging Spectrometer
(AVIRIS) has a data collection rate of 2.5 MB/s (nearly 9
GB/h)[5]. This amount of data presents new processing and
storing challenges due to its high volume, variety and the
generation velocity [6]. Moreover, the great dimensionality
of HSI data creates the need to use non-conventional analysis
techniques, originally designed for multispectral data.

In this sense, deep neural networks (DNNs) represent
a powerful tool for HSI analysis [1], being able to learn
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more complex models and extract more abstract features
from the data. However, DNNs such as deep multilayer
perceptrons (MLPs) or deep convolutional neural networks
(CNNs), need large amounts of training data due to severe
overfitting problems. In particular, the accuracy obtained by
feed-forward neural networks (FNNs) and MLPs is highly
affected by the depth of the network, reaching only good
results in applications with shallow topologies and being less
competitive than other types of nets such CNNs [7], [8].
This learning problem is caused by the imbalance between
the large number of parameters that must be trained and the
few training samples available in advance. This is also due
to the loss of information in each layer of the deep model
due to a poor propagation of activations and gradients [9]
produced by the internal covariate shift phenomenon [10].
Focusing on this issue, it can be observed in DNNs that the
original data distribution changes during the training as the
parameters of the network’s layers change, slowing down the
NN’s training. This problem is more critical in HSI, where
the presence of noise, data redundancies and inter/intra-class
variability makes learning even more difficult.

Employing careful data standardization accompanied by
stochastic regularization and a proper activation function are
basic tools to improve the convergence of the net, preventing
the vanishing gradient problem [7]. In this work, we use
a self-normalized neural network (SNN) to perform HSI
classification. SNNs are based on scaled exponential linear
units (SELUs), an activation function that incorporates self-
normalizing properties to the nodes in each layer of the
net, allowing robust and stable learning process for deep
architectures while driving neuron activations to zero mean
and unit variance. In order to prove the usefulness of this kind
of neural networks in HSI processing, this work proposes
a MLP-based model with self-normalizing properties. The
parallel structure of the method, composed by a large amount
of independent units, allows us to develop a parallel model
through graphics processing units (GPUs). The parallel im-
plementation in GPU presents lower latency, size and power
consumption that implementations in CPU, while allowing
massive, fast and scalable data processing.

The remainder of the paper is organized as follows.
Section II introduces the mathematical concepts behind the
SNN, and the characteristics of the proposed model for HSI
classification. Section III presents the experiments carried
out over a well-known HSI dataset and the obtained results.
Finally, section IV summarizes the work and indicates future
research lines and improvements.
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II. METHODOLOGY
FFN/MLP models are traditionally unable to improve their

performance with deep architectures and very complex data,
such as HSI scenes, due to data inherent perturbations and
the internal covariate shift phenomenon, which produces a
poor propagation of activations and gradients with loss of
information. In order to avoid this problem, SNNs introduce
three improvements related with the input data, the neurons
activation outputs, and the internal regularization of the data.

Let us suppose that we have a deep MLP with two layers,
where l − 1 is the lower layer with n neurons and l is
the higher layer with m neurons. The output of L − 1
is denoted by x(l−1) ∈ Rn×d, a matrix of n × d, where
d is the number of inputs of the neural network. On the
other hand, the input of layer l is another matrix defined as
z(l) ∈ Rm×d = W(l−1,l)x(l−1), where W(l−1,l) ∈ Rm,n is
the weight matrix that connects the n nodes in layer l − 1
with the m nodes in layer l, and its output is x(l) ∈ Rm×d =
f
(
z(l)
)

where f(·) is the activation function. The SNN uses
two metrics: the mean and the variance. All activations in
layer l− 1, i.e. {x(l−1)i }ni=1, and layer l, i.e. {x(l)i }mi=1, have
mean µ(l−1) = E(x

(l−1)
i ) and µ(l) = E(x

(l)
i ) respectively,

where E(·) indicates expectation. Also all {x(l−1)i }ni=1 and
{x(l)i }mi=1 have variance ν(l−1) = Var(x(l−1)i ) and ν(l) =

Var(x(l)i ) respectively, where Var(·) indicates the variance
of a random variable. On the other hand, each activation
function in the higher layer {x(l)i = f

(
zli
)
}mi=1 has as input

z
(l)
i = w

(l−1,l)T
i x(l−1), where w

(l−1,l)
i is the weight vector

extracted from W(l−1,l) that connect the i-th neuron in layer
l with the n neurons in layer l− 1. Two new metrics can be
defined: the mean of the weight vector ω(l) =

∑n
j=1 w

(l−1,l)
i,j

and the second moment τ (l) =
∑n

j=1(w
(l−1,l)
i,j )2. The main

idea behind SNNs is that there is a function g : Ω→ Ω that
maps means and variances from one layer to the next one:(

µ(l−1)

ν(l−1)

)
7→
(
µ(l)

ν(l)

)
:

(
µ(l)

ν(l)

)
= g

(
µ(l−1)

ν(l−1)

)
(1)

with a stable and attracting fixed point in Ω, depending
on (ω(l), τ (l)). To implement self-normalization, the SNNs
adjust the properties of g by the activation function, per-
forming the scaled exponential linear units (SELU), given
by Eq. (2) [7], which introduces self-normalizing properties
like variance stabilization, setting neurons activations to
zero mean and unit variance, i.e. µ(l−1) = µ(l) = 0 and
ν(l−1) = ν(l) = 1, and allowing SNNs to be robust to data
perturbations. This activation function ensures the following
properties:

1) Negative and positive values to control the mean.
2) Saturation regions to dampen the variance if it is too

large in the lower layer.
3) A slope bigger than one to increase the variance if it

is too small in the lower layer.
4) A continuous curve to ensure a fixed point depending

on ω(l) and τ (l).

selu(x) = λ

{
x x < 0
αex − α x ≥ 0

(2)

Also, SNN maintains the normalization of layer activations
when it propagates them through the network, getting closer
to the stable and fixed point (0; 1) and selecting ω(l) =∑n

j=1 w
(l−1,l)
i,j = 0 and τ (l) =

∑n
j=1(w

(l−1,l)
i,j )2 = 1

for normalized weights initialization, so E(wi) = 0 and
Var(wi) = 1/n. From z

(i)
i = w

(l−1,l)T
i x(l−1) we can

extract two relations or moments: E(z
(i)
i ) = µ(l−1)w(l)

and Var(z(i)i ) = ν(l−1)τ (l). Also, z(i)i approaches a normal
distribution with density pN (z

(i)
i ;µ(l−1)w(l),

√
ν(l−1)τ (l)).

With this relations, mapping function g in Eq. (1) can be
redefined as: (

µ(l−1)

ν(l−1)

)
7→
(
µ(l)

ν(l)

)
:

µ(l)
(
µ(l−1), ω(l), ν(l−1), τ (l)

)
=∫ ∞

−∞
selu(z

(l)
i )pN (z

(l)
i ;µ(l−1)ω(l),

√
ν(l−1)τ (l)) dz

ν(l)
(
µ(l−1), ω(l), ν(l−1), τ (l)

)
=∫ ∞

−∞
selu(z

(l)
i )2pN (z

(l)
i ;µ(l−1)ω(l),

√
ν(l−1)τ (l)) dz − (µ(l))2.

(3)

On the other hand, SNN implements α-dropout method
as a new regularization technique in order to keep the
mean and variance as inputs to original values, ensuring the
self-normalizing property even after regularization. During
training, α-dropout randomly sets inputs to the infimum of
the SELU activation function. Moreover, in a random way,
this technique sets input data to α′ since the low variance
region value of SELU is defined as limx→−∞ selu(x) =
−λα = α′, preventing overfitting and information loss.

III. EXPERIMENTS

In this section we describe the experiments performed in
order to demonstrate the effectiveness of the proposed SNN-
based method to analyze HSI imagery through deep neural
networks, allowing a robust and faster learning without high
variance and reaching high levels of abstract representations.
As a result, it is expected to obtain better accuracy than other
related methods.

A. Experimental Configuration

Our experiments have been executed on a hardware en-
vironment composed by a 6th Generation Intel R© CoreTMi7-
6700K processor with 8M of Cache and up to 4.20GHz (4
cores/8 way multitask processing), 40GB of DDR4 RAM
with a serial speed of 2400MHz, a GPU NVIDIA GeForce
GTX 1080 with 8GB GDDR5X of video memory and
10Gbps of memory frequency, a Toshiba DT01ACA HDD
with 7200RPM and 2TB of capacity, and an ASUS Z170
pro-gaming motherboard. On the other hand, the software
environment is composed by Ubuntu 16.04.4 x64 as operat-
ing system, CUDA 8 and Python.
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B. Dataset description

Experiments have been carried out over Indian Pines
scene, collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor [11], with a size of 145
lines by 145 samples, was acquired over a mixed agricul-
tural/forest area, early in the growing season. The original
scene comprises 224 spectral bands in the wavelength range
from 400 to 2500nm, nominal spectral resolution of 10 nm,
moderate spatial resolution of 20 meters by pixel, and 16-bit
radiometric resolution. After an initial screening, 22 spectral
bands were removed from the data set due to noise. Fig. 1
shows the ground-truth map available for the scene with 16
ground-truth classes. About half of the pixels in the image
(10366 of 21025) contain ground-truth information, which
comes in the form of a single label assignment (Table 1).

Color Land cover type Samples
Background 10659

Alfalfa 54
Corn-notill 1434
Corn-min 834

Corn 234
Grass/Pasture 497
Grass/Trees 747

Grass/pasture-mowed 26
Hay-windrowed 489

Oats 20
Soybeans-notill 968
Soybeans-min 2468
Soybean-clean 614

Wheat 212
Woods 1294

Bldg-Grass-Tree-Drives 380
Stone-steel towers 95

Total samples 21025

Fig. 1: Ground-truth of the Indian Pines 145 × 145 × 202
HSI scene.

C. Performance Evaluation

In order to test the performance of the method over HSI
data, several deep MLP models have been executed. Table
I shows the configuration of the deep MLP networks used,
composed by one input layer (with 200 nodes), four hidden
layers and one output layer (with 16 nodes). Our experiment
compares the SNN-based MLP with SELU and a classical
MLP with ReLU as activation function. In both networks,
the Adam optimizer[12] is employed with the same learning
rate and model topology. Also, the single-layer feedforward
network developed by Ghamisi et al. in [13] has been used
for comparative purposes. Table II shows the obtained results

NETWORKS CONFIGURATION
Hidden neurons 144− 144− 144− 64
Dropout SELU 0.15− 0.15− 0.15− 0.05
Dropout RELU 0.30− 0.30− 0.30− 0.10

Optimizer Adam
Learning Rate 0.0008

TABLE I: Self-normalized MLP and traditional MLP net-
works architectures and optimizer parameters.

as the mean of 5 executions, from the carried out comparative
using 5%, 10%, 15%, 20% and 25% of randomly selected
samples per class as training data. Execution times are very
similar between each proposed method and are not the main
point of this work. As we can observe, the self-normalized
MLP reaches the best overall accuracy (OA) in all cases,
in particular with few training data (1.43 percentage points
over traditional and 1.16 over [14]) due to its great potential
to maintain normalized data through a very deep network,
allowing the extraction of better features in all layers, as fig.
3 indicates, where orange line shows the evolution of the
self-normalized MLP accuracy in successive epochs, being
500 epochs the maximum considered. We can observe that
the proposed method is able to achieve better accuracies in
less epochs than the traditional MLP. Finally, Fig. 2 shows
the obtained classification maps by traditional MLP (center)
and self-normalized MLP (right), both trained with 10% of
random selected samples per class. Also, Table III shows the
corresponding reached accuracy for each Indian Pines class.
With this result, the proposed method is shown to behave in
a similar way as the original MLP with ReLU algorithm, but
increasing its results in similar epochs.

Training Traditional Proposed Ghamisi et al. [14]
5% 76.86 (0.77) 78.29 (1.36) 77.13 (1.04)
10% 84.41 (0.65) 85.66 (0.91) 83.10 (0.62)
15% 88.10 (0.17) 89.63 (0.24) 85.28 (0.56)
20% 90.42 (0.59) 90.97 (0.47) 87.17 (0.48)
25% 92.15 (0.31) 92.16 (0.45) 87.97 (0.50)

TABLE II: Obtained overall accuracies (OAs) by the tradi-
tional MLP, self-normalizing MLP and the SLFNN proposed
in [14]. Each experiment has been executed 5 times in
order to test the robustness and stability of each method via
standard deviation (in parenthesis).

Class name FNN-ReLU Proposed
Alfalfa 42.59 (22.25) 46.67 (23.41)

Corn-notill 80.71 (2.37) 82.04 (3.80)
Corn-min 66.04 (2.50) 80.07 (3.29)

Corn 70.34 (5.96) 77.35 (6.15)
Grass/Pasture 88.65 (3.31) 92.72 (2.09)
Grass/Trees 94.62 (1.35) 95.37 (1.01)

Grass/pasture-mowed 64.62 (18.11) 83.85 (20.12)
Hay-windrowed 99.22 (0.15) 98.77 (0.41)

Oats 49.00 (9.17) 43.00 (13.27)
Soybeans-notill 83.41 (2.72) 85.43 (2.27)
Soybeans-min 86.41 (2.22) 83.43 (3.36)
Soybean-clean 75.41 (6.52) 75.57 (4.58)

Wheat 98.49 (1.01) 99.25 (0.38)
Woods 96.85 (1.37) 97.45 (0.40)

Bldg-Grass-Tree-Drives 64.26 (3.63) 61.53 (0.69)
Stone-steel towers 90.53 (3.40) 92.00 (3.80)
Overall accuracy 84.41 (0.65) 85.66 (0.91)
Average accuracy 78.20 (2.47) 80.91 (2.65)

Kappa 82.18 (0.76) 83.68 (1.02)

TABLE III: Classification accuracies obtained by different
deep neural networks tested using the Indian Pines dataset.

IV. CONCLUSIONS AND FUTURE WORK

In this work we have explored the application of a self-
normalized neural networks approach in order to perform
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Fig. 2: Indian Pines classification maps with 10% of training data: original ground truth (left), MLP with ReLU with 84.41%
of OA (center) and self-normalized MLP with 85.66% of OA (right).

Fig. 3: Accuracy vs epoch from traditional MLP (blue) and
self-normalized MLP (orange) using 10% of training data
from Indian Pines.

HSI remote sensing data classification. The obtained results
over the well-known Indian Pines dataset reveal that self-
normalized techniques are suitable not only in networks with
a very deep number of layers, reaching better classification
accuracies than traditional deep network architectures, but
also for very noisy/complex input data. As future works we
will explore the suitability of this technique with different
kinds of deep neural networks, such as convolutional neural
networks, and in combination with the different available
methods for data normalization.
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