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Spatial/Spectral Endmember Extraction by
Multidimensional Morphological Operations
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Abstract—Spectral mixture analysis provides an efficient near future, the use of these types of sensors on satellite plat-
mechanism for the interpretation and classification of remotely forms will produce a nearly continual stream of high-dimen-
sensed multidimensional imagery. It aims to identify a set of Sional data, and this expected high data volume wil require fast

reference signatures (also known as endmembers) that can be use d efficient for st t L d Ivsis [9
to model the reflectance spectrum at each pixel of the original and efficient means for storage, transmission, and analysis [9],

image. Thus, the modeling is carried out as a linear combination [10].

of a finite number of ground components. Although spectral Linear spectral unmixing [11]-[13] is one of the most impor-
mixture models have proved to be appropriate for the purpose tant approaches for the analysis and classification of multi/hy-
of large hyperspectral dataset subpixel analysis, few methods e gnactral datasets. This approach involves two steps: to find

are available in the literature for the extraction of appropriate . .
endmembers in spectral unmixing. Most approaches have been spectrally unique signatures of pure ground components (usu-

designed from a spectroscopic viewpoint and, thus, tend to neglect 2lly referred to as endmembers [14]) and to express individual
the existing spatial correlation between pixels. This paper presents pixels as a linear combination of endmembers [15].4(et y)

a new automated method that performs unsupervised pixel purity pe a spectrum of values obtained at the sensor for a certain pixel
determination and endmember extraction from multidimensional \i+h spatial coordinatez, y) in a multispectral image. This
datasets; this is achieved by using both spatial and spectral - . :

information in a combined manner. The method is based on spectrum_can be considered as'érlimensional {V-D) vector
mathematical morphology, a classic image processing technique (WhereN is the number of spectral bands) and may be modeled

that can be applied to the spectral domain while being able to in terms of a linear combination of several endmember vectors

keep its spatial characteristics. The proposed methodology is ¢;,i = 1,..., E according to the equations and constraints [16]
evaluated through a specifically designed framework that uses
both simulated and real hyperspectral data. E

Index Terms—Automated endmember extraction, mathematical s(z,y) = Z Ci- € @)
morphology, morphological eccentricity index, multidimensional i=1

analysis, spatial/spectral integration, spectral mixture model. E
ZCiZL 0<c¢ <1 (2

. INTRODUCTION ]
where E is the number of endmembers needed to accurately

MAGING spectroscopy, also known as hyperspectral remaigydel the original spectrum, angis a scalar value representing
sensing, allows a sensor on a moving platform to gather g fractional coverage of endmember veetoin pixel (z, y).

flected radiation from a ground target so that a detector systéiRe deal case is that the coefficients in the linear combination
consisting of CCD devices can record a great deal (typicalite nonnegative and sum to 1, being, therefore, interpretable as
tens) of spectral channels simultaneously. With such detail, &er fractions or abundances [13].
ability to detect and identify individual materials or classes is p set of endmembers and cover fractions is called a mix-
expected to be greatly improved [1].  ture model [16]. One of the new perspectives opened by this

During the last several years, a great deal of new airborggproach, together with the improved spectral resolution of sen-
and spaceborne sensors have been improved for hyperspeghgd is the possibility of subpixel analysis of scenes, which aims
remote sensing applications. A chief hyperspectral sensor is {§@uantify the abundance of different materials in a single pixel.
NASA/JPL Airborne Visible and Infra-Red Imaging Spectromg jke principal components, endmembers provide a basis set in
eter (AVIRIS) system, which currently covers the wavelengifjhose terms the rest of the data can be described [17], [18].
region from 0.38-2.5Qum [2]. Other sensors that offer hyper-However, unlike principal components, the endmembers are ex-
spectral capabilities have been available as research instrumg@@ted to provide a more “physical” description of the data with
for the last ten years, including DAIS/ROSIS [3], CASI-2 [4]10 orthogonalization restrictions. For instance, a simple mixture
AISA [5], MIVIS [6], HyMap [7], or HYPERION [8]. In the  podel based on three endmembers has the geometrical interpre-

tation of a triangle whose vertices are the endmembers. Cover
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2 spaces while endmembers were identified [15]. There are several
Endmember interactive software tools oriented to perform this task, but
) ) the supervised nature of such tools leads to the fact that the
— centroid of the data cloud: ' X ) X )
18 e 1B 13a+13b+13¢ analysis of a scene usually requires the intervention of a highly

trained analyst. Then, interactive solutions may not be effective
in situations where large scenes must be analyzed quickly as a
matter of routine. In addition, randomness in the selection of
Endmember b skewers has been identified by some authors as a shortcoming

Band j

. of the algorithm [20]. The original implementation of PPI
\ — proposes the use of unitary vectors as skewers in random

Endmember ¢ 2bt12e directions of theN-D space. This implementation may be
-~ improved by careful selection of existing vectors to skew the
Band i " dataset. Intelligent selection of skewers may result in a more

efficient behavior of the algorithm.
Fig. 1. Scatterplot of two-dimensional spectral data illustrating the physical Sogme tools based on variations of PPI concepts have been
interpretation of a mixture model based on endmembers. .

proposed. The manual endmember selection tool (MEST) [21]

. . L is a computer display for interactive derivation of spectral end-
analysis and endmember extraction have their origins in Clasgig hers. The first step in the selection process is the determina-

spectroscopy and, thus, focus exclusively on the spectral natiigg, of the number of mixture components via a principal com-

,Of the data. Ava|lable.analy3|s procedures d_o not usually t_aﬁSnent analysis (PCA). If the PCA finds that most variance in

into account information related to the spatial context, whiGha yata is accounted for by orthogonal directions (referred

can be useful to improve the obtained classification [10].  , 45 eigenvectors), then the number of endmembers is fixed to
In this paper, we introduce a novel approach to endmember, | 504 MEST displays the spectral data mean corrected and

extraction and multidimensional data analysis: the '”tegrat'%’ojected onto theV-D space, which is determined by the first

of spatial data with spectral information. Our research is strugs eigenvectors. MEST provides the user with a means of ex-

tured as follows. Section Il provides a detailed overview ‘Hloration in the mixing space to search fr+ 1 spectra that

existing endmer_nb_er extraction technigues. Section Il des_cri acceptable as the spectral signatures of ground components;

fundamental principles in the proposed approach. Section f\e\yise these spectra contain the spectral data in the simplex

|Ilust_rates our method with examples and s!mulat|on resulrﬁsTat they span in the mixing space. Again, the supervised nature
Section V presents both an example of experimental data angf"{‘he approach may become a major drawback.
comparison of our method with other well-known endmember There are several recent efforts in the literature that pursue

extraction approaches. Finally, Section VI includes some COe fully automated identification of endmembers from multi-

cluding statements and comments on plausible future resea{fﬁthensional data cubes. The N-FINDR algorithm [22] finds the

set of pixels with the largest possible volume by “inflating”

a simplex within the data. The input for the algorithm is the
A number of algorithms based on the notion of spectrfilll image cube, with no previous dimensionality reduction. A
mixture modeling have been proposed over the past decadéaindom set of vectors is initially selected. In order to refine the
accomplish the complex task of finding appropriate endmerimitial estimate of endmembers, every pixel in the image must

bers for spectral unmixing in multi/hyperspectral data. One be evaluated in terms of pixel purity likelihood or nearly pure
the most successful approaches has been the pixel purity indtatehood. To achieve this, the volume is calculated for every
(PPI) [15], which is based on the geometry of convex sets [1@lixel in the place of each endmember. A trial volume is calcu-
PPI considers spectral pixels as vectors in/&D space. A lated for every pixel in each endmember position by replacing
dimensionality reduction is first applied to the original datthat endmember and finding the volume. If the replacement re-
cube by using the minimum noise fraction [15]. The algorithraults in a volume increase, the pixel replaces the endmember.
proceeds by generating a large number of rand® vectors, This procedure is repeated until there are no more replacements
also called “skewers” [20], through the dataset. Every datd endmembers. Once the pure pixels are found, their spectra
point is projected onto each skewer, along which position ¢gin be used to unmix the original image.This produces a set of
pointed out. The data points that correspond to extrema in tingages that show the abundance of each endmember. While the
direction of a skewer are identified and placed on a list. Aandmember determination step of N-FINDR has been optimized
more skewers are generated the list grows, and the numberanél can be executed rapidly, the computational performance of
times a given pixel is placed on this list is also tallied. Ththe algorithm depends on the accuracy of the initial random se-
pixels with the highest tallies are considered the purest ontestion of endmembers.
since a pixel count provides a “pixel purity index.” The ORASIS (optical real-time adaptative spectral identifi-

It is important to emphasize that the PPI algorithm doesation system) algorithm [23] uses a process, catbegimplar
not identify a final list of endmembers. PPl was conceivesklection to trim the dataset. This procedure rejects redundant
not as a solution, but as a guide; in fact, the author proposguectra by calculating the angle between spectral vectors. Any
comparing the pure pixels with target spectra from a libramector that is not separated by a certain threshold angle is
and successively projecting the data toward lower dimensiomamoved from the data. The procedure then finds a basis set

Il. BACKGROUND ON ENDMEMBER EXTRACTION TECHNIQUES
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of much lower dimension than the original data by a modified TABLE |
Gram-Schmidt process The exemplar spectra are then pro_A COMPARISON OFSEVERAL ENDMEMBER EXTRACTION APPROACHES
jected onto this basis subspace, and a simplex is found throt

. . Fully . . Use of  Spectral  Multiple
a minimum volume transform. Even though ORASIS is tun€e yjehod Auto-  Dimensional g Ll Library End-
for rapid execution, there is no dimensionality reduction ¢ mated  ROdUCHON e Needed  members
part of this algorithm. The whole process is very sensitive ©=  PPI No MNF No No No
the threshold angle parameter, related to sensor noise. T I\%EsifA EO IECA go I;TO 50
. ) . o
parameter must be selected cautiously in order to avoid the I \ - -0 Yo ffNF(;nIfTone NZ N‘;S Neos
of important endmembers. ORASIS Yes None No No No
The iterative error analysis (IEA) algorithm [24] is alsc 1Ea Yes None No No No
executed directly on the data with neither the dimensionaliBUNDLES  Yes None No No Yes
reduction nor the data thinning. An initial vector (usually the N- NETS Yes None No No No

mean spectrum of the data) is chosen to start the process. A
constrained unmixing is then performed, and an error image is
formed. The average score of vectors with higher degreesgafrspectral datasets through endmember extraction [26].
error (distance from the initial vector) is assumed to be the firkbhonen’s self-organizing maps are suitable to perform com-
endmember. Another constrained unmixing is then performgsktitive endmember learning. Hence, clusters are formed in the
and the error image is formed. The average score of vectors wdffectral space. The topology of the network and the training
greater errors (distance from the first endmember) is assumggorithm are key parameters that must be fixed with caution in
to be the second endmember. This process is continued unigréer to obtain satisfactory results.
predetermined number of endmembers is found, and fractionafrable | shows a comparison between the above-mentioned
abundance maps are found by the final constrained unmixirgproaches, emphasizing some of their key operational features.
There are no published computer time estimates for the IE¥s can be seen in Table I, most endmember extraction methods
algorithm, but the repeated constrained unmixings involvegly on spectral properties of the scene alone, neglecting the
should take significant time. information related to the spatial correlation of pixels when
The use of multiple endmembers at a pixel level has also begsriving endmembers.
a main topic of interest to account for endmember variability. It is well known that many multispectral remote sensing
Multiple endmember spectral mixture analysis (MESMA) [25flatasets have the unique feature of being representations of
is a spectral unmixing approach in which many possible mixollections of images, where a particular pixel is characterized
ture models are analyzed simultaneously in order to produce thespectral and spatial properties. Spectral information deals
best fit. The weighting coefficients (fractions) for each modeiith pixel value in an independent manner from the neigh-
and each pixel are determined so that the linear combinatiporing pixel values, whereas spatial information concerns the
of the endmember spectra produces the lowest margin of Rivationship between the pixel value and those of its neighbors.
error when compared to the apparent surface reflectance for fespite the inherent spatial-spectral duality that resides in
pixel. Weighting coefficients are constrained to lie between zeg multidimensional data cube, most available processing
and one, and a valid fit is restricted to a maximum preset RM&chniques tend to focus exclusively on the spectral domain,
error. This approach requires an extensive library of field, labandling the data not as an image but as an unordered listing of
oratory, and image spectra, where each plausible componerspectral measurements. These gauges can be shuffled arbitrarily
represented at least once. Since the need for spectral libravidthout affecting analysis [10]. The incorporation of spatial
turns out to be a demanding constraint (intensive ground wdrormation results from the notion of image processing, which
is required in their development), this fact may be the maj not yet fully exploited in the field of multidimensional data
limitation of this approach. analysis, due to the likely fact that most analysis techniques
Another attempt to incorporate endmember variability intoriginate from classic spectroscopy.
spectral mixture analysis [16] is based on the representation offhe importance of analyzing spatial and spectral patterns
alandscape component type, not with one endmember spectgimultaneously has been identified as a desired goal by many
but with a set or bundle of spectra, where each spectrum is feaientists who are devoted to multidimensional data analysis
sible as an instance of the component (e.g., in the case of a {&8-[29]. This type of processing can be approached from
component, each spectrum could be the spectral reflectanceaious points of view. In [30], a possibility is discussed for the
a tree canopy). A pixel may have an infinite number of mixtureefinement of results obtained by spectral techniques through
models with endmembers selected from the bundles. Authorsairsecond step based on spatial context. The techniques pro-
this approach [16] use a simulated annealing algorithm to dessed by these authors do not focus on endmember extraction,
rive bundles of endmembers. This task is carried out by canudt yield some insightful feedback on plausible spatial and
structing a simplex from a partition of facets in a convex huipectral response combinations. One of the most interesting
of a point data cloud. Bundle unmixing finds the maximum anapproaches proposed is contextual classification, which ac-
minimum endmember fractions in those models, i.e., the rangeunts for the tendency of certain ground cover classes to
of endmember fraction values possible for a pixel. occur more frequently in some contexts than in others. Once
Finally, self-organizing neural network algorithms have beamn initial clustering based on spectral information alone has
applied also to the unsupervised classification of multi/hypeen performed, a postclassification technique is applied. This
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method consists of two main parts: the definition of a pixel [ll. METHODS

neighborhood (surrounding eac_:h pixel of the scgne) and thel'his section is organized as follows. Section IlI-A provides
performance of a local operation so that the pixel may baeh

. . . ﬁ*nple examples that illustrate the behavior of basic extended
the two types of information are not treated smultaneousllzyg

e th i wral inf tion is first extracted orphological operations are included. Finally, Section IlI-C
quite the opposite, spectral information 1S irst extracted, aRfsqripes the proposed approach for endmember extraction:
a spatial context is then imposed. ta

. . L e general algorithm, parameters, and implementation options
In this paper, we present the possibility of obtaining a meth 9 9 P P P

. . - . e also discussed.
that integrates both spatial and spectral responses in a simulta-

neous manner. Mathemat_ical morp.hology [31], [32] isa class'q Classic Mathematical Morphology
nonlinear spatial processing technique that provides a remark-
able framework to achieve the desired integration. Morphology Mathematical morphology is the science of shape and
was originally defined for binary images and has been extend@l#ticture, based on set-theoretical, topological, and geometrical
to the grayscale [33] and color [34] image cases, but it hggncepts [31], [32]. Over the past few years, mathematical
been seldom used to process multi/hyperspectral imagery [39prphology has grown as a powerful method for image
We propose a new application of mathematical morphologifocessing and has become a solid mathematical theory. It
focused on the automated extraction of endmembers from mhias been successfully applied to various disciplines, such
tidimensional data. In addition, we list key advantages in tf&$ mineralogy and medical diagnostics, finding increasing
use of morphology to perform this task. applications in digital image processing, computer vision, and
A first major point is that endmember extraction is basicallpattern recognition [36].
a nonlinear task. Furthermore, morphology allows for the in- The two basic operations of mathematical morphology are
troduction of a local-to-global approach in the search for end#ation and erosion. These operations were originally defined
members by using spatial kernels (structuring elements in ttog binary images [31], but have been extended to the grayscale
morphology jargon). These items define local neighborhooifsage case [33]. In grayscale morphology, images are handled
around each pixel. This type of processing can be appliedds continuous valued sets. Lgtz, y) be a gray-level function
the search of convexities or extremities within a data cloud cépresenting an image, and Iétrepresent another set that com-
spectral points and to the use of the spatial correlation betweasises a finite number of pixels. This set is usually referred to
the data. Endmembers can be identified by following an iteras a kernel or structuring element in morphology terminology.
tive process where pixels in close proximity in the spatial d&rosion and dilation of imagg(x, y) by structuring elemenk’
main compete against each other in terms of their convexity e respectively written as follows:
spectral purity. As a result, they allow for the determination of
a local representative in a neighborhood that will be compared  e(z,y) = (f ® K) (z,y) = Inf(f(z,y), K)
to other locally selected pixels. The adoption of this approach =Mingpner (fl@+ s,y +1) —k(s,)}  (3)
leads to the incorporation of spatial information into the end- d _ % _ s K
member determination procedure. As afinal main step, morpho- (z.9) = (f & K) (z,y) = Sup(f(z.y), K)
logical operations are implemented by replacing a pixel with a =Max(s nex {f(z — s,y —1) + k(s,1)}  (4)
neighbor that satisfies a certain condition. In binary/grayscale ) ) ) .
morphology, the condition is usually related to the digital valud¥herek(s ¢) denotes the weight associated with the different
of the pixel, and the two basic morphological operations (dil&/ements of the kernel. The expressions for grayscale dilation
tion and erosion) are, respectively, based on the replacemen®pfl €rosion bear a marked similarity to the convolution inte-
a pixel by the neighbor with the maximum and minimum valudlra! often encountered in digital image processing, with sums
Since an endmember is defined as a spectrally pure pixel tRaf differences replacing multiplication and minimum and max-
describes several mixed pixels in the scene, extended morphedm replacing summation. The main computational task in
logical operations can obviously contribute to locating suitabf€aling with grayscale morphological operations is the query
pixels that replace others in the scene according to some desfRidocal maxima or minima in a local search area around each
particularity of the pixel, e.g., its spectral purity. image pixel. This area is determined by the size and shape of
Therefore, we propose a mathematical framework to exteffucturing elements.
mathematical morphology to the multidimensional domain, In order to simplify the algorithms developed, we refer only
which results in the definition of a set of spatial/spectral opert convex and plain structuring elements: a special class of struc-
tions that can be used to extract reference spectral signatutegng elements that results whets, ¢) = 0, ¥(s,t) € K [37].
Our objective in this research is to analyze the viability ofhis is not a general requirement of morphological operations,
extended morphological operations to analyze multidimeand other types of kernels can be used in the future develop-
sional remote sensing data. It is important to emphasize ttaents of the method. For illustrative purposes Hebe a plain
the combination of spatial and spectral information leads to3ax 3 structuring element. If a dilation operation usihgis
new interpretation of the endmember concept, related to thpplied over a grayscale image, then the local effect of the op-
capacity of a particular signature in order to describe varioesation is the selection of the brightest pixel in a33-pixel
mixed pixels coherently in both spectral and spatial terms. search area around the target pixel. The constraints imposed on
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the kernel definition causes all pixels lying within the kernel to —Original image

be handled equally, i.e., no weight is associated with the pixels |

according to their position along the kernel, and the pixel with 3x3 structuting
maximum digital value is selected. The previous operation is re- element around

peated with all the pixels of the image, leading to a new image
(with the same dimensions as the original) where lighter zones
are developed concerning the size and shape of the structuring
element. In contrast, grayscale erosion has the global effect of
shrinking the lighter zones of the image. The effect obtained by
these operations is illustrated in Fig. 2, where a simple grayscale
synthetic image is eroded and dilated using:a 3 structuring
element.

By applying these basic operations, one can construct more
advanced tools [31], [32]. For example, a classical morpholog-
ical edge detector may be obtained by subtracting the eroded
image from the dilated image; opening (erosion followed by di- Greyscale dilation Greyscale crosion
lation) is used to detect peaks or local maxima; closing (dilation

followed by erosion) is applied to detect valleys or local minimdig. 2. Local and global effect of applying grayscale dilation and erosion
etc operations to a simple grayscale image.

target pixel P

Max

B. Extending Mathematical Morphology to Multispectral K d K
Images

In grayscale morphology, the calculation of maximum and e
minimum gray values relies on the definition of a simple or-
dering relation given by the digital value of pixels. In the case
of multispectral datasets, this natural assumption is not straight- a) b)
forward, since there is no natural means for the total ordering of _ _
multivariate pixels. Hence, the greatest challenge in the taskfdff: 3- Calculation of the most spectrally singular (a) and most spectrally
. o . . . P]uxed (b) pixels within a kernek by using cumulative distanc®.
extending morphology operations to multispectral images is the
definition of a vector ordering relation that allows for the deter- ] )
mination of the maximum and minimum elements in any fami)/ X V), whereM is the number of elements in the kernel. The

of N-D vectors [34]. In order to obtain the desired performancéiStance between two vectors involvasdot operations, and

we have tested two possibilities that follow a similar strateg§fst IS calculated between every vector and all the others in the
nel, resulting in a cubic complexity 6f(n?) in asymptotical

First, a lattice structure is imposed onto the spectral space . ) i , )
the definition of a distance measure. and. second morphol6'§’-tat'°”' Multispectral dilation and erosion can be defined after

ical operators are defined by extension. These possibilities 4§ xpressions for grayscale dilation and erosion in (3) and (4),
described in the next section. Instead, we finish this section BySPeCtively, as follows:
Lpocr!u;r:régefozirgrﬁ)I:Seég:\rrﬁple c()jf the effect of multispectral dila d(z,y) = (f © K) (z, 1)
pared to grayscale counterparts.

1) Cumulative Distance for Pixel Ordering in Terms of Spec- = arg Max(; nex {D (f(z + s,y + 1), K)} (6)
tral Purity: In order to impose an ordering relation in terms  e(z,y) = (f ® K) (z,y)
of spect_ral purity in a set of multispectral pixel; Iying withiq a = arg Ming pex {D (f(z — s,y — 1), K)} (7)
structuring element or kerndé{’, we propose defining a metric
that calculates the cumulative distance between one particuldrere arg _Max and arg _Min, respectively, denote the pixel
pixel f(x,y) of the kernel, wherg(z, y) denotes a vector d¥  vector that maximizes and minimizes cumulative distahce
dimensions at spatial coordinatés, y) and every other pixel The ordering relation is illustrated in Fig. 3. K is a set of
f(s,t)|(s,t) € K. The metric is denoted by and is defined spatial neighboring pixels defined by a plain kernel, tden 1)

as follows: is the most spectrally singular pixel [Fig. 3(a)], asid, y) is the
most highly mixed element [Fig. 3(b)].
D (f(z,y),K) = 2) Distance to the Centroid of the Data Cloudhe com-

Z Zdist (F(x,y), f(s, 1)), V(s,t) € K (5) putational cost of calculating the cumulative distance is cubic,
P resulting in a very high complexity if the kernel has a large size.

We have checked another possibility that relies on the calcula-
wheredist is a pointwise linear distance measure between W@, of the distance between every spectral point in the kernel
N-D vectors, i.e., the spectral angle distance. This cumulati¥gq the centroid of the kernel data cloud, defined as
distance can order the vectors of a kernel in terms of their spec-
tral purity. The computational time from calculatidg may be cx = 1 Z Z f(s.1), V(s,t) € K 8)
expressed in terms of the number of dot calculatioriB(@d x M —~ = '
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whereM is the number of elements ii§. Then, a local eccen-
tricity measure for a particula¥-D point of the kernelf (z, y)

can be obtained by calculating the distance in relation to the cen-
troid as

/centroid
& O

O ". e

O O

D' (f(w,y), K) = dist (f(z,9), cx) 9)

where dist is a pointwise linear distance function (spectral _ _
. . . Fig. 4. Calculation of the most spectrally singular (a) and most spectrally
angle). In this case, computational time to obtd may mixed (b) pixels within a kernell’ by using the distance to the centroid of the
be expressed a8 (M x N), i.e., the distance between twodata cloud p).
vectors involvesN dot operations and is calculated between
every vector of the kernel and the centroid. This results in a —
quadratic computational complexit§(n?) (in asymptotical [ [ 3x3 kérmhel ‘
notation). Distance)’ defines an ordering relation in the data || L] pare spectra grass)
cloud that allows for the identification of the maximum as that
element that is most “eccentrical” or distant from the centroid
[Fig. 4(a)], while the minimum is the closest element to the N
centroid [Fig. 4(b)]. Multispectral dilation and erosion can be
defined respectively as

d'(z,y) = (f® K) (z,y)
arg Max(, nex {D' (f(x+s5,y+1),K)} (10)
(f® K)(z,y)
= arg —Min(s,t)eK {D/ (flz—s,y—1),K)} (11)

b)

|

D Mixed spectra (50% soil + 50% grass)

I:‘ Pure spectra (soil)

Min

€ (x,y)

wherearg _Max and arg Min, respectively, denote the pixel I !
vector that maximizes and minimizes the distance to the cen- Spatal/spectral dilation Spatial /spectral erosion
troid D’. In this paper, only the two distanceB @nd D’) are
considered. We have demonstrated that the selection of the nfa&->- Local and global effect of applying spatial/spectral dilation and erosion
imum and minimum through both methods is equivalent in gfgerations to a simple hyperspectral image.
case of a linear distance measure as the spectral angle. Yet,
this is not necessarily so. For example, if we take a nonlingg#age scene are pure and which ones are formed by a mixture
distance measure as the spectral information divergence (SIgf)components.
defined in [38], the sum of the distances to each pixel in the
kernel would not be equivalent, in general terms, to the distanCe
to the centroid. Our research only focuses on a simple linearAs explained above, the physical idea of an endmember is
distance in order to simplify algorithm design. A comparativthat of a spectrally pure signature (generally corresponding to
effort including nonlinear distances as well as distances that wspure ground component) that can be used to describe several
second-order statistics [39], [40] deserves future attention. nonpure pixels through a mixture model based on linear combi-
3) Example of Multispectral Erosion and DilatioriThe re- nations of endmembers [11]. The notion behind this idea is the
sult of applying an erosion/dilation operation to a multispectrdetermination of a spectral purity index at a kernel level. Two
dataset is a new data cube, with exactly the same dimensidif,erent possibilities have been explored to determine the pu-
as the original, where each pixel has been replaced by the matyindex. Thus, we focus on advantages and disadvantages for
imum/minimum of the kernel neighborhood considered. For iboth possibilities. This section ends with a detailed description
lustrative purposes, let us consider a simple synthetic hypef-our spatial/spectral algorithm, which we have named auto-
spectral image with pure and mixed spectral signatures andhated morphological endmember extraction (AMEE).
plain 3x 3 kernel. The kernel is moved, pixel by pixel, through 1) “Voting” Approach to Endmember SelectiorMulti-
the image, defining a local spatial search area around each tagpetctral dilation can extract the most particular pixel in a
pixel. The maximum (dilation) or minimum (erosion) pixel incertain kernel neighborhood by the definition of a purity
the search area is calculated according to the schema descritisthnce measure between pixels. Two distance measures have
above, yielding the results depicted in Fig. 5. been described in Section IlI-B for this purpose (see Figs. 3
As can be examined in Fig. 5, dilation has the effect aind 4). The identification of the purest pixel by the dilation
expanding zones with pure spectral signatures accordingadjeration is done as follows. As a first step, one particular
the spatial properties of the structuring element, while erosipixel of the neighborhood is selected (candidate pixel). This
shrinks zones with pure signatures. Both operations use spaiakl receives a score from all its neighbors (voters). The score
and spectral information in a combined fashion. From this the spectral angle distance between the candidate and the
simple example, it is straightforward that extended morphaeighboring pixel. Once all the neighbors have voted, the
logical operations can be used to identify which pixels of thadividual scores are summed, and the accumulated value is

Automated Morphological Endmember Extraction
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assigned to the candidate pixel. The operation is repeated wi Original image
every pixel of the kernel, so that all the pixels assume th —_——
role of candidates once. In the end, the pixel with the highes Structuring element
accumulated score (the winner in the vote) is selected as thryqe pixel ac spatial 2
neighborhood endmember, and a counter associated with t  coordinates (x,y) B
pixel is increased in one unit. l A\
The major limitation of this approach, used by other existing
endmember extraction methodologies, is the fact that such
voting system does not provide detailed information about th
degree of purity in a certain pixel. For instance, the PPI algo
rithm uses a very similar schema. Every pixel of the scene i
projected to random unitary vectors, and the most extreme pix
in the direction of the unitary vector increases its purity counte

Max pixel: d(x,y) at (n,m) Min pixel: e(x,y)

L
a0

MEI
in one unit. A pixel is labeled as “spectrally pure” if it is repeat- : !
edly selected as extreme in several random projections. Neve Dilation H Eeosion
theless, an important question like “how extreme is the pixel ir v
the data cloud” is neglected. The “eccentricity” of a pixel, i.e.,
its distance from the least spectrally pure or most highly mixet f
element, may be an important issue in the determination of tt MEI at (n,m)
pixel purity degree. The incorporation of this information may is updated
result in a much more complete evaluation of the capacity ¢ MEI image
pure pixels to describe other mixed pixels and, thus, improve
the whole endmember selection process. Fig. 6. Calculation of the MEI index by combining multispectral dilation and

2) “Evaluation” Approach to Endmember Selectiohe ©rsion-

voting system was characterized by a single multispectral dila-
tion operation. In order to account for the “eccentricity” of then Fig. 7(b) (evaluation system), the maximum element is not
maximum pixel, we propose the combination of the output prenly selected but also evaluated using its distance to the min-
vided by dilation and erosion operations. While dilation selecigum, which is particularly important when all the pixels in the
the purest pixel (maximum), erosion selects the most highkgrnel neighborhood have similar spectral purity.
mixed pixel (minimum) in a certain spatial neighborhood. The The proposed evaluation approach presents some limitations
distance between the maximum and the minimum (a widefilustrated in Fig. 8) related to the kernel size under considera-
used operation in classic mathematical morphology) providgsn. Determining the quality of a local endmember by the MEI
an eccentricity value for the selected pixel that allows for gadex is only appropriate if the kernel size is sufficiently large
evaluation of the quality of the pixel in terms of its spectral pto include sample pixels with different degrees of purity. If the
rity. In order to incorporate this idea, a new quality measure mu&rnel used is not large enough, then there is no sufficient in-
be introduced. We define the morphological eccentricity indggrmation to determine wether a pixel is a reasonable candidate
(MEI) as the distance between the maximum element (obtaingdbe used as an endmember. The main reason for that is the
by a dilation) and minimum element (obtained by an erosion) ifhavailability of different samples to perform the comparison.
the kernel. There may exist situations where a low MEI value is assigned
Fig. 6 illustrates how the MEI index is calculated. Followingo a pure pixel [as depicted in Fig. 8(a)]. In order to solve this
(6) and (7), letn, m) be the spatial coordinates of the maximunproblem, we propose the application of an iterative process with
pixel d(x, y) at the kernel neighborhood of a certain pixel withyifferent kernel sizes. All the pixels of the scene are evaluated
spatial coordinateér, y). Lete(x, y) be the minimum pixel of in each iteration, but increasingly larger neighborhoods around
the same kernel neighborhood. Then, the MEI index is givesach pixel are considered in subsequent iterations in order to ob-
by the following expression, wherlst is a pointwise distance tain detailed spatial/spectral information at a pixel level.
function (in this paper, the spectral angle distance). The use of increasingly larger kernel sizes may lead to an-
other issue. Since only one pixel per kernel neighborhood is
selected, there may be situations where important endmembers
MEI(n,m) = dist (d(z, y), e(z, y)) (12) are lost [as depicted in Fig. 8(b)]. This shortcoming is allevi-
ated by the fact that the kernel is moved through all the pixels of
The MEI index is associated with a certain pixel in order tthe image, but may still produce undesired effects. Therefore, it
determine its capacity to describe other pixels in the kernd.straightforward that the MEI index is sensitive to kernel size
It is important to emphasize that the MEI value is assigned &md shape, which must be adjusted so that a satisfactory result
the maximum pixel in the kernel neighborhood. An illustraef the algorithm is obtained. The spatial/spectral nature of the
tive example of the improvements produced by the evaluatiproposed method introduces, in fact, a dependence between the
system based on the MEI index is shown in Fig. 7. The mastructuring element and the algorithm output that is also present
imum element within the kernel is selected in Fig. 7(a) (voting classic mathematical morphology. This dependence allows
system), but no statement can be made about its spectral puthg tuning of the method in order to improve the identification of
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endmembers associated with targets with a certain size, shape,

and spatial distribution in the scene. Fig. 9. Schematic representation of the proposed automated morphological
As afinal concern, a minor limitation of the current MEI defi-endmember extraction method through a block diagram.
nition is that it tends to exaggerate the purity of a pixel in certain
cases: those in which the kernel is located over an area whbyeusing structuring elements of progressively increased size,
all the pixels are relatively pure but correspond to different endnd the algorithm performs as many iterations as needed until
members. We have proved by experimenting with real data thlaé maximum kernel siz€,,,, . is achieved. The associated MEI
this circumstance does not significantly affect the performangalue of selected pixels at subsequent iterations is updated by
of the algorithm due to the fact that all the pixels are good candireans of newly obtained values, as a larger spatial context is
dates to be selected as endmembers. With these issues in nindsidered, and a final MEI image is generated aftetera-
we describe the proposed endmember extraction algorithm. tions [41], [42]. This approach ensures a complete spatial/spec-
3) Algorithm Description: A general block diagram of the tral description of the image and provides an efficient tool to
AMEE algorithm is shown in Fig. 9. The input to the methodntegrate both types of information simultaneously. However, if
is the full data cube, with no previous dimensionality redudhe size of the maximum kernel used is large, which can be-
tion or preprocessing. Parameterefers to the number of it- come a need in order to obtain a correct description (see Fig. 7),
erations that the algorithm performs. Parameétgr, andS,.x, this results in a considerable increase in morphological oper-
respectively, denote the minimum and maximum kernel sizaon computational cost, mainly because of the high number
that will be considered in the iterative process. These paranoé-pixels involved in the calculation of the distances. In this
ters are interrelated, as the number of iterations depends onadhse, the kernel size increases exponentially, which results in an
minimum and maximum kernel sizes under scrutiny. exponential complexity@(c™) in asymptotical notation). We
First, the minimum kernel siz8,,;, is considered. Then, the have tested some variations of the previous implementation in
kernel is moved through all the pixels of the image. The spearder to reduce the computational complexity of the proposed
trally purest pixel and the spectrally most highly mixed pixedpproach, and a constrained implementation through cascade di-
are obtained at each kernel neighborhood by multispectral Gition operations and nonoverlapping kernel sizes [43] proved
lation and erosion operations. An MEI value is associated witb be considerably faster than the previous approach. The con-
the purest pixel by comparing the result of the dilation to the retraints imposed result in a computational complexitylog n)
sult of erosion. The previously described operation is repeatiedasymptotical notation).
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Fig. 10. (a) Reflectance spectra used to generate simulated scenes. (b) Radiance spectra used to generate simulated scenes. (¢) Simutjt&ihBdates 1. (
Scene_2.

Automated endmember selection is performed from the MBted. Both radiance and reflectance data are used in order to
image obtained in the competitive endmember selection stapalyze the effect of these two options in our endmember ex-
by a threshold valu€’. There are many available techniquesraction algorithm. In Section IV-B, a preliminary experimentis
for automated thresholding of grayscale images [44]. We hasenducted to study the accuracy of AMEE algorithms to classify
found appropriate results by using the multilevel Otsu methopixels as “pure” or “not pure” and the influence of the kernel size
an approach based on the minimization of the weighted syrarameter in this particular task. Finally, Section IV-C presents
of group variances [45]. The final selection is refined by a set of experiments that allow us to test the accuracy of AMEE
region-growing procedure that incorporates neighboring pixefsthe task of estimating the abundances of constituents. Scenes
that are sufficiently similar (according to a certain thresholdith subtle and abrupt changes in the abundance of materials
angle parameted) to the regions obtained after thresholdingare used in the simulations.

Mean spectra are obtained for the resulting regions after the ) )

region-growing process. As a consequence, a final set Af Generation of Simulated Data

endmembers is obtained. This approach has been developed by set of four spectral signatures directly extracted from a
following the ideas presented in [16]. Traditional methodologie097 AVIRIS image scene of the Jasper Ridge, CA region [46]
such as the spectral angle mapper (SAM) or linear spectidll be used in computer simulations to illustrate the proposed
unmixing (LSU) can be used for the purpose of mapping tligorithm. This dataset, which has extensively been studied in
obtained endmembers over the original image and obtainitig literature, is available in radiance and reflectance units. This
a final classification result. fact allows us to study the performance of our algorithm in both
cases. The selected signatures [see Fig. 10(a) and (b)] corre-
spond to soil, vegetation, buildings, and roads.

Two simple 60x 60-pixel hyperspectral scenes have been

In this section we evaluate the performance of the proposgenerated using the above-mentioned spectra. The first scene,
algorithm by using simulated data. For the sake of simplicitgalled Scene_1 [Fig. 10(c)], was created by using artificially
we will only consider scenes with two and three different congenerated mixtures between two selected signatures (soil and
ponents. Section I1V-A describes how synthetic data are geneegetation) with different abundance fractions. The scene is

IV. EVALUATION WITH SIMULATED DATA
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TABLE 11 B. Identification of Pure Pixels
ABUNDANCE ASSIGNMENT FORREGIONS IN SIMULATED

SCENESSCENE_LAND SCENE 2 One of the properties of synthetic images is simplicity in

the generation of entirely reliable ground truth from data.
Region Soil Vegetation Road Building Receiver operating characteristic (ROC) [48] is a classic
approach to evaluate the performance of image classifica-

Ei (1):3 g'g 8‘3 g'g tion algorithms when ground-truth information is available.
Rs 0.6 0:4 0:0 0:0 A preliminary experiment has been performed by using
R4 0.4 0.6 0.0 0.0 Scene_1_Reflectance [see Fig. 10(c)] to analyze the influence
Rs 0.2 0.8 0.0 0.0 of the kernel size parameter on the accuracy of our method in
R 0.0 1.0 0.0 0.0 the task of determining whether or not a certain pixel is “pure.”
Ry 1.0 0.0 0.0 0.0 The goal of ROC analysis is to estimate a curve that describes
Rs 0.0 0.0 0.0 1.0 the tradeoff between sensitivity (true positive rate) and speci-
R 0.0 0.0 1.0 0.0 ficity (false alarm rate) in the tested algorithm at different de-

cision compromises [48]. In our case, the decision is related
to the threshold value that determines which pixels of an MEI
formed by six regions of ten-pixels width, and the abundancimsage, provided by the AMEE algorithm, are labeled as “pure”
have been assigned to the regions so that the linear mixtarel which are labeled as “mixed.” Since there are many pos-
between the two components is progressive and adds to onesfate thresholds, the ROC curve is constructed by taking a set
shown in Table I1). of equidistant threshold values between the minimum and the
The synthetic hyperspectral scene in Fig. 10(d) (calledaximum purity index of the MEI image. Each threshold value
Scene_2) simulates homogeneous targets (a road andeadls to the generation of a binary classification image (BCI),
building) in a soil background. The simple simulated “objectsivhere pixels with a purity index higher than the threshold are
are a 10x 10-pixel building and a road ten pixels wide. Thignarked as “pure,” and pixels with a purity index lower than the
image is characterized by abrupt changes in the abundancethagshold are labeled as “not pure.” Each BCl is compared to a
materials. There is no linear mixture among components in tgeound-truth purity index image (GTPI) directly obtained from
scene. Instead, there is a situation where 1) three different ptire original image, where only pure pixels are marked. If a cer-
constituents are present and 2) each pixel is characterizedtéiy pixel is classified as “pure” in both the BCl and GTPI, then
having an abundance of one for one particular endmember antue positive is checked. On other hand, if a pixel is labeled as
zero for the others (see Table II). “pure” in the BCI and as “not pure” in the GTPI, then a false
Both Scene_1 and Scene_2 have been generated by usingeaitive is counted. Each point of the ROC curve is obtained by
diance and reflectance spectra. We will refer to them from naulotting the average true positives against average false positives
on as Scene_1 radiance, Scene_1 reflectance, Scene_2»a@BCl image.
diance, and Scene_2_reflectance. Random noise was used fig. 11 shows an example of the construction of an ROC
simulate contributions from ambient (clutter) and instrumentalirve for an MEI image obtained after applying the AMEE al-
sources. Noise was created by using numbers with a standgegithm to Scene_1_Reflectance, using a square-shapefitl1
normal distribution obtained from a pseudorandom numbggrnels (note that this kernel is one pixel wider than the re-
generator and added to each pixel to generate a signal-to-ngjigms in the scene). In this particular image, pure pixels are
ratio (SNR) of 30:1. For the simulations, we will define thehose included in regions R1 and R6. Fig. 11(a) shows the MEI
SNR for each band as the ratio of the 50% signal level to th@age produced by the algorithm. Fig. 11(b)—(e) shows the re-
standard deviation of the noise [47]. Thus, the simulated dajalting images after thresholding the MEI image with several
are created, based on a simple linear model, by the followieguidistant threshold values in the dynamic range of the image.
expression [19]: Fig. 11(f) shows an example of ROC curve construction by
using the previous images. Each point at the curve is obtained
SNR B by calculating the average number of true and false positives per
§'(z,y) = <_ n n(%y)) . Zc’i e (13) mage. As can be pinpointed in the graph, the extreme_pomts of
2 = an ROC curve are (0, 0) and (1, 1). These values indicate that
the price of complete success in the algorithm for recognizing
where s'(z,y) is a vector containing the simulated discretall existing targets is complete failure, i.e., detection of all false
spectrum,;E is the number of endmembers usedis a scalar alarms as true positives. Then, as the performance of a method
value representing the fractional abundance of endmembeiincreases, the ROC curve shifts toward the upper left corner,
at pixel(z, y) (Table 1l contains a description of the abundancehich represents perfect performance. Then, the quality of an
of endmembers in each region); am(, y) is the noise factor. MElimage may be determined by calculating the area below its
The signal is scaled by 50% of the SNR, which is equivaleassociated ROC curve. From detection theory definitions [48],
to reducing the noise standard deviation by the inverse factbe greater the area below the ROC curve, the better the algo-
(2/SNR), so that the simulated data meet the SNR definitiaiithm performance.
[19]. The vector terms in the parentheses are multiplied elementn order to analyze the impact of the kernel size parameter on
by element. the classification, we have performed the following experiment.
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Fig. 11. (a) MEl image obtained after applying the AMEE algorithm to Scene_1_Reflectance by using a square-skalekiethel. (b)—(e) Resulting images
after thresholding the MEI image with four equidistant threshold values. (f) Construction of an ROC curve for the MEI image (the area under thesturve is
addressed). (g) Area under ROC curves associated with classification images obtained by using voting and evaluation of endmembers withndiffeirest ke

The kernel size parameter is initially set tx3 pixels and is  Fig. 12 shows some results obtained after applying the
progressively increased to a maximum value ok21l pixels. AMEE algorithm to Scene_1_reflectance and Scene_1_radi-
For each considered size, an MEI image is obtained. An RQ@ce using a square-shaped 2111 kernels. In both cases,
curve is then constructed for each MEI image, and the area untleo endmembers were extracted. The reflectance endmembers
the curve is estimated. The resulting area estimations are plotaed labeled as Ref 1 1 and Ref 1 2 [Fig. 12(a)] and the
against the correspondent values of the parameter, obtainiadiance endmembersas Rad_1_1and Rad_1_2 [Fig. 12(b)]. A
a curve that indicates which values of the parameter providisual comparison of the extracted endmembers to the original
better results. Fig. 11(g) shows the results of this experimesigjnatures used to generate the images [Fig. 10(a) and (b)]
after applying the AMEE algorithm to Scene_1_Reflectanceeveals that the extracted endmembers correspond to soil and
For comparative purposes, we have considered the voting aegetation. Even though the resulting abundance maps are
evaluation systems for endmember selection (refer to Sectionrbisy [Fig. 12(c)—(f)], the spatial zones corresponding to pure
for a detailed description of each approach). The results shoggil and vegetation can be easily identified. A scatter plot
in Fig. 11(g) reveal that the purity determination process & true versus estimated fractional abundances is also shown
sensitive to the kernel size parameter, which must be larfpe each abundance map [Fig. 12(g)-(j)], showing that the
enough to contain samples with different spectral purity. lcorrelation is high even in the presence of noise. It should also
both cases (voting and evaluation), performance is high whiee pointed out that the algorithm produces very similar results
the kernel size is 1k 11 or larger (the width of spatial with radiance and reflectance data. This is not a surprising
patterns in Scene_1 is ten pixels). In contrast, this experimeasult: the transformation of radiance data into reflectance units
reveals that voting is much more dependent on kernel sizan modify the spectral shape, but the spectral singularity of
than evaluation, which provides acceptable results for smdifferent constituents remains.

kernel sizes. Fig. 13 shows the results obtained after applying the AMEE
algorithmto Scene_2_reflectance and Scene_2_radiance. Three
endmembers were extracted for each scene [Fig. 13(a) and
In order to perform abundance estimation simulations, wb)]. A visual comparison of the extracted endmembers to the
have applied our algorithm to the simulated scenes describ@yinal signatures used to generate the images [Fig. 10(a)
in Fig. 10. A set of endmembers is extracted for each imagmd (b)] reveals that the extracted endmembers correspond
and the abundance of each endmember is estimated by usmgoil, road, and building. By using the road and building
fully constrained linear spectral unmixing [49]. In order to deteextracted endmembers, we have created two matched filters
mine the accuracy of our method in this particular task, we corand their correspondent output images [Fig. 13(c)—(f)]. Even
pare the estimated abundances to the true abundances, showmoagh the output is noisy, we can easily separate the two
Table Il. Both reflectance and radiance spectra are used in tamgets from the background. These objects can be easily
simulations. obtained from the images through simple thresholding [the

C. Estimation of Abundances



2036 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 9, SEPTEMBER 2002

Endmembers derived from Scene_1_Reflectance Endmembers derived from Scene_1_Radiance
5000 - . . .
) —Ref 1_1 o 80001 i ~——Rad_1_1
4000 4 // \ = “\N\/“\ ~——Rad_1_2
g PaVAR ~—— Ref_1_2 g 5000 I“ ‘ —
E ) & |
S 3000 - % 4000 1
3 ~
g B 3000 4
g 2000 - Z
& g 2000 1
(]
£ 1000 §
1000 -
4
0 . . . : : ; - 0 - - . : ol
300 600 900 1200 1500 1800 2100 2400 300 600 900 1200 1500 1800 2100 2400
Wavelength (nm) Wavelength (nm)

a) b)

1. i 4 1 -— 15 — 15 —
8 o8 — 8 084 - S o8- —_— 8 o084 -
< = = &
g : s S
ERE —_ E 06 - g 061 —_ 2 06 -
3 3 3
2
< 044 —_ = 044 - < 044 —_ < 04 -
5] L QL Q
2 02 — g 02 - g 02 — 2 021 -
E o E o E = o
0 . . r . , 0 ; ; . ‘ ) 0 . . . . , 0 . . ; . .
0o 02 04 06 08 1 o 02 04 06 08 1 o 02 04 06 08 1 0 02 04 06 08 1
Estimated abundance Estimated abundance Estimated abundance Estimated abundance

g h) 1) 1)

Fig. 12. (a) Endmembers derived from Scene_1_Reflectance. (b) Endmembers derived from Scene_1_Radiance. (c), (d) Abundance maps for reflectance
endmembers. (e), (f) Abundance maps for radiance endmembers. (g), (h) Scatterplot of true versus estimated abundance for reflectance ahd@@embers. (
Scatterplot of true versus estimated abundance for radiance endmembers.

automated Otsu method [45] was used to obtain the threshold V. EVALUATION WITH EXPERIMENTAL DATA
value, producing the images shown in Fig. 13(g)-(})]. Some In this section, a comparative analysis of AMEE to other

of the above-mentioned segmented images are corrupted, B  no\yn endmember extraction algorithms is presented. The
salt-and-pepper” noise due to the sensor noise simulation dgmnarison has been carried out with real AVIRIS hyperspec-
the scenes. This noise can be easily eliminated, at the expeps€iata from the Cuprite mining district in Nevada. This scene
of some image degradation, by simplex® median filters s \ye|l understood mineralogically [51] and has reliable ground
[50]. _ ) ) ) truth in several forms, including laboratory spectra [52] and
The experiments presented in this section reveal that thgndance maps [53]. This fact has made this region a standard
AMEE algorithm can be used for the purpose of mixture quagsst site for comparison of classification algorithms. The scene
tification and abundance determination. The algorithm is alggat we have selected for this work was acquired in 1995 and
applicable for the purpose of identifying and separating targeignsists of 50 spectral bands in the SWIR-2 region of the spec-
from a homogeneous background. The use of radiance/igm, where the differences among minerals are clear.
flectance data does not significantly affect the performance ofin order to perform this experiment, we have selected several
the method. Although the method seems to work well in theopyboratory spectra from the U.S. Geological Survey (USGS)
development, further experiments with real data are desiralpgjital Spectral Library [52] to be used as ground-truth
in order to fully validate the previous remarks. references in the comparison. These signatures, acquired
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Fig. 13. (a) Endmembers derived from Scene_2_reflectance. (b) Endmembers derived from Scene_2_radiance. (c), (d) Matched filter outpgtefodivaddi

(Scene_2_reflectance). (e), (f) Matched filter output for building and road (Scene_2_radiance). (g), (h) Otsu segmentation of (c) andJthu Gedjnentation
of (e) and (f).

1)

with ground spectrometers on the Cuprite site, correspond toThe compared spectra have been labeled as follows. The
minerals that have been identified in the 1995 AVIRIS scene.UlSGS spectra were labeled with their correspondent names
is important to emphasize that there are other minerals presienthe library. AMEE, N-FINDR, and PPl endmembers were
in the scene, as well as intimate mixtures between seveiabeled with the initial letter of the method plus a number that
minerals, but we have focused our study on four particulardicates the order of identification of the signatures. Each
minerals (alunite, buddingtonite, calcite, and kaolinite) that canethod has its own mechanisms to extract the endmembers,
be found prominently and in pure form in the area. and the order in which the endmembers are identified is not
Two of the most well known algorithms for endmembemmportant. Thus, AMEE endmembers are labeled as Al...A9,
extraction are compared to the AMEE algorithm in this sectiolN-FINDR endmembers as N1...N10, and PPl endmembers
PPl and N-FINDR. As described in Section Il, PPI requiregs P1...P11. It should be taken into account that the number
close human supervision during the process of determinio§endmembers is different for each method and that “false”
the endmembers, while N-FINDR is fully automated. PPl anehdmember spectra are produced due to shade, noise, sensor
N-FINDR endmembers were extracted and provided by tletifacts, etc. The term “false” should not be misunderstood,
developers of each method. The parameters used by the autsorse these endmembers are actually needed to accurately
in order to produce the above-mentioned results are unknoummix the scene.
to us. The kernel size parameter used by the AMEE algorithmIn order to determine the best matching endmember for
was 15x 15. This parameter was determined after analyzirepch USGS reference signature, the confusion matrix method
the width in pixels of patterns of interest in the abundand®4] is used. Tables IlI-V show, respectively, the confusion
planes published in [53]. matrix of spectral angle distances between USGS ground-truth
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TABLE Il
CONFUSIONMATRIX OF SPECTRAL ANGLE DISTANCES BETWEEN AMEE ENDMEMBERS AND USGS REFERENCESPECTRA

Al A2 A3 A4 AS Ab A7 A8 A9
Alunite SUSTDA 0.052 0.162 0.149 0206 0.202 0.111 0.188 0.162 0.154
Buddingtonite NHB2301  0.242 0.179 0.136 0.243 0.259 0.267 0.362 0.262 0.171
Calcite WS272 0.194 0.099 0.146 0.070 0.164 0.159 0.235 0.132 0.084
Kaolinite CM9 0.172 0.220 0.254 0.215 0.268 0.139 0.061 0.178 0.185
TABLE IV

CONFUSIONMATRIX OF SPECTRAL ANGLE DISTANCES BETWEEN N-FINDR ENDMEMBERS AND USGS REFERENCESPECTRA

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Alunite SUSTDA 0.174 0.163 0.053 0.203 0.152 0.177 0.147 0.161 0.130 0.172

Buddingtonite NHB2301 0.147 0.286 0.238 0.237 0.137 0.257 0.122 0.228 0.267 0.157

Calcite WS272 0.105 0.152 0.191 0.064 0.152 0.148 0.142 0.113 0.150 0.107

Kaolinite CM9 0.248 0.118 0.173 0.214 0.259 0.227 0.250 0.188 0.103 0.238
TABLE V

CONFUSIONMATRIX OF SPECTRAL ANGLE DISTANCES BETWEEN PPl ENDMEMBERS AND USGS REFERENCESPECTRA

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Alunite SUSTDA 0.084 0.091 0.159 0.141 0.228 0.169 0.172 0.143 0.161 0.170 0.173
Buddingtonite NHB2301  0.242 0.221 0.181 0.142 0.272 0.163 0.290 0.306 0.182 0.251 0.244
Calcite WS272 0.194 0.150 0.104 0.135 0.080 0.104 0.149 0.187 0.100 0.124 0.137
Kaolinite CM9 0.172 0.179 0.223 0.241 0212 0.242 0.120 0.067 0.217 0.181 0.228

signatures and AMEE, N-FINDR, and PPl endmembers. Vémalysis of the performance of each approach, the plots in
have selected the spectral angle distance for the comparison Bige 14 also address the spectral angle distance between each
to existing scale and ilumination variations between referenegtracted endmember and its correspondent USGS reference
and extracted endmembers, which are mainly due to atmosphsepectrum. AMEE endmembers present high spectral similarity
transmission effects that are not present in spectra acquitedground truth for the alunite, buddingtonite, and kaolinite

by ground spectrometers. minerals. N-FINDR provides the best result for the calcite
The endmember spectra for AMEE, N-FINDR, and PPI arineral. The combination of spectral and spatial context
shown in Fig. 14 for the following minerals: information in the pure pixel identification step of AMEE is
1) alunite: the main reason for the encouraging results obtained by the
2) buddin’gtonite' algorithm in this example.
3) calcite;
4) kaolinite. VI. CONCLUSION AND FUTURE LINES

Extracted endmembers have the same reflectance units as theP€ctral unmixing and object classification are two important
input data, since each endmember is actually the spectr@RfIS of remote imaging spectroscopy. The idea of using end-
(or an average) of real image pixels. For illustrative purposéggmbers derived from the data for classification and unmixing
ground USGS spectra for the same minerals are also plottBas been considered before, but few methods have exploited the
USGS spectra are expressed in scaled reflectance. It careigting correlation between neighboring pixels. The integration
noted that, although there are differences in the scales, spec¥dipatial and spectral information has been identified as a de-
shape is preserved in most cases. A visual comparisonSt#®d goal by the scientific community dedicated to multidimen-
the buddingtonite USGS laboratory spectrum and derivétPnal data analysis and classification.
endmembers [Fig. 14(b)] reveals that atmospheric transmissiotVe have described a novel approach based on mathematical
effects are relevant in the case of this mineral. morphology to perform unsupervised endmember extraction
Although the three algorithms find endmembers by usirfgiom multi/hyperspectral data. The method uses both spectral
very different techniques, the output of the three algorithnad spatial information in a simultaneous manner. An evaluation
operating on the same dataset is very similar, as expected frofnthe method by using simulated and real data has been
the results shown in the confusion matrices. For a quantitatipeesented and discussed.
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Fig. 14. Algorithm scene derived and USGS laboratory reflectance spectra for (a) alunite, (b) buddingtonite, (c) calcite, and (d) kaolinéd.dfxiraembers
have the same reflectance units as the input data, while USGS spectra are expressed in scaled reflectance. The spectral angle distance bbeésmth each ex
endmember and the correspondent USGS reference spectrum is addressed.

Results with simulated data reveal that the method can aceul cover some relevant developments that were notincluded in
rately model the spatial distribution of spectral patterns in thke present study. An evaluation of different distance measures
scene by extended morphological operations that apply pldboth linear and nonlinear) to be used in the extension of mor-
spatial kernels. The spatial properties (size and shape) of fit®logical operations is a key topic, deserving future research.
kernel have a strong influence on the final result, a fact thatlis addition, the structuring elements developed in this paper
consistent with classic mathematical morphology theory. Tlaee limited to plain square-shaped kernels. The use of kernels
behavior of the algorithm also depends on the relationship beith no such limitations is of great interest in order to explore,
tween the spatial properties of the kernels used and the distribugreater detail, the existing spatial/spectral interrelation be-
tion of spectral patterns in the scene. This fact allows for tiieeen the kernel used and patterns in the scene. The number
tuning of our method for a wide range of applications, frorof endmembers extracted per kernel neighborhood is also an
target detection to global classification and spectral unmixingteresting issue. In the present research, some limitations of
of scenes. The use of reflectance/radiance data does not hatreegoroposed method have been identified as a consequence of
significant impact on the output of the algorithm. the fact that only one pixel per kernel neighborhood is selected.

Results with experimental data show that the proposédternative definitions of the local MEI index may overcome ex-
method produces results that are comparable to those foustthg limitations. Finally, efficient hardware implementations
by working with other widely accepted methodologies. Theased on field-programmable logic arrays and systolic arrays
proposed method is accurate in the task of identifying endre being currently tested at our laboratory in order to provide
members from complicated scenes as the famous AVIRIiISe methodology with real-time capabilities.

Cuprite dataset, which has become a standard test site for the
comparison of algorithms due to the availability of quality
ground-truth measurements.

As with any new approach, there are some unresolved issue¥he authors acknowledge the suggestions and comments of
that may present challenges over time. In this sense, future lide®inzén, R. O. Green, and J. A. Gualtieri that helped to improve
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