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Abstract

This paper presents a new approach to the analysis of hyperspectral images, a new class of image data that is mainly
used in remote sensing applications. The method is based on the generalization of concepts from mathematical morphology
to multi-channel imagery. A new vector organization scheme is described, and fundamental morphological vector operations
are de#ned by extension. Theoretical de#nitions of extended morphological operations are used in the formal de#nition of
the concept of extended morphological pro#le, which is used for multi-scale analysis of hyperspectral data. This approach is
particularly well suited for the analysis of image scenes where most of the pixels collected by the sensor are characterized
by their mixed nature, i.e. they are formed by a combination of multiple underlying responses produced by spectrally distinct
materials. Experimental results demonstrate the applicability of the proposed technique in mixed pixel analysis of simulated
and real hyperspectral data collected by the NASA/Jet Propulsion Laboratory Airborne Visible/Infrared Imaging Spectrometer
and the DLR Digital Airborne (DAIS 7915) and Re8ective Optics System Imaging Spectrometers. The proposed method
works e;ectively in the presence of noise and low spatial resolution. A quantitative and comparative performance study with
regards to other standard hyperspectral analysis methodologies reveals that the combined utilization of spatial and spectral
information in the proposed technique produces classi#cation results which are superior to those found by using the spectral
information alone.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Hyperspectral imaging, also known as imaging spectro-
scopy, is a new technique in remote sensing that generates
hundreds of images, corresponding to di;erent wavelength
channels, for the same area on the surface of the earth
[1]. With such spectral resolution, the ability to detect and
identify individual materials or land-cover classes is greatly
enhanced with regards to other techniques available, such
as multispectral imaging, which typically just contains tens
of images. During the past few years, a great deal of new
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hyperspectral instruments have been developed for remote
sensing applications. For instance, the NASA/Jet Propulsion
Laboratory Airborne Visible/Infrared Imaging Spectrometer
(from now abbreviated as AVIRIS) [2] covers the wave-
length region from 0.4 to 2:5 �m using 224 spectral chan-
nels at a nominal resolution of 10 nm. In the near future,
the use of hyperspectral sensors on satellite platforms will
produce a nearly continual stream of high-dimensional data,
and this expected high data volume will require fast, unsu-
pervised means for storage, transmission and analysis [3].

A diverse array of analysis techniques have been applied
to hyperspectral imagery during the last decade [4]. They
are inherently either full pixel techniques or mixed pixel
techniques, where each pixel vector in a hyperspectral im-
age records the spectral information. The underlying as-
sumption governing full pixel techniques is that each pixel
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vector measures the response of one predominantly under-
lying material at each site in a scene. In contrast, the under-
lying assumption governing mixed pixel techniques is that
each pixel vector measures the response of multiple under-
lying materials at each site. Unfortunately, an image is often
a combination of the two situations, where many sites in a
scene are pure materials, but many others are mixtures of
materials. For perspective, we brie8y discuss some of the
existing full pixel and mixed pixel analysis techniques, and
then introduce our approach.

1.1. Full pixel techniques

The simplest full pixel technique for hyperspectral analy-
sis is the method of spectral matching [5]. This approach can
be e;ective as long as the training spectra, obtained either
from a reference library or from the image itself, are prop-
erly calibrated in relation to spectra of interest and provided
that the full pixel scenario is appropriate. Unfortunately, a
number of the pixel vectors in the scene is likely to mea-
sure the spectral response of a mixture of materials. In ad-
dition, class label assignments provided by spectral match-
ing algorithms are not a;ected by spatial neighborhoods.
This may be a negative consequence for mapping applica-
tions, where consistency of class labels in localized spatial
neighborhoods, a concept hereinafter termed as “spatial lo-
calization”, is important. Other full pixel methods that have
been applied to hyperspectral imagery include supervised,
pattern recognition-based approaches such as statistical lin-
ear discrimination [6], quadratic multivariate classi#ers [7],
and neural networks [8]. Unsupervised algorithms such as
KMEANS and ISODATA [4,9] have also been widely used
for the sake of clustering multispectral and hyperspectral
imagery.

1.2. Mixed pixel techniques

Spectral mixture analysis (SMA) techniques have over-
come some of the weaknesses of full pixel approaches by
using linear statistical modeling and signal processing tech-
niques [10–12]. They are inherently either nonlinear tech-
niques or linear techniques. Nonlinear mixed pixel analysis
involves a detailed knowledge of multiple scattering e;ects
that may arise due to the intimate association of components
residing inside each pixel [13]. Although sub-pixel nonlin-
ear mixing can be important for some types of analysis, the
e;ects of multiple scattering in the majority of applications
are assumed to be negligible if a linear model is used [14].
The key task in linear SMA is to #nd an appropriate suite
of pure spectral constituents—called “endmembers” in hy-
perspectral analysis terminology—, which are then used to
estimate the fractional abundances of each mixed pixel from
its spectrum and the endmember spectra by using a linear
mixture model [15]. However, unless accurate ground-truth
information about the materials in a scene is available, the
task of identifying endmembers in a scene is not trivial. Two

main approaches have been examined in the literature for
this purpose, namely interactive and automated endmember
extraction techniques. The pixel purity index (PPI) method
[16] is the most representative interactive approach, and
consists of the following steps: First, a “noise-whitening”
and dimensionality reduction step is performed by using the
minimum noise fraction (MNF) transform [17]. A pixel pu-
rity score is then calculated for each point in the image cube
by randomly generating L lines in the N -D space comprising
the MNF transformed data. All the points in that space are
projected onto the lines, and the ones falling at the extremes
of each line are counted. After many repeated projections to
di;erent random lines, those pixels that count above a cer-
tain cuto; threshold C are declared “pure”. These potential
endmember spectra are loaded into an interactive N -D visu-
alization tool and rotated in real time until a desired number
of endmembers, E, are visually identi#ed as extreme pixels
in the data cloud. On other hand, the N-FINDR method
[18] is an automated approach that #nds the set of pixels
which de#ne the simplex with the maximum volume, po-
tentially inscribed within the dataset. First, a dimensionality
reduction of the original image is accomplished by MNF.
Next, randomly selected pixels qualify as endmembers, and
a trial volume is calculated. In order to re#ne the initial
volume estimate, a trial volume is calculated for every pixel
in each endmember position by replacing that endmember
and recalculating the volume. If the replacement results in
a volume increase, the pixel replaces the endmember. This
procedure, which does not require any input parameters,
is repeated until there are no replacements of endmembers
left. It should be noted that both PPI and N-FINDR rely
on spectral properties of the data alone, neglecting the
information related to the spatial arrangement of pixels
in the scene.

1.3. Proposed approach

Our current research considers hyperspectral image anal-
ysis from a broader perspective than the individual methods
listed above. Instead of focusing exclusively on the spectral
information contained in the data, we focus on the analysis
of spatial and spectral patterns simultaneously. The integra-
tion of spatial/spectral responses in hyperspectral analysis
has been identi#ed as a requested objective in the remote
sensing community [19]. However, most available attempts
are based on an initial clustering, using spectral information
alone, followed by a post-classi#cation step using spatial
context [20]. This operation entirely separates spatial infor-
mation from spectral information, and thus the two types of
information are not treated simultaneously.

In previous papers [21–24], we have explored the appli-
cation of mathematical morphology operations to integrate
both spatial and spectral responses in hyperspectral data
analysis. Mathematical morphology is a classic nonlinear
image processing technique that has been successfully ap-
plied to the processing of remotely sensed imagery [25,26].
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Based on the set theory, binary morphology was established
by introducing fundamental operators applied to two sets
[27]. One set is processed by another one having a carefully
selected shape and size, and known as the structuring ele-
ment (SE), which is translated over the image. The SE acts
as a probe for extracting or suppressing speci#c structures
of the image objects, checking that each position of the SE
#ts within the image objects. Morphological operations have
extended to gray-tone (mono-channel) images by viewing
these data as an imaginary topographic relief; in this regard,
the brighter the gray tone, the higher the corresponding el-
evation [28,29]. It follows that, in grayscale morphology,
each 2-D gray tone image is viewed as if it were a digital ele-
vation model (DEM). In practice, set operators directly gen-
eralize to gray-tone images. For instance, the intersection ∩
(respectively, union ∪) of two sets becomes the point-wise
minimum

∧
(respectively, maximum) operator [30]. In a

similar way to the binary case, speci#c image structures are
extracted/suppressed according to the chosen SE. The latter
is usually “8at” in the sense that it is de#ned in the spa-
tial domain of the image (the x–y plane) [25]. Therefore,
classic mathematical morphology looks for objects de#ned
as a speci#c spatial arrangement of image pixels rather than
single pixels with a speci#c spectral signature.

The extension of the concepts of binary and grayscale
morphology to multi/hyperspectral images is not straight-
forward. When such techniques are applied independently
to each image channel (marginal morphology), there is a
possibility for loss or corruption of information of the im-
age due to the probability that new spectral constituents—
not present in the original image—may be created as a re-
sult of processing image channels separately [31]. An alter-
native way to approach the problem of multi/hyperspectral
morphology is to treat the data at each pixel as a vector. In
order to de#ne the basic morphological operations, a con-
cept for a maximum (or minimum) is necessary, and thus it
is important to de#ne an appropriate arrangement of vectors
in the selected vector space. A number of vector ordering
schemes has been proposed, since there is no natural means
of de#ning arrangement in N -D spaces. Several approaches
have been suggested [32–34]: (1) in reduced ordering, a
scalar parameter function is computed for each pixel of the
image and the ordering is performed according to the re-
sulting scalar values; (2) in partial ordering, the input mul-
tivariate samples are partitioned into smaller groups which
are then ordered; (3) in conditional ordering the vectors are
initially ordered according to the ordered values of their
components, e.g. the #rst component. At the second step,
vectors that have the same value for the #rst component are
ordered according to the ordered values of another compo-
nent, e.g. the second component, and so on. Our approach
to this problem has been the de#nition of scalar vector or-
dering schemes based on the spectral purity of pixels [23].
First, a lattice structure is imposed onto N -D space by the
de#nition of a cumulative distance measure. Second, mor-
phological operations are de#ned by extension. By means

of extended morphological operations, a method for mixed
pixel analysis of hyperspectral data was developed [21].
The main contribution of this paper with regard to our

previous work in Refs. [21–23] is the development of an
adaptative scheme that allows an intelligent and automated
selection of the most appropriate SE to accurately charac-
terize each pixel of the scene in both spatial and spectral
terms. Some limitations of extended morphological opera-
tions were identi#ed in Ref. [21] as a consequence of the
fact that a #xed range of SE sizes was considered for every
image pixel. The limitations above are solved in this paper
by using the concept of morphological pro#le, de#ned in
Ref. [35] for grayscale imagery. Conceptually, a grayscale
morphological pro#le can be interpreted as a representation
of the di;erent output values, produced by a morphological
operation at a certain image pixel, when the SE size is pro-
gressively increased from a minimum size to a maximum
size. When extended to hyperspectral imagery, this concept
allows for the selection of an optimum range of SE sizes at
each pixel, thus improving its spatial/spectral characteriza-
tion. A further contribution of this paper with regard to Ref.
[24] is the construction of extended morphological transfor-
mations based on line segment SEs, which are able to ac-
curately model oriented image features in complex analysis
scenarios.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the approach followed for extension of clas-
sic morphological operations to hyperspectral imagery. In
Section 3, a framework for the calculation of morphologi-
cal pro#les in hyperspectral data is described, and a number
of examples is provided. Section 4 presents a comparison
of the proposed analysis approach to other well-known full
and mixed pixel classi#cation approaches using both simu-
lated and real data. Finally, conclusions and comments on
plausible future research are stated in Section 5.

2. Extended morphological operations

Our attention in this section focuses primarily on the de-
velopment of a mechanism to extend basic morphological
operations to hyperspectral image data. The two basic oper-
ations of classic mathematical morphology are dilation and
erosion. Following a usual notation [36], let us consider a
grayscale image f, de#ned on a space E. Typically, E is the
2-D continuous space R2 or the 2-D discrete space Z2. In
the following, we refer to morphological operations de#ned
on the discrete space. The 8at erosion of f by B ⊂ Z2 is
de#ned by the following expression:

(f ⊗ B)(x; y) =
∧

(s; t)∈Z2(B)
f(x + s; y + t); (x; y)∈ Z2;

(1)

where Z2(B) denotes the set of discrete spatial coordinates
associated to pixels lying within the neighborhood de#ned
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by B and
∧

denotes the minimum. On the other hand, the
8at dilation of f by B is de#ned by

(f ⊕ B)(x; y) =
∨

(s; t)∈Z2(B)
f(x − s; y − t); (x; y)∈ Z2;

(2)

where
∨

denotes the maximum. Using the same notation
above, the composition

(f ◦ B)(x; y) = [(f ⊗ B)⊕ B](x; y); (x; y)∈ Z2 (3)

yields a 8at opening, an operator that is increasing,
anti-extensive and idempotent [36]. On the other hand, the
composition

(f • B)(x; y) = [(f ⊕ B)⊗ B](x; y); (x; y)∈ Z2 (4)

is called a 8at closing, an operator that is increasing, exten-
sive, and idempotent. A morphological operator is called a
morphological #lter if it is increasing and idempotent [36].
In order to extend the above basic morphological operations
to hyperspectral images, let us now consider an image f , de-
#ned on the (N -D) continuous space, where N is the number
of spectral channels. An ordering relation can be imposed
in the set of pixels lying within a 8at SE, denoted by B, by
de#ning metrics that calculate the cumulative distance be-
tween one particular pixel f (x; y), where f (x; y) denotes an
N -D vector at discrete spatial coordinates (x; y)∈ Z2, and
every other pixel in the neighborhood given by B. Based on
the previous considerations, 8at extended dilation and 8at
extended erosion can be, respectively, de#ned as follows:

( f ⊕ B)(x; y)

= arg


 ∨

(s; t)∈Z2(B)

[∑
s

∑
t

Dist( f (x; y);

f (x + s; y + t))

]
 ; (x; y)∈ Z2; (5)

( f ⊗ B)(x; y)

= arg


 ∧

(s; t)∈Z2(B)

[∑
s

∑
t

Dist( f (x; y);

f (x − s; y − t))
]
 ; (x; y)∈ Z2; (6)

where Dist is a point-wise distance measure between two
N -D vectors. The choice of Dist is a key topic in the result-
ing ordering relation. This study has been presented in pre-
vious papers [21–23]. In this paper, Dist refers to the spec-
tral angle distance (SAD), one of the standard metrics in
hyperspectral analysis. Our choice of SAD is mainly based
on the fact that this distance is invariant to multiplicative
scaling that may arise due to di;erent illumination condi-
tions and sensor observation angle [10]. It should be noted

Fig. 1. Representative spectral signatures for the main constituents
present in the original ROSIS hyperspectral image: soil (r1), pasture
(r2) and cork-oak tree (r3).

that the arg operator in Eqs. (5) and (6), respectively, se-
lects the N -D pixel vector that maximizes and minimizes
the cumulative distance value between f (x; y) and its neigh-
boring pixels according to B. Hence, the use of SAD as the
standard distance metric allows us to impose a partial or-
der relationship of the vectors within a SE in terms of their
spectral purity. We believe that a topic of great interest for
future developments of the method is the detailed analysis
of other distance measures that may be suitable for exten-
sion of morphological operations, including nonlinear dis-
tances as well as distances that use second-order statistics.
It is important to notice that, regardless of the distance mea-
sure used, the proposed operators are vector preserving, i.e.
no vector (constituent) that is not present in the input data
is generated as a result of the extension process [22].

For illustrative purposes, let B be a 8at 3×3-pixel SE and
let f be a hyperspectral scene, collected by the DLR RO-
SIS imaging spectrometer (ROSIS—re8ective optics sys-
tem imaging spectrometers) [37] over a so-called ‘Dehesa’
ecosystem, mainly formed by cork-oak trees, soil and pas-
ture, in Caceres, SW Spain. Representative spectral signa-
tures of cork-oak trees, pasture and soil, selected from the
above data set, are shown in Fig. 1 for illustrative purposes.
The full hyperspectral scene consists of 88× 134 pixels of
1:2× 1:2 m, each containing 92 spectral bands covering the
spectral range from 0.4 to 0:9 �m. If B is moved pixel by
pixel through f , then the SE de#nes a local spatial search
area around each hyperspectral pixel. The result of apply-
ing an extended erosion/dilation operation to f using B is
a new data cube, with exactly the same dimensions as the
original, where each pixel has been replaced by the maxi-
mum/minimum of the neighborhood de#ned by the 8at SE.
The maximum (dilation) and minimum (erosion) pixel in
the searched area is calculated according to the schema de-
scribed above, yielding the results depicted in Fig. 2 for
the spectral band collected at 584 nm wavelength by the
ROSIS imaging spectrometer (see Fig. 2(a)). As can be
examined in Fig. 2(b), extended dilation has the e;ect of
expanding zones with “pure” spectral signatures (in the
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Fig. 2. (a) Band at 583:6 nm of original ROSIS hyperspectral image; (b) band at 583:6 nm of the hyperspectral image obtained after
applying an extended erosion to the original image using a 8at 3× 3 structuring element; (c) band at 583:6 nm of the hyperspectral image
obtained after applying an extended dilation to the original image using a 8at 3× 3 structuring element; (d) residual image obtained after
applying an extended top-hat transformation to the original image using a 8at 7× 7 structuring element.

example, cork-oak and soil areas are developed). Most of
the pasture areas in the ROSIS scene are made up of soil
mixtures and pasture because of the early growth stage of
pasture at the time of sensor data acquisition (July 2001).
This e;ect can be noticed in Fig. 2(c), where the erosion op-
eration expands gray-tone (“mixed”) areas and shrinks both
dark (cork-oak) and bright (pure soil) areas. With the two
previous operations, the construction of extended 8at open-
ing and closing operations is straightforward (see Eqs. (3)
and (4)). The proposed extended transforms can be used to
isolate pure (opening) and mixed (closing) pixels in hyper-
spectral images, where the notion of pure/mixed refers to
the most highly pure/mixed pixels among the surrounding
pixels. In order to detect pure pixels, we de#ne the extended
top-hat operator, �, which is calculated by taking the resid-
ual image between the original and the opened image [38].

�[ f (x; y)] = Dist[ f (x; y); ( f ◦ B)(x; y)]; (x; y)∈ Z2:
(7)

For illustrative purposes, Fig. 2(d) shows the residual im-
age obtained after applying an extended top-hat transforma-
tion to the original hyperspectral scene using a 8at 7×7 SE.
In a similar way, the inverse extended top-hat operator, �′,
can carry out the detection of mixed pixels in hyperspectral
imagery.

�′[ f (x; y)] = Dist[( f • B)(x; y); f (x; y)]; (x; y)∈ Z2:
(8)

3. Extended morphological pro�les

Our main goal in this section is to incorporate the idea
of multi-scale analysis into extended morphological trans-
formations. As described in Section 2, morphological #lters
are characterized by the size and shape of the considered
SE. However, if the searched patterns do not have regular

properties across the scene, an adaptative scheme is needed
to ensure that the correct SE size is considered at each pixel
[39]. This need consequently poses the problem of adequate
parameter selection. As reported by Pesaresi and Benedik-
tsson, this selection can be achieved by plotting the mor-
phological #lter output at each pixel against the value of a
varying parameter. The resulting plot is called a morpho-
logical pro#le, where the varying parameter is the size of
the SE. Simple derivative rules can be applied to morpho-
logical pro#les in order to determine the most appropriate
parameter value for each pixel [35]. Morphological pro#les
in grayscale imagery are based on opening and closing by
reconstruction [40], a special class of morphological #lters
that have proven to be very successful for multi-scale image
processing. These #lters do not introduce discontinuities,
and therefore preserve the shapes observed in input images.
Thus, the basic contrast imposed by conventional opening
and closing versus reconstruction-based opening and clos-
ing, can be described as follows: conventional opening and
closing remove the parts of the objects that are smaller than
the SE, whereas opening and closing by reconstruction ei-
ther completely removes the features or retains them as a
whole. In Section 3.1, we detail the process followed to
extend the concepts of opening and closing by reconstruc-
tion, morphological pro#les, and derivative analysis to hy-
perspectral data. In Section 3.2, some illustrative examples
are included. Finally, Section 3.3 describes a new methodol-
ogy for mixed pixel classi#cation, based on extended mor-
phological pro#les. The general algorithm, input parameters,
and implementation options are also discussed.

3.1. Construction of extended morphological pro6les

In order to extend reconstruction-based opening and clos-
ing operations to hyperspectral imagery, let us consider a
hyperspectral image f de#ned on RN . Given a SE (designed
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by B) of minimal size, extended opening by reconstruction
is de#ned by

( f ◦ B)k(x; y) =
∨
k¿1

[�kB( f ◦ B | f )](x; y); (9)

where

[�kB( f ◦ B | f )](x; y) =




k times︷ ︸︸ ︷
�B�B · · · �B( f ◦ B | f )


 (x; y):

(10)

The elementary term [�B( f ◦ B | f )](x; y) is an extended
geodesic dilation [41], de#ned as the maximum of the el-
ementary dilation of f ◦ B using B at pixel (x; y) and the
value of f (x; y),

[�B( f ◦ B | f )](x; y)
={[( f ◦ B)⊕ B](x; y)} ∨ { f (x; y)}: (11)

As shown in Eq. (10), this operation is repeated k times
until idempotence is reached. In a similar fashion, extended
closing by reconstruction is given by

( f • B)k(x; y) =
∧
k¿1

[�kB( f • B | f )](x; y); (12)

where

[�kB( f • B | f )](x; y) =

 k times︷ ︸︸ ︷
�B�B · · · �B( f • B | f )


 (x; y):

(13)

The elementary term [�B( f • B | f )](x; y) is an extended
geodesic erosion [41], de#ned as the minimum of the ele-
mentary erosion of f •B using B at pixel (x; y) and the value
of f (x; y),

[�B( f • B | f )](x; y)
={[( f • B)⊗ B](x; y)} ∧ { f (x; y)}: (14)

Using Eqs. (10) and (13), extended morphological pro-
#les are created as follows. Let the vector p◦k (x; y) be the ex-
tended opening by reconstruction pro#le at the point (x; y)
of the image f , de#ned by

p◦k (x; y) = {( f ◦ B)�(x; y)}; � = {0; 1; : : : ; k} (15)

and let p•k (x; y) be the extended closing by reconstruction
pro#le at the point (x; y) of the image f , de#ned by

p•k (x; y) = {( f • B)�(x; y)}; � = {0; 1; : : : ; k}: (16)

Here ( f • B)0(x; y) = f (x; y) = ( f ◦ B)0(x; y) for � = 0
by the de#nition of extended opening and closing by re-
construction [40]. We de#ne the derivative of the extended
opening pro#le Rp◦k (x; y) as the vector

Rp◦k (x; y) = {Dist[( f ◦ B)�(x; y); ( f ◦ B)�−1(x; y)]};
� = {1; 2; : : : ; k}: (17)

By duality, the derivative of the closing pro#le Rp•k (x; y)
is the vector

Rp•k (x; y) = {Dist[( f • B)�(x; y); ( f • B)�−1(x; y)]};
� = {1; 2; : : : ; k}: (18)

Given all of the above, the multi-scale opening character-
istic �◦

k (x; y) at the point (x; y) of the image f is de#ned as
the SE size with the greatest associated value in Rp◦k (x; y);

�◦
k (x; y) = �∈{1; 2; : : : ; k};
Dist[( f ◦ B)�(x; y); ( f ◦ B)�−1(x; y)]

=
∨

Rp◦k (x; y): (19)

Similarly, the multi-scale closing characteristic �•
k (x; y)

is de#ned as the SE size with the greatest associated value
in the derivative of the extended closing pro#le Rp•k (x; y):

�•
k (x; y) = �∈{1; 2; : : : ; k};
Dist[( f • B)�(x; y); ( f • B)�−1(x; y)]

=
∨

Rp•k (x; y): (20)

3.2. Examples

This section provides some examples illustrating the con-
struction of extended morphological pro#les, derivatives and
multi-scale characteristics. In Fig. 3, the procedure followed
in Section 3.1 to obtain extended morphological pro#les is
illustrated by using four target objects in a ROSIS hyper-
spectral image: a small cork-oak tree (see Fig. 3(a)), a pure
soil area (Fig. 3(b)), a medium-sized cork-oak tree (Fig.
3(c)), and a mixed area formed by soil and pasture, sur-
rounded by pure soil (Fig. 3(d)). Ground-truth information,
collected during a site visit to the area, was used to charac-
terize the spectral purity of sample pixels associated to these
objects. As part of our experiment, the data from this site
visit were compiled as a collection of spectral measurements
with accurate geo-registration. Data collection revealed that,
while the pixels in Figs. 3(a)–(c) can be considered spec-
trally pure, the relatively high spatial resolution available
was not large enough to separate soil from pasture at the
pixel shown in Fig. 3(d). As a result, this pixel was labeled
as spectrally mixed.

Extended morphological pro#les were constructed for the
pixels shown in Fig. 3. The resulting opening p◦k (x; y) and
closing p•k (x; y) pro#les (see Eqs. (15) and (16)) were com-
bined in 3-D plots, where the spectral signature of the an-
alyzed pixel f (x; y), denoted by P in the plots, is shown
along with the resulting spectral signatures obtained after
applying a series of opening- and-closing-by-reconstruction
operations using di;erent SE sizes. A range of SEs was
considered in experiments. The range was derived by being
based on three iterations of the elementary eight-connected
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Fig. 3. Extended morphological pro#les associated to pixels belonging to four target objects in a ROSIS hyperspectral scene: (a) small
cork-oak tree; (b) pure soil area; (c) medium-sized cork-oak tree; (d) mixed area formed by soil and pasture, surrounded by pure soil.

SE (using Eqs. (10) and (13), respectively). These itera-
tions were labeled in the plots as Ok = ( f ◦ B)k(x; y) for
the opening series, and Ck = ( f • B)k(x; y) for the clos-
ing series, where k = {1; 2; 3}. As it can be observed in

Figs. 3(a)–(c), pure pixels remain indi;erent to the three
closing-by-reconstruction iterations, but are replaced during
the opening-by-reconstruction process. Similarly, it is shown
in Fig. 3(d) that the mixed pixel remains indi;erent to the
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Fig. 4. Derivatives of the morphological pro#les associated with target pixels in: (a) small cork-oak tree; (b) pure soil area; (c) medium-sized
cork-oak tree; (d) mixed area formed by soil and pasture, surrounded by pure soil.

three opening-by-reconstruction iterations, but is replaced
in the closing series. The step of the opening/closing series
iteration at which the pixel is replaced provides an intuitive
idea of both the spectral purity of the pixel and the spatial
distribution of the object in the scene.

Fig. 4 shows graphs where the resulting opening and clos-
ing derivative pro#les for each analyzed pixel in Fig. 3 are
combined in single 2-D plots. These plots can be interpreted
as histograms that show the level of the derivative relative
to the opening and closing series for each step of the iter-
ation (see Eqs. (17) and (18)). We emphasize that the be-
havior of the derivative pro#le stores information about the
spectral and spatial characteristics of the pixel in relation
to its neighboring pixels. As a result, pixels that are spec-
trally purer than their adjacent components have a combined
derivative pro#le that is unbalanced to the right (opening
series), as shown in Figs. 4(a)–(c). In contrast, mixed pix-
els show a derivative pro#le that is unbalanced to the left
(closing series), as illustrated in Fig. 4(d). The point where
the derivative pro#le takes the maximum value can be used
to record the most appropriate size of the SE for each pixel.
This value provides an indication of the morphological char-
acteristic of a certain spectral feature in the given spatial
domain range, which can be used to evaluate the purity of
the pixel using a spatial/spectral criterion.

3.3. Proposed algorithm

As explained in Section 2, the residual images lying
between extended opening-by-reconstruction (or extended
closing-by-reconstruction) images and the original hy-

Table 1
The ADMP algorithm

Inputs:
Hyperspectral pixel vector: f (x; y).
Maximum number of iterations: k.

Outputs:
f (x; y) labeled as “pure” or “mixed”.
Morphological pro#le purity index, �(x; y), at f (x; y).

Begin
p◦k (x; y) = {( f ◦ B)�(x; y)}; � = {0; 1; : : : ; k},
p•k (x; y) = {( f • B)�(x; y)}; � = {0; 1; : : : ; k}.
If

∨
Rp◦k (x; y)¿

∨
Rp•k (x; y) then

label f (x; y) as “pure”.
�(x; y) = Dist[ f (x; y); ( f ◦ B)�◦ (x; y)],
where �◦ = �◦

k (x; y).
Else

label f (x; ys) as “mixed”.
�(x;y)=Dist[ f (x;y); ( f •B)�• (x;y)], where �•=�•

k (x;y).
Endif

End

perspectral image can be interpreted as a measure of the
relative pure (mixed) condition of the pixel compared to
its neighbors. With this result in mind, a novel multi-scale
algorithm is described for the determination of a morpho-
logical pro#le-based purity index, denoted by �(x; y), at
each pixel f (x; y) of a hyperspectral image. This algorithm
is abbreviated from now on as automated determination of
morphological pro#les (ADMP).

The ADMP algorithm is addressed in Table 1. Taking
into account the reasoning illustrated in Section 3.2, we
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can summarize the underlying ideas governing ADMP
as follows. Firstly, those pixels that remain indi;erent
to the closing-by-reconstruction process but are replaced
during opening by reconstruction can be designed as
“pure”. In contrast, those pixels that remain indi;er-
ent to the opening-by-reconstruction process but are re-
placed during closing by reconstruction can be labeled
as “mixed”. Hence, pure/mixed pixels can be easily
identi#ed by comparing the maximum derivative value
obtained in the opening-by-reconstruction series, i.e.∨

Rp•k (x; y), to the maximum derivative value produced by
the closing-by-reconstruction series, i.e.

∨
Rp◦k (x; y). As

shown in Table 1, if f (x; y) is labeled as “pure”, then its
associated purity index �(x; y) is calculated as the residual
between the extended opening-by-reconstruction and the
original pixel. In contrast, if f (x; y) is designed as a mixed
pixel by ADMP, then �(x; y) is calculated as the residual
between the extended closing-by-reconstruction and the
original pixel. In both cases, the operation is performed
by using an optimum SE size, provided by �◦

k (x; y) and
�•
k (x; y), respectively (see Eqs. (19) and (20)). It should

be noted that the algorithm described in Table 1 is charac-
terized by a simple behavior, where both the opening and
closing pro#les have only one signi#cant derivative maxi-
mum. This assumption may not be valid in complex image
scenes characterized by structures with several signi#cant
derivative maxima and directional features (for instance,
urban environments). In the above cases, orientation is a
worthy addition to scale information in order to character-
ize image structures [24,42]. In the following, we propose
an extension of the procedure used to calculate �(x; y) that
makes use of both scale and orientation information.

Scale-orientation morphological pro#les can be simply
created, using the same de#nitions given in Section 3.1, by
considering SEs given by a certain size and orientation [24].
Let us denote by B(d x;dy) a line segment SE (LSSE) of min-
imal length, where dy=dx is the slope of the line segment
[42]. Since we are dealing with images digitized on a square
grid, we can restrict our analysis to line slopes in the form
of an irreductible fraction dy=dx (i.e. dx and dy are integers
with no common divisors). By convention, it is convenient
to include the forms 0=1 and 1=0 for referring to horizon-
tal and vertical lines, respectively. For example, Figs. 5(a)–
(d) shows four LSSEs of length equal to three pixels for a
slope of 0=1: B(0;1) (Fig. 5(a)), 1=0: B(0;1) (Fig. 5(b)), 1=−1:
B(1;−1) (Fig. 5(c)), and −1=1: B(−1;1) (Fig. 5(d)). As shown
in Figs. 5(e)–(h), LSSEs of increased length and width can
be obtained by applying binary dilation operations, using a
square-shaped 3× 3-pixel SE, to the above LSSEs of mini-
mal length. If we consider the SAD distance as the basis for
constructing extended morphological pro#les using LSSEs
(see Section 3.1), we can de#ne the orientation at a given
hyperspectral image pixel f (x; y) as the orientation of the
LSSE that maximizes the SAD between the spectral signa-
ture in the original image at the point (x; y) and the spectral
signature at the same location in the image #ltered by the

considered LSSE. As a result, directional openings produce
a high response with image structures that occur in the di-
rection of the considered LSSE and, at the same time, are
spectrally purer than their background. On the other hand,
directional closings are appropriate to detect image struc-
tures in the direction of the considered LSSE, which are less
spectrally pure (i.e. “more highly mixed”) than their back-
ground [24]. It should be noted that, for pixels belonging to
wide (with respect to the LSSE) objects of similar spectral
properties, several distinct orientations may output the max-
imum SAD distance value. In the above situation, a LSSE
of increased length and width is required to characterize the
object.

Using the above concepts, we have modi#ed the ADMP
algorithm in Table 1 to incorporate information about the
orientation at each analyzed hyperspectral image pixel
f (x; y). The extended algorithm, abbreviated from now
on as automated determination of scale-orientation mor-
phological pro#les (ADSOMP), works as follows (see
Table 2): For each f (x; y), a set of LSSEs at di;erent
orientations are applied to construct extended opening-
and closing-by-reconstruction morphological pro#les with
scale-orientation information. The range of orientations
explored in this work is limited to four orientations,
although additional orientations can be easily incorpo-
rated in future developments of the method. For each
orientation, a directional opening- [p◦k; (d x;dy)(x; y)] and
closing-by-reconstruction [p•k; (d x;dy)(x; y)] morphological
pro#le is obtained by applying a directional LSSE de-
signed by B(d x;dy). A collection of derivative maxima
(one per each considered orientation) is then calculated,
and the resulting information is used to label the origi-
nal pixel as “pure” or “mixed”. If f (x; y) is labeled as
“pure” by the modi#ed algorithm, then its associated pu-
rity index �(x; y) is calculated as the residual between
the original pixel and the result of an extended directional
opening-by-reconstruction operation. In contrast, if f (x; y)
is designed as a mixed pixel, then �(x; y) is calculated as
the residual between the original pixel and the result of an
extended directional closing-by-reconstruction operation. In
either case, the operation is performed by using the LSSE
that provides a higher response at the range of scales and
orientations explored, i.e. �◦

k; (d x;dy)(x; y) or �•
k; (d x;dy)(x; y),

respectively.
In this work, we mainly use the ADMP and ADSOMP

algorithms for the relevant task of selecting a suitable set
of candidate endmembers for spectral mixture analysis of
hyperspectral image scenes. A general block diagram of the
proposed method is depicted in Fig. 6. The resulting method
is an extension of our previous approach, automated mor-
phological endmember extraction (AMEE), which is based
on two parameters, Smin and Smax, that, respectively, denote
the minimum and maximum SE sizes considered in an iter-
ative process of combined erosion/dilation operations [21].
The size of these parameters is the same at each iteration
for all the pixels of the scene. In the proposed adaptative
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Fig. 5. Line segment structuring elements (LSSEs) of minimal length (3 pixels) at four di;erent orientations (a)–(d). LSSEs of increased
length and width at four di;erent orientations (e)–(h), obtained by applying binary dilation operations to (a)–(d), using a square-shaped
3× 3-pixel structuring element.

Table 2
The ADSOMP algorithm

Inputs:
Hyperspectral pixel vector: f (x; y).
Maximum number of iterations: k.

Outputs:
f (x; y) labeled as “pure” or “mixed”.
Morphological pro#le purity index, �(x; y), at f (x; y).

Begin
For each (dx; dy) = [(0; 1); (1; 0); (1;−1); (−1; 1)] do begin
p◦k;(d x;dy)(x; y) = {[ f ◦ B(d x;dy)]�(x; y)}; � = {0; 1; : : : ; k}.
p•k;(d x;dy)(x; y) = {[ f • B(d x;dy)]�(x; y)}; � = {0; 1; : : : ; k}.

Endfor
If

∨{Rp◦k;(d x;dy)(x; y); (dx; dy) = [(0; 1); (1; 0); (1;−1); (−1; 1)]}¿∨{Rp•k;(d x;dy)(x; y); (dx; dy) = [(0; 1); (1; 0); (1;−1); (−1; 1)]} then
label f (x; y) as “pure”.
�(x; y) =

∨{Dist[ f (x; y); [ f ◦ B(d x;dy)]�◦ (x; y)]}, where �◦ = �◦
k;(d x;dy)(x; y) and (dx; dy) = [(0; 1); (1; 0); (1;−1); (−1; 1)].

Else
label f (x; y) as “mixed”.
�(x; y) =

∨{Dist[ f (x; y); [ f • B(d x;dy)]�• (x; y)]}, where �• = �•
k;(d x;dy)(x; y) and (dx; dy) = [(0; 1); (1; 0); (1;−1); (−1; 1)].

Endif
End

Fig. 6. Pseudo-code diagram of the proposed analysis method.

approach, the most appropriate SE for each pixel is au-
tomatically calculated by using extended morphological
pro#les. As Fig. 6 shows, the input to the method is the full
hyperspectral data cube, with no previous dimensionality re-
duction. Firstly, either the ADMP or ADSOMP algorithm is
applied to each pixel of the original image. As a result, two
grayscale images are produced, called pure morphological
image (PMI) and mixed morphological image (MMI). The
PMI contains those pixels labeled as “pure” by the applied
algorithm, while the MMI contains those pixels labeled as
“mixed”. Each pixel position (x; y) in both PMI and MMI
stores the associated �(x; y) score calculated by ADMP or
ADSOMP. Automated endmember selection is performed at
the PMI by using a threshold value. Several techniques have
been discussed in the literature for automated thresholding
of grayscale images [43]. In our application, we have found
appropriate results by using the multi-level Otsu method
[44], an approach based on the minimization of the weighted
sum of group variances. The #nal selection of endmem-
bers is re#ned by a three-stage approach which consists of
the following steps: (1) spatial/spectral region growth,
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(2) calculation of mean spectra from resulting regions,
and (3) redundant endmember thinning (see Ref. [23] for
a more detailed discussion of these steps). As a result, a
#nal set of endmembers is obtained. Mixed pixels, marked
at the MMI, are now expressed in terms of linear com-
binations of extracted endmembers, producing a mixed
pixel classi#cation output. The above operation is achieved
by a simple least squares inversion of the original hyper-
spectral image using Eq. (1) with abundance-sum-to-one
and abundance-non-negativity constraints [15]. The in-
version process, called fully constrained linear spectral
unmixing (FCLSU), has demonstrated to provide accu-
rate sub-pixel fractional cover estimation if (1) selected
endmembers have been adequately chosen, and (2) the
linear mixture model is 8exible enough to accommo-
date the full range of spectral variability throughout the
observed landscape.

4. Experimental results

To assess the e;ectiveness of our novel approach to mixed
pixel classi#cation of hyperspectral imagery, di;erent exper-
iments were carried out on a data set made up of simulated
and real data. In these experiments, the performance of the
proposed analysis method will be assessed theoretically and
compared against other standard full and mixed pixel classi-
#ers, using a speci#cally designed quantitative framework.

4.1. Experiments with simulated data

Our main goal in this section is to examine the accuracy of
the proposed method in estimating abundance fractions from
mixed pixels. This is a relevant task with straightforward
applications in agriculture and farming. For example, in the
southern parts of the Iberian Peninsula, Dehesa systems are
traditionally used for a combination of livestock, forest and
agriculture activity. The outputs of Dehesa systems include
meat, milk, wool, charcoal, cork bark and grain. Around 12
–18% of the area is harvested on a yearly basis. The crops
are used for animal feed or for cash cropping, depending
on the rainfall of the area. In such environment, determin-
ing the fractional abundance of materials allows for a bet-
ter monitoring of natural resources. Unfortunately, accurate
ground-truth information related to the fractional coverage
of materials inside each pixel is very diTcult to obtain in a
real-world scenario [45]. As a result, mixed pixel analysis
techniques are diTcult to validate and substantiate. In or-
der to overcome the above limitation, a commonly accepted
approach in the literature has been the use of simulated im-
agery (see for example Refs. [46,47]). It should be taken
into account that simulated scenes may not fully describe the
complexity of a real landscape but, if carefully simulated,
they have the advantage that the abundance fractions of con-
stituents can be fully controlled and varied as necessary.

In our experiments, the proposed method was tested on a
simulated hyperspectral scene representing a semi-vegetated

Fig. 7. Ground-truth data collection at a Dehesa test site in SW
Spain by using an ASD FieldSpec Pro spectro-radiometer.

Dehesa landscape. The choice of this type of landscape for
the simulation was made on two accounts: (1) its simplic-
ity, and (2) the availability of ROSIS hyperspectral data
for a real Dehesa test site in Caceres, SW Spain. Partial
ground-truth is available for this site, given by the true spa-
tial locations of pixels belonging to cork-oak trees. These
objects were accurately geo-registered in the image by using
GPS data collected during a visit to the test site. We have
treated the simple Dehesa landscape as a surface covered
by two dominant classes, namely background and cork-oak
trees. Three spectral signatures, denoted from now on as r1
(soil), r2 (pasture), and r3 (cork-oak tree) were selected from
available ROSIS data for computer simulations (see Fig. 1).
Background was simulated by using r1 and r2 uniformly,
with their respective abundance fractions being positive and
summed to one. Cork-oak trees were simulated by using par-
tial ground-truth related to target locations in the scene. As
a result, the spatial distribution and pixel size of cork-oak
trees in our simulated 88 × 134 pixel scene accurately re-
sembles the real characteristics of trees at the original scene
(see Fig. 2(a)). A model was adopted for simulation of dif-
ferent levels of tree crown transparency, a phenomenon that
was experimentally observed from ground measurements,
collected at the top of tree crowns at the test site by using an
ASD FieldSpec Pro spectro-radiometer (see Fig. 7). Based
on these observations, cork-oak tree simulation was made
based on two major assumptions: (1) r3 is assumed to be
the predominant underlying material at simulated cork-oak
mixed pixels, and (2) although r1 and r2 may also be present
at these pixels, their combined fractional amount is below
the assigned abundance fraction for r3.

Random noise was added to the scene in order to sim-
ulate contributions from ambient (clutter) and instrumen-
tal sources. Noise was created by using numbers with a
standard normal distribution obtained from a pseudorandom
number generator and added to each pixel to generate a
signal-to-noise ratio (SNR) of 30:1. For the simulations, we
will consider each band SNR the ratio of the 50% signal
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level to the standard deviation of the noise, following the
de#nition given in Ref. [48]. This results in noise standard
deviation that is roughly proportional to the average signal,
a phenomenon that is often observed in radiometric data.
Thus, the simulated hyperspectral data are created, based on
a simple linear mixture model, by the following expression:

s(x; y) =
(
SNR
2

+ n(x; y)
)
· [�1(x; y) · r1 + �2(x; y) · r2

+ �3(x; y) · r3]; (21)

where s(x; y) denotes a vector containing the simulated
discrete spectrum at the pixel with spatial coordinates (x; y)
of the simulated image; �i(x; y), i = 1; : : : ; 3 is the assigned
fractional abundance of spectral signature rj at the pixel,
and n(x; y) is the noise factor. Abundance-sum-to-one and
abundance-non-negativity constraints are imposed in Eq.
(21) in order to provide the simulation with adequate phys-
ical meaning [15]. Moreover, based on our model assump-
tions, two additional constraints, namely �3(x; y) = 0 and
�3(x; y)¿ 0:5, are imposed in the simulation of background
and cork-oak tree pixels, respectively. It should be noted
that, for simplicity, multiple scattering e;ects have not been
simulated. In addition, we have assumed uniform illumi-
nation throughout the scene. Fig. 8 shows the fractional
abundance maps assignment to the main constituents of our
simulated scene, i.e. r1 (see Fig. 8(a)), r2 (Fig. 8(b))
and r3 (Fig. 8(c)). These fractional maps will be used as
ground-truth for the comparisons.

In order to perform abundance estimation simulations,
we have applied the PPI, N-FINDR, AMEE and original
ADMP-based mixed pixel classi#ers to the simulated scene
described in this section. Prior to a full examination and
discussion of results, it is important that the parameter val-
ues used for PPI, AMEE and ADMP-based algorithms are
described, bearing in mind that N-FINDR does not require
any input parameters. In the PPI method, the value of the C
parameter was set to the mean of PPI scores obtained after
L=104 iterations, so that only pixels with a PPI score above
the average were selected as endmember candidates. This
approach has been previously suggested in order to obtain
satisfactory results from the algorithm [49]. Pixels were
then grouped into smaller subsets based on their clustering
in the N -D space. Finally, resulting groups of extreme pixels
were linked to the original image, and the mean spectrum
of each group was used as a candidate endmember for un-
mixing [16]. The spatial domain probed in this experiment
by the AMEE and ADMP-based methods was provided by
a range of increasing square-shaped SEs with sizes ranging
from 3× 3 pixels (3:6 m) up to 7× 7 pixels (8:4 m). This
range was determined empirically after conducting a set of
preliminary experiments with real ROSIS data (see Section
3.2). The above mixed pixel methods were used to obtain
a set of endmembers associated with each constituent ma-
terial of the simulated scene (r1, r2 and r3, respectively);
the abundance of each endmember was estimated by us-

ing FCLSU linear spectral unmixing. We can visualize
the performance of these methods by plotting estimated in
contrast to true abundances for the di;erent constituents
at each image pixel. In Fig. 9, scatterplots of true versus
estimated abundance values and resulting root mean square
error (RMSE) are shown for each method and material. In
general, we observe that acceptable quantitative agreements
between the estimated and true abundances are obtained. In
addition, the four methods tested are observed to produce
low RMSE scores for r1, r2 and r3. However, we notice
that both AMEE (see Figs. 9(g)–(i)) and ADMP-based
(Figs. 9(j)–(l)) methods produce lower RMSE scores
than PPI (Figs. 9(a)–(c)) and N-FINDR (Figs. 9(d)–
(f)). This #nding objectively con#rms our insight: that the
incorporation of spatial information improves mixed pixel
classi#cation by reducing algorithm sensitivity to noise and
mixture complexity. In fact, a comparison of the results
produced by AMEE and ADMP-based methods reveals
that the adaptative approach introduced by ADMP in the
selection of SEs results in a signi#cant improvement in
terms of abundance estimation over the simple multi-scale
decomposition scheme performed by AMEE. The proposed
method is able to accurately classify background pixels
(formed by binary mixtures of r1 and r2) and cork-oak tree
pixels (formed by ternary mixtures of r1, r2 and r3) with
sub-pixel precision. Nonetheless, it should be clari#ed that,
because of the simple nature of the simulation carried out
in this section, the above observations are not conclusive.
In order to test these statements in a more complex situ-
ation, the development of further experiments using real
hyperspectral data are highly pertinent.

4.2. Experiments with real data

Two di;erent experiments with real hyperspectral data
sets are carried out in this section. The #rst experiment uti-
lizes a portion of an AVIRIS imaging spectrometer data set
taken over NW Indiana’s Indian Pines agricultural test site
in June 1992. This 68×86-pixel scene, available from David
A. Landgrebe [50] is characterized by low spatial resolution
(pixels of 17×17 m, each of which contains 220 bands cov-
ering 400–2500 nm). In the second experiment, data from
the DAIS 7915 airborne imaging spectrometer of DLR were
used. The data were collected in July 2001 over the city of
Pavia, Italy, with high ground resolution pixels of 5× 5 m,
and size of 400×400 pixels, each of which contains 72 spec-
tral bands covering 496–2412 nm [51]. In both cases, there
is ground-truth information available, expressed in the form
of a class assignment for each labeled hyperspectral image
pixel, with ground-truth classes being mutually exclusive.

Before describing the ground-truth data and experimen-
tal results, we should #rst note that, with no availability
of ground-truth information about the contribution of un-
derlying constituent materials at each pixel, a quantitative
analysis for mixed pixel classi#cation is not possible in the
above scenes. In contrast, full pixel classi#cation does not
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Fig. 8. Description of simulated Dehesa landscape scene: (a) abundance fractions assigned to r1; (b) abundance fractions assigned to r2;
(c) abundance fractions assigned to r3.

have such a problem. Unlike mixed pixel classi#cation, it
does not require abundance fractions of spectral signatures
to be used for class assignment. Its performance is com-
pletely determined by the criteria used for classi#cation.
Hence, in order to carry out an experimental comparison
among a set of mixed pixel classi#cation algorithms using
available ground-truth data, it is #rst necessary to establish
a link between mixed pixel classi#cation and full pixel clas-
si#cation. In order to achieve such a goal, we follow the
approach proposed in Ref. [52], based on the de#nition of
a mixed-to-pure (M/P) pixel converter. This approach in-
terprets the mixed pixel classi#cation problem in the con-
text of pure pixel classi#cation by using a linear mixture
model. Let us assume that a mixed pixel classi#er recog-
nizes E pure signatures {ei}Ei=1 in the scene, where ej is the
jth signature. Let s(x; y) be a mixed pixel to be classi#ed,
and let �̂(x; y) = [�̂1(x; y)�̂2(x; y) : : : �̂E(x; y)]T be the esti-
mated E-dimensional abundance vector, where �̂j(x; y) is
the estimated abundance fraction of material ej in s(x; y).
A simple M/P converter for s(x; y) can be constructed by
using the winner-take-all (WTA) thresholding criterion, an
approach that is very similar to the WTA learning algo-
rithm commonly applied in neural networks [53]. By us-
ing WTA, we can compare all estimated abundance frac-
tions {�̂1(x; y); �̂2(x; y); : : : ; �̂E(x; y)} and #nd the one with
the maximum fraction, say �̂j∗(x; y), by the following ex-
pression:

j∗ = arg
{

max
16j6E

{�̂j(x; y)}
}
: (22)

The resulting fraction is used to classify s(x; y) by as-
signing it to a class given by the j∗th signature ej . In other
words, using the WTA criterion we can de#ne an M/P con-
verter by setting �̂j∗(x; y) = 1 and �̂j(x; y) = 0 for j �= j∗.
With the above assumptions in mind, we proceed to describe
the classi#cation results obtained after applying di;erent

mixed pixel classi#ers to the AVIRIS Indian Pines and DAIS
7915 Pavia data sets.

4.2.1. Experiment with AVIRIS data comprising
agricultural 6elds in Indian Pines, Indiana

The 68× 86-pixel AVIRIS data set considered for exper-
iments in this section is formed by about two-thirds of agri-
cultural #elds (corn and soybeans) and one third of grass.
It should be noted that the SNR at the time of data acquisi-
tion was considerably lower than current AVIRIS standards
[54]. There is ground truth for over 75% of the scene, com-
prised of four classes given by di;erent agricultural #elds:
(1) corn-no till; (2) soybean-no till; (3) minimum-soybean
(soybean min till); (4) grass. Ground-truth availability has
made this scene a widely used test case for validation of
hyperspectral analysis methods [55]. These classes have
similar spectral signatures and are very diTcult to discrim-
inate. In addition, low spatial resolution results in high
mixture complexity in most of the pixels, making the scene
a challenging classi#cation problem as reported by previous
research [56]. The test data and the ground truth map are
shown in Fig. 10, where the di;erent regions have been la-
beled with the initial letter of the class name plus a number.
As shown in Fig. 10, ground-truth is expressed in the form
of a class assignment for each labeled hyperspectral image
pixel, with ground-truth classes being mutually exclusive.
The number of labeled pixels in each class is addressed in
Table 3.

Before addressing the classi#cation results obtained after
applying PPI, N-FINDR, AMEE and ADMP-based mixed
pixel classi#ers to the Indian Pines AVIRIS dataset, it is
important to outline parameter values used for the di;erent
methods, bearing in mind that the N-FINDR method does
not require any input parameters. Parameter values used for
PPI are the same as those used in experiments with simu-
lated data [49]. In contrast, the spatial domain explored in
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Fig. 9. Scatter-plots of the estimated versus true abundances for r1, r2 and r3, respectively, obtained after applying PPI (a)–(c), N-FINDR
(d)–(f), AMEE (g)–(i) and ADMP (j)–(l) methods to the simulated hyperspectral scene described in Fig. 8.

this experiment by AMEE and ADMP-based methods was
provided by a range of 10 increasing square-shaped SEs with
sizes ranging from 3× 3 pixels (51 m) up to 21× 21 pix-
els (357 m). This range was determined empirically after
analyzing the width in pixels of ground-truth classes shown
in Fig. 10. Before applying the above classi#ers, a total
of 20 channels from the water absorption and noisy bands
(104–108, 150–163, 200) were removed from the original

220-channel image, leaving 200 spectral features for the ex-
periments [56].

Figs. 11(a)–(d) show the results obtained after applying
theWTAM/P converter to the mixed pixel classi#cation out-
put provided by PPI, N-FINDR, AMEE and ADMP-based
methods, respectively. For quantitative purposes, Table 4
addresses the number of true and false positives, and the
true and false positive rates resulting for each method and
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Fig. 10. (a) Portion of an AVIRIS hyperspectral dataset over NW Indiana’s Indian Pines region; (b) Available ground-truth map with
individual labeling of regions.

Table 3
Class description for AVIRIS hyperspectral data over Indiana’s
Indian Pines test site

Class name Number of labeled pixels

Corn 702
Grass 955
Minimum-soybean 733
Soybean-no till 1885

Total 4275

class. True positives are pixels correctly assigned to a cer-
tain class, whereas false positives are pixels belonging to a
certain class that are wrongly assigned to any of the other
available classes. A simple visual comparison of the classi-
#cation images shown in Figs. 11(a)–(d) with ground truth
in Fig. 11(b) reveals that spectral-based methods (PPI and
N-FINDR) are not able to provide a smooth mapping of
regions spatially, and exhibit, instead, a signi#cant amount
of speckling. Although PPI provides a fairly good parti-
tioning of the Corn class (regions labeled as C1–C4 in the
ground-truth map), it has a problem when confusing the two
soybean classes, especially in the region labeled as S2. This
problem is quantitatively addressed in Table 4: Out of the
2065 pixels classi#ed as minimum-soybean by PPI, 1486
were labeled as false positives and only 579 were labeled as
true positives, resulting in a false positive rate of 0.42 for
this class. As shown in Fig. 11(a), most of these false posi-
tive instances are produced at the S2 region (soybean-no till
class). In addition, PPI presents problems in distinguishing
grass from soybeans at the grass regions, denoted by G1–G3
in the ground-truth map. Most pixels in G2 and G3 are clas-
si#ed as soybean-no till, while grass tends to be confused
with minimum-soybean in G1. As a result, the true posi-
tive rate for this class is only 0.34. For purposes of general
performance, confusion between the two soybean classes is

not problematic; however, confusion between spectrally dis-
tinct materials such as grass and soybeans can be more trou-
blesome. The confusion between grass and soybeans that
plagues PPI is also a problem for the N-FINDRmethod, par-
ticularly at the G1, M1 and S3 regions. However, N-FINDR
provides more accurate classi#cation scores than PPI at the
larger soybean-no till regions (S1 and S2), achieving a mod-
erately high true positive rate of 0.71 and an acceptable false
positive rate of 0.08 in this class, as reported in Table 4.

Compared to purely spectral methods (PPI and N-
FINDR), spatial/spectral approaches (AMEE and ADMP-
based) perform better in terms of true and false positive
rates. As shown in Fig. 11(c), AMEE generates partitions
that accurately represent structured regions in the image.
However, some problems can be spotted at some of the
larger regions, i.e. G1, G3, S1, S2 and M1. These prob-
lems are not unexpected because the AMEE algorithm,
by construction, tends to emphasize local consistency
spatially, by virtue of the consideration of SEs of pro-
gressively increased size at each pixel. A comparison of
Fig. 11(c) with Fig. 11(d) provides justi#cation that the
ADMP-based method gives advantages in relation to the
simple multi-scale spatial/spectral endmember extraction
process performed by AMEE. Improvement in classi#ca-
tion accuracy of the ADMP-based method with regards
to AMEE, quantitatively reported in Table 4, can be at-
tributed mainly to the adaptative selection of an optimum
SE size for each pixel, which results in an optimization
of the multi-scale morphological approach to endmember
extraction. According to ground-truth, classi#cation results
produced by the proposed ADMP-based algorithm are char-
acterized by an average true positive rate of 0.90 and an
average false positive rate of 0.03. These average scores
are considerably higher than those found by the remaining
methods tested. Due to these results, we can deduce that the
ADMP-based approach is able to provide a good charac-
terization of general landscape conditions in a scene which
reportedly represents a diTcult classi#cation problem due
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Fig. 11. Classi#cation images for AVIRIS Indian Pines hyperspectral dataset, produced after applying the WTA M/P converter to the output
provided by PPI (a), N-FINDR (b), AMEE (c), and ADMP-based (d) mixed pixel classi#ers.

Table 4
Number of true positives (NTP), number of false positives (NFP), true positive rate (TPR), false positive rate (FPR) and total scores
obtained after applying PPI, N-FINDR, AMEE and ADMP-based mixed pixel classi#ers to AVIRIS Indian Pines hyperspectral dataset

Class name PPI N-FINDR AMEE ADMP-based

NTP NFP TPR FPR NTP NFP TPR FPR NTP NFP TPR FPR NTP NFP TPR FPR

Corn 617 71 0.88 0.02 638 36 0.91 0.01 597 171 0.85 0.05 667 91 0.95 0.03
Grass 324 365 0.34 0.11 515 529 0.54 0.16 726 264 0.76 0.08 879 66 0.92 0.02
Min.-soybean 579 1486 0.79 0.42 462 453 0.63 0.13 601 212 0.82 0.06 682 124 0.93 0.04
Soybean-no till 829 237 0.44 0.10 1338 191 0.71 0.08 1621 119 0.86 0.05 1659 47 0.88 0.02

Total 2349 2159 0.54 0.14 2953 1209 0.69 0.09 3545 766 0.82 0.06 3887 328 0.90 0.03

Fig. 12. (a) Band at 639 nm of a DAIS 7915 hyperspectral image comprising several urban features at the city of Pavia, Italy; (b) land-cover
ground-truth classes.
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to high spectral similarity between the di;erent classes, low
spatial resolution, and reduced SNR in comparison with
current sensor standards. It is interesting to note that the
proposed adaptative multi-scale approach seems to have a
hierarchical e;ect. Large regions appear to have the same
label, improving spatial localization for mapping purposes.
It should be noted that the Indian Pines scene is domi-
nated by large and spectrally homogeneous regions. As a
result, a very simple behavior of morphological pro#les
was generally observed, where each feature had only one
signi#cant derivative maximum. Complex scenarios such
as urban environments are characterized by features with
several signi#cant derivative maxima and nested regions.
As a result, further experiments using real hyperspectral
data collected over urban areas are required.

4.2.2. Experiment with DAIS 7915 data comprising
urban areas in Pavia, Italy

In this experiment, data from the DAIS 7915 airborne
imaging spectrometer of DLR were used. The data were col-
lected at 1500 m 8ight altitude over the city of Pavia, Italy,
with ground resolution of 5 m and size of 400× 400 pixels
(2000 × 2000 m). Fig. 12(a) shows the image collected at
639 nm by the DAIS 7915 imaging spectrometer, which re-
veals a dense residential area on one side of the river, as well
as open areas and meadows on the other side. Ground-truth
is available for several areas of the scene (see Fig. 12(b)),
comprising the following land-cover classes (the number of
labeled pixels in each class is addressed in Table 5): (1)
water; (2) trees; (3) asphalt; (4) parking lot; (5) bitumen;
(6) brick roofs; (7) meadows; (8) bare soil; (9) shadows.

A summary of the results obtained after applying the
WTA M/P converter to di;erent mixed-pixel classi#ers is
given in Table 6. As it can be seen in the table, the pro-
posed ADMP-based method produces a moderate average
true positive rate of 0.82 and an average false positive rate
of 0.05. These results are better than those found after ap-
plying the PPI (L = 104 iterations), N-FINDR and AMEE
methods to this particular scene. It should be noted that the
spatial domain explored in this experiment by both AMEE
and ADMP-based methods was provided by a range of 8
increasing square-shaped SEs with sizes ranging from 3×3
pixels (15 m) up to 17× 17 pixels (85 m), determined em-
pirically after analyzing the width in pixels of ground-truth
classes shown in Fig. 12. Although the application of the
ADMP-based method leads to a more accurate characteri-
zation of urban features, the inherent complexity of the ana-
lyzed urban landscape prevents the proposed approach from
obtaining optimal results.

In order to improve classi#cation accuracy in this par-
ticular experiment, we have applied the proposed method
with the modi#ed ADSOMP algorithm (see Table 2), which
is especially suited for analysis of directional features as
reported in Section 3.3. As shown in Table 6, the incor-
poration of scale-orientation information by the proposed

Table 5
Class description for DAIS 7915 hyperspectral data over Pavia
city, Italy

Class name Number of labeled pixels

Water 4290
Trees 2424
Asphalt 1699
Parking lot 288
Bitumen 685
Brick roofs 2238
Meadows 1245
Bare soil 1475
Shadows 241

Total 14585

ADSOMP-based method results in average true positive
rate of 0.89 and average false positive rate of 0.02. In-
terestingly, the modi#ed algorithm produces very accurate
classi#cation results for the classes dominated by small di-
rectional features: The asphalt, brick roofs, and shadows
classes are characterized by true positive rates of 0.93 or
higher, and false positive rates below 0.01, which represents
a considerable improvement with respect to results found
by the original ADMP-based algorithm and other meth-
ods. In addition, results for the water, trees and meadows
classes are moderately better than those found by the original
ADMP-guided implementation. It should be noted that these
classes are dominated by wide objects of similar spectral
properties. The incorporation of scale-orientation informa-
tion also helps in characterizing large, oriented objects such
as the river crossing the city centre. The remaining classes:
bitumen, parking lot, and bare soil are given by a combina-
tion of homogeneous regions and directional features. When
scale-orientation morphological pro#les are applied to these
image features, classi#cation results are signi#cantly better
than those found by using scale-based morphological pro-
#les with no orientation information. Overall, it has been
shown in experiments that scale-based and scale-orientation
morphological pro#les are able to work eTciently at both
local and global scales, providing a #nal classi#cation out-
put that is coherent in both spectral and spatial terms in
complex, real-world scenarios.

5. Conclusions and future research

We have described a novel approach to perform unsu-
pervised mixed pixel classi#cation in hyperspectral images.
The method uses an adaptative approach, based on ex-
tended morphological pro#les and derivative analysis. This
approach allows for the determination of an appropriate
SE for each pixel of the scene by analyzing the spatial
and spectral information in a combined manner. Once an
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Table 6
True positive rate (TPR), false positive rate (FPR) and total scores obtained after applying PPI, N-FINDR, AMEE, ADMP-based and
ADSOMP-based mixed pixel classi#ers to a DAIS 7915 hyperspectral dataset over Pavia city, Italy

Class name PPI N-FINDR AMEE ADMP-based ADSOMP-based

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Water 0.68 0.06 0.81 0.10 0.85 0.04 0.86 0.01 0.92 0.01
Trees 0.69 0.09 0.75 0.15 0.74 0.11 0.84 0.05 0.88 0.03
Asphalt 0.73 0.12 0.71 0.14 0.69 0.09 0.77 0.04 0.95 0.01
Parking lot 0.61 0.08 0.67 0.09 0.82 0.08 0.87 0.02 0.90 0.00
Bitumen 0.64 0.11 0.71 0.13 0.80 0.09 0.85 0.02 0.89 0.01
Brick roofs 0.68 0.12 0.67 0.09 0.64 0.12 0.80 0.05 0.93 0.01
Meadows 0.72 0.08 0.71 0.12 0.79 0.07 0.79 0.04 0.86 0.03
Bare soil 0.63 0.09 0.61 0.11 0.73 0.10 0.81 0.04 0.88 0.01
Shadows 0.62 0.14 0.66 0.12 0.68 0.13 0.79 0.05 0.94 0.00

Total 0.68 0.10 0.73 0.11 0.76 0.09 0.82 0.04 0.89 0.02

optimum SE is selected, a morphological pro#le-based
purity index function, �(x; y), is calculated at each im-
age pixel position (x; y) by using residuals from extended
opening- and closing-by-reconstruction operations. An
evaluation of the proposed approach using simulated and
real hyperspectral data has been presented and discussed.
As demonstrated in the experiments, the method guarantees
excellent performance when compared to other standard hy-
perspectral analysis methodologies. In particular, it gives a
much better interpretation of mixed pixels than those meth-
ods that utilize the spectral information alone. The method
has a hierarchical e;ect that improves spatial localization
for general-purpose mapping applications. Also, it has been
shown in experiments that the use of scale-orientation mor-
phological pro#les allows accurate modeling of complex
analysis scenarios, such as urban environments. A draw-
back of the proposed approach concerns the necessity of
looking at a range of increasing scale and orientation fea-
tures, which may result in a heavy computational burden
when processing high-dimensional data. This phenomenon
is particularly important in the case of images with large
and homogeneous regions. For this reason, the method pre-
sented is particularly suited for analysis of image scenes
where small target objects or directional features must be
retained. It is also well suited for images with spectrally
similar materials and relatively low spatial resolution, which
produces ambiguity in sub-pixel analysis.

Our current research focuses on the development of
e;ective implementation strategies by the proposed ap-
proach with the use of hardware architectures. A sys-
tolic array design, susceptible of being implemented on
#eld-programmable gate arrays, has already been developed
and is currently under test in our laboratory. A detailed de-
scription of the above design, aimed at optimizing extended
morphological operations, can be found in Ref. [57]. Mas-
sive parallel implementations using computer Beowulf-type

cluster architectures are also being explored in order to
empower the methodology with real-time capabilities. A
#nal topic of interest for future developments of the method
consists in an evaluation of di;erent distance measures
(both linear and nonlinear) to be used in the extension of
morphological operations.
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