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Abstract—Linear spectral unmixing is a commonly accepted
approach to mixed-pixel classification in hyperspectral im-
agery. This approach involves two steps. First, to find spectrally
unique signatures of pure ground components, usually known
as endmembers, and, second, to express mixed pixels as linear
combinations of endmember materials. Over the past years,
several algorithms have been developed for autonomous and
supervised endmember extraction from hyperspectral data. Due
to a lack of commonly accepted data and quantitative approaches
to substantiate new algorithms, available methods have not been
rigorously compared by using a unified scheme. In this paper, we
present a comparative study of standard endmember extraction
algorithms using a custom-designed quantitative and comparative
framework that involves both the spectral and spatial information.
The algorithms considered in this study represent substantially
different design choices. A database formed by simulated and real
hyperspectral data collected by the Airborne Visible and Infrared
Imaging Spectrometer (AVIRIS) is used to investigate the impact
of noise, mixture complexity, and use of radiance/reflectance data
on algorithm performance. The results obtained indicate that
endmember selection and subsequent mixed-pixel interpretation
by a linear mixture model are more successful when methods
combining spatial and spectral information are applied.

Index Terms—Comparative and quantitative framework,
endmember extraction, spatial/spectral analysis, spectral mixture
analysis.

I. INTRODUCTION

HE ADVENT OF hyperspectral technology has intro-

duced a completely new perspective in many remote
sensing applications. One of the most important hyperspectral
imagers in current use is the National Aeronautics and Space
Administration (NASA)/Jet Propulsion Laboratory’s 224-band
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS),
which covers the wavelength region from 0.38-2.5 mm at
a nominal spectral resolution of 10 nm [1]. Linear spectral
unmixing [2] is a commonly accepted approach to analysis
and classification of the massive volume of data provided by
available imaging spectrometers. Such a method applies a linear
mixture model to estimate the abundance fractions of spectral
signatures within mixed pixels. These pixels involve a mixture
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of more than one distinct substance, and they exist for one of
two reasons. First, if the spatial resolution of the sensor is not
high enough to separate different materials, these can jointly
occupy a single pixel, and the resulting spectral measurement
is a composite of the individual spectra. Second, mixed pixels
may also result when distinct materials are combined into
homogeneous (intimate) mixtures. It has been reported that
the reflectance spectrum of a mixed pixel is a systematic
combination of the component spectra in the mixture [3]. The
systematics tend to be linear if components of interest in a
pixel appear in spatially segregated patterns. If, however, the
components are in intimate association, light typically interacts
with more than one component as it is multiply scattered, and
the mixing systematics between the different components are
essentially nonlinear. Although subpixel nonlinear mixing can
be important for some types of analysis, the effects of multiple
scattering in the majority of applications are assumed to be
negligible if a linear model is used [4].

The linear mixture model can be defined as follows. Let
h(z,y) be the hyperspectral signature collected by the sensor
at the pixel with spatial coordinates (x,y). This signature can
be considered an N -dimensional (N-D) vector, where NN is the
number of spectral bands; it can also be modeled as a linear
combination of endmember vectors e;, ¢ = 1,..., ) using the
following expression:

E

hiz,y) =Y ®i(z,y)-e; )

i=1

where ®;(xz,y) is a scalar value representing the fractional cov-
erage of endmember vector e; at pixel h(z,y). Two constraints
are usually imposed in the previous equation [2]. These are
the abundance nonnegativity constraint (ANC) and abundance
sum-to-one constraint (ASC), respectively defined as
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The key task in linear spectral mixture analysis is to find
an appropriate suite of pure spectral signatures (endmembers),
which are then used to model at-sensor pixel spectra through a
linear combination of endmember signatures. The selection of
endmembers can be performed in two ways: 1) by deriving them
directly from the image (image endmembers) or 2) from field or
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laboratory spectra of known target materials (library endmem-
bers); see [5] for a comparison between the two. The risk in
using library endmembers is that these spectra are rarely ac-
quired under the same conditions as the airborne data. Image
endmembers have the advantage of being collected at the same
scale as the data and can, thus, be more easily associated with
features on the scene [2].

A number of algorithms have been developed over the past
decade to accomplish the task of finding appropriate image end-
members for spectral mixture analysis. It should be taken into
account that the presence of pure class pixels in the image data
depends on available sensor spatial resolution. As a result, there
may be cases where it is not possible for a certain algorithm to
find such pure pixels in a scene. In those situations, the fractional
components found for the mixed pixels are usually expressed in
terms of other mixed pixels (the endmembers identified by the
algorithm) and not in terms of pure classes. With the above state-
ments in mind, and taking into account the increasing number of
endmember identification methods readily available, the need
for standardized strategies to evaluate the quality of selected
endmembers has been identified as a desired goal by the sci-
entific community devoted to hyperspectral data analysis. One
of the simplest evaluation approaches has been the comparison
of endmembers with available ground-truth spectra [6]. Spectral
mixture analysis utilizes the high dimensionality of hyperspec-
tral imagery to produce a suite of abundance fraction images
for each endmember. Each fraction map shows a subpixel es-
timate of endmember relative abundance, as well as the spatial
distribution of the endmember. Therefore, the quality of a suite
of endmembers can also be evaluated by looking at the spatial
distribution of fractional abundances, i.e., by comparing esti-
mated abundance fractions to existing ground-truth abundance
maps [7]. The comparative approaches mentioned above rep-
resent complementary strategies that can be applied to decide
whether a method works correctly from two different points
of view (spectral and spatial). However, these approaches are
only possible when high-quality ground-truth information con-
cerning the original scene is available. We must also consider
that the generation of reliable ground-truth in real scenarios is
difficult and expensive [8], a fact that has traditionally prevented
the existence of comparative surveys using large databases of
real images. In order to avoid this shortcoming, simulation of
hyperspectral imagery has been suggested as a simple and intu-
itive way to perform a preliminary evaluation of analysis tech-
niques [9]. The primary reason for the use of simulated imagery
as a complement to real data analysis is that all details of the
simulated images are known. These details can be efficiently
investigated because they can be manipulated individually and
precisely. As a result, algorithm performance can be examined
in a controlled manner.

Experiments using simulated hyperspectral data have been
previously reported in the literature, e.g., see [7] and [10]-[12].
Although the number of research studies involving experimen-
tation with simulated imagery is relevant, there is a lack of com-
monly accepted data that can be used to evaluate individual
endmember selection algorithms. In addition, no unified crite-
rion has been accepted for rigorous and impartial comparison of

these algorithms. The importance of this issue cannot be under-
stated since, without such data and effective evaluation criteria,
the performance of any new method cannot be substantiated
[13]. In this paper, we take a first step by conducting a compar-
ative study of performance analysis among several endmember
extraction algorithms using both simulated and real hyperspec-
tral data in radiance and reflectance units. The major contribu-
tions of this work are 1) the development of a framework for ex-
perimental comparison of endmember selection algorithms and
2) an assessment of the state of the art for endmember identifica-
tion by drawing comparisons between substantially different ap-
proaches to the problem in rigorous fashion, so that each method
is fairly compared with others on the same common ground.

The following section presents an overview of various end-
member extraction algorithms, along with a brief description of
those techniques that will be compared in this work. Section III
describes the image database used in the present study and the
quantitative and comparative framework used for evaluation of
endmember selection and subsequent mixed-pixel classification
accuracy. In Section IV, a comparative performance analysis
for the algorithms described in Section II is presented and dis-
cussed. Section V points out main concluding statements de-
rived from this paper.

II. ENDMEMBER EXTRACTION TECHNIQUES

During the last decade, several algorithms have been pro-
posed for the purpose of autonomous/supervised endmember
selection from hyperspectral scenes. Table I shows an overview
of the main characteristics of several available methods,
including the manual endmember selection tool (MEST)
[14], pixel purity index (PPI) [15], N-FINDR [6], iterative
error analysis (IEA) [16], optical real-time adaptative spectral
identification system (ORASIS) [17], convex cone analysis
(CCA) [7], automated morphological endmember extraction
(AMEE) [18], and simulated annealing algorithm (SAA) [19].
As deducible from Table I, the following observations are
made: 1) only three of the methods listed have been validated
by using both simulated and experimental data and 2) few
available methods have been rigorously compared with other
approaches. We provide next a brief overview of the methods
that will be assessed in the present study.

A. PPI

The PPI algorithm is characteristic in its supervised nature;
it consists of the following steps. First, a “noise-whitening” and
dimensionality reduction step is performed by using the MNF
transform [15]. Then, a pixel purity score is calculated for each
point in the image cube by randomly generating L lines in
the N-D space comprising the MNF-transformed data. All the
points in that space are projected onto the lines, and the ones
falling at the extremes of each line are counted. After many
repeated projections to different random lines, those pixels
that count above a certain cutoff threshold C' are declared
“pure.” These potential endmember spectra are loaded into an
interactive N-D visualization tool and rotated in real time until
a desired number of endmembers E are visually identified as
extreme pixels in the data cloud.
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TABLE 1
SUMMARY OF AVAILABLE ENDMEMBER EXTRACTION ALGORITHMS
Method Nature of Datasets used Grz:l;g i‘:lw‘h Algorithm Computational Convergence Most probable E;:ﬁg Compared
aloorithm - i " . i :
gon] in evaluation evaluation assumptions complexity property applications info against
. PCA-based Depends on Pre-defined N
I\[‘]E‘S]T 0 tj; P :'?::gt,ive None None reduction in manual number of ﬂL:nn;a'iox:: a;d No —
¥ the data supervision endmembers PpIng
Supervised, MNF -based High number of Maximum
PPI -
[1s] partially None None reduction in iterations number of ﬁ;;wm:r a:;d No —_
interactive the data required iterations Ppng
Reference . ]
Fully automated, . Depends on Simplex with the
N-FINDR n0f1- Simulated spectra, None initial random imum volume ~ and-coverand No ORASIS,
[6] . and real data abundance . . mineral mapping IEA
parameterized . pixel selection found
fractions
Significant due to - ;
IEA Fully automated, Reference Minimum error in Land-cover and
[16] p eterized Real data spectra None repe_med un- ixing mineral mapping No ORASIS
mixing steps
Reference
Moderate fi Land-
AMEE Fully automated, Simulated spectra, ogerale 1or Range of kernel o-cover PPI,
. None medium-sized € classification, Yes
[18] parameterized and real data abundance : sizes used . N-FINDR
. kernel sizes target detection
fractions
Low-algorithm All exemplar
ORASIS Fully automated, . . Oceano hy and
17 parameterized Real data None None tuned for‘rapld spectra found in target %I;Ec{ion No PPI
execution the data
Reference P
high if All
CCA Fully automated, Simulated spectra, N Very high i : corners of the Target and
. one Many comers in COnvex cone . No —_
[7] parameterized and real data abundance anomaly detection
) CONVEX Cone found
fractions
Volume-based Simulated Discrimination of
SSA Fully automated,
[19] payra?nema'ized ! Real data None None objective annealing vegetation No —
function procedure Species
B. N-FINDR operation, is calculated. The user then selects a desired number

The N-FINDR method finds the set of pixels that define
the simplex with the maximum volume, potentially inscribed
within the dataset. First, a dimensionality reduction of the
original image is accomplished by using the MNF transform.
Next, randomly selected pixels qualify as endmembers, and a
trial volume is calculated as follows. Let E be defined as

1 1 ... 1
e e

E= “4)

(5

where e; are endmember column vectors, and F is the number of
endmembers used to calculate the simplex volume. The volume
of the simplex formed by the endmembers is proportional to the
determinant of E

V(E) = j abs ([E[). )

1

(E—1)

In order to refine the initial volume estimate, a trial volume
is calculated for every pixel in each endmember position by re-
placing that endmember and recalculating the volume. If the re-
placement results in a volume increase, the pixel replaces the
endmember. This procedure, which does not require any input
parameters, is repeated until there are no replacements of end-
members left [6].

C. IEA

In the IEA algorithm, a series of constrained unmixing op-
erations is performed, each time selecting as endmembers the
pixels that minimize the remaining error in the unmixed image.
An initial vector (usually the mean spectrum of the data) is
chosen to start the process. A constrained linear spectral un-
mixing in terms of this vector is performed, and the error image,
formed by the errors remaining at each pixel after the unmixing

of endmembers F/, a number of pixels R, and an angle value 6.
R is the number of pixels with the largest number of errors, se-
lected from the error image. The spectral vector corresponding
to the pixel with the single largest error is found. A subset of R
consisting of all those pixels that fall within an angle 6 of the
maximum error vector is then calculated, and these pixels are
averaged to produce the new endmember vector. This process is
continued until E endmembers have been selected [16].

D. CCA

This method is based on the fact that some physical quan-
tities, such as radiance and reflectance, are nonnegative. The
vectors formed by discrete radiance/reflectance spectra can be
expressed as linear combinations of nonnegative components,
which lie inside a nonnegative, convex region. The objective of
CCA is to find the boundary points for that region. To implement
this concept, the method finds the eigenvectors of the sample
spectral correlation matrix of the image, and selects those eigen-
vectors corresponding to the E largest eigenvalues (where F
is the a priori number of endmembers to model). The method
then looks for the boundaries of the convex cone, where the
linear combinations of these eigenvectors produce vectors that
are strictly nonnegative, by using the following expression:

(6)

where h(z,y) is the hyperspectral radiance/reflectance signa-
ture at the pixel with spatial coordinates (z,y), the p; are the
eigenvectors corresponding to the largest eigenvalues, and 0 is
the zero vector. As demonstrated in [20], it is possible to find
sets of coefficients that produce a linear combination that con-
tains £ — 1 elements of the linear combination that are exactly
zero, with all of the other elements nonnegative. These points

h(z,y) =p, + a1py + --- + ap_1pp > 0
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represent the corners of the convex cone. In the implementation
of CCA discussed in [7], (6) is rewritten as

1
h(z,y) =[p,---pg] ;“.1.

ap—1

=Pa>0 (7

where the p, are N-dimensional column vectors. For N > FE,
Pa = 0 is an overdetermined system of linear equations. If
the elements of P are viewed as coefficients, and those of a as
variables, then there are N equations of the form

for j=1,...,N (8)

Pj1taipj+---+ap-1p;p =0,

which define (E — 1)-dimensional hyperplanes in F-dimen-
sional space. Exact solutions can be found by taking (£ — 1)-tu-
ples among the IV equations. These solutions produce linear
combinations of the eigenvectors that have at least £ — 1 zeros.
The boundary of the convex cone is the set of all solution vec-
tors that satisfy (6) or, equivalently, Min[h(z,y)] = 0, where
the minimum is taken over all 4;(x,y) € h(z,y),i=1,---,N.
These vectors can be used as endmember spectra for unmixing.

E. ORASIS

This method has been under development at the Naval Re-
search Laboratory (NRL) for over five years. The first step ap-
plied by the method is a preprocessing, which consists of flat
fielding and various tests on the spectra [17]. Next, an exem-
plar selection process is run with the purpose of prescreening
the data for unique spectra, thus creating a representative set of
exemplar vectors that can be used as endmembers for spectral
unmixing. This procedure rejects redundant spectra by calcu-
lating the spectral angle distance (SAD) between spectral vec-
tors [2]. Any vector that is not separated by a certain threshold
angle TA is removed from the data. The procedure then finds
a basis set of much lower dimension than the original data by
a modified Gram—Schmidt process. The exemplar spectra are
then projected onto this basis subspace, and a simplex is found
through a minimum volume transform. An improvement in the
prescreener of ORASIS algorithm has been recently reported
[21]. This module, whose goal is to reduce the volume of data
with minimal loss of important information, can be seen as a
single-pass learning vector quantization (LVQ) process. The ex-
emplars are representative of the entire dataset, i.e., all spectra
in the original data are within the TA of at least one exemplar
(this is the quantization aspect of the prescreener). However, the
first exemplar found to match a spectrum might not be the best
fit in the entire set. Thus, more error than is necessary might
be present if the method stops after finding the first exemplar
within the TA for each spectrum in the scene. The current imple-
mentation of ORASIS continues the exemplar selection process
even after a first fit is found, being therefore possible to find an-
other exemplar that is closer to the spectrum under test (best fit).

F. AMEE

The input to the AMEE method is the full image data cube,
with no previous dimensionality reduction. The method is
based on two parameters: a minimum Sp,;, and a maximum
Smax spatial kernel size. First, a minimum kernel K = Sy

is considered. This element is moved through all the pixels of
the image, defining a spatial context around each hyperspectral
pixel h(x,y). The spectrally purest (p) and the spectrally
most highly mixed (m) spectral signatures are respectively
obtained at the neighborhood of h(z,y) defined by K using
the following extended morphological operations [18]:

p = arg Max(, ek {szist (h(z,y), h(z—s, y—t))}
s t
V(s,t) e K (9)

m = arg _Max, e {ZZdist (h(z,y), h(z+s, y-l—t))}
s t
V(s,t) € K (10)

where dist is the SAD distance. A morphological eccentricity
index (MEI) [22] is then obtained by calculating the SAD
distance between the two signatures above. This operation is
repeated for all the pixels in the scene, using kernels of pro-
gressively increased size, and the resulting scores are used to
evaluate each pixel in both spatial and spectral terms. The algo-
rithm performs as many iterations as needed until K = S\ ..
The associated MEI value of selected pixels at subsequent
iterations is updated by means of newly obtained values, as a
larger spatial context is considered, until a final MEI image
is generated. Endmember selection is performed by a fully
automated approach consisting of two steps: 1) autonomous
segmentation of the MEI image, and 2) spatial/spectral growing
of resulting regions [18].

The six endmember extraction algorithms described in this
section represent substantially different design choices. PPI,
N-FINDR, and CCA might be characterized as instances of
the classic approach to endmember selection, based on the
search for spectral convexities in N-D space [15]. While PPI
is partially automated, both N-FINDR and CCA are fully
automated. IEA is based on an iterative process in which those
pixels that reduce the error obtained in constrained spectral
unmixing operations are used as endmembers. On other hand,
ORASIS performs endmember selection by using LVQ con-
cepts. Contrary to the methods above, which rely on spectral
properties of the data alone, AMEE uses a morphological
approach where spatial and spectral information are equally
employed to derive endmembers.

III. EXPERIMENTAL DESIGN

The aim of this section is twofold: 1) to describe the hyper-
spectral data that will be used in experiments and 2) to describe
an accuracy assessment framework to validate endmember ex-
traction algorithms [23].

A. Data Description

Two AVIRIS imaging spectrometer datasets of the Jasper
Ridge Biological Preserve (JRBP) in California have been
selected for experiments. The datasets are available (from
http://aviris.jpl.nasa.gov) in radiance and reflectance units
(from now on, we will respectively refer to the data as
AVIRBP_RAD and AVIRBP_REF). The datatets, acquired on
April 1998, consist of 512 x 614 pixels and 224 spectral bands,
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Fig. 1. Selected spectral signatures from (top) AVJRBP_RAD and (bottom)

AVIRBP_REF.

with a nominal ground resolution of 20 m, spectral resolution of
10 nm, and 16-bit radiometric resolution. In a previous study of
surface materials over JRBP, image endmembers were derived
from the scenes above based on extensive ground knowledge
[24]. Fig. 1 plots spectral signatures in radiance and reflectance
units associated to the main constituent materials at JRBP.
These signatures, denoted as r; (soil), 7, (evergreen forest),
T3 (dry grass), r4 (chaparral vegetation), and 75 (shade), were
obtained from the image scene by using a hybrid method
combining visual inspection and prior information about the
scene. Specifically, ground knowledge was used to identify
homogeneous vegetation, shadow and soil areas in the scene.
Inside those areas, representative pixels were selected as
ground-truth spectra by comparing them to a spectral library
of field data, used to represent landscape components at JRBP.
In this process, we ensured that library spectra matched the
phenology at the time of the image, and that there was little
miscalibration between field spectra and image spectra. To
simplify notation, we hereby use {r;} ?21 to represent spectral
signatures in the form of either radiance or reflectance. The
above signatures were artificially mixed in computer simula-
tions to create two simulated scenes.

1) Scene CS1: This scene, with a size of 100 x 100 pixels, is
formed by 100 regions, Ry, ..., Ri00, of one-pixel width, rep-
resenting linear mixtures between r; and r2. Abundance frac-
tions of r; atregion R; are assigned by (i/100), while abundance
fractions of ro at R; are assigned by 1 — (¢/100), as depicted
in Fig. 2(a) and (b). The scene represents a subtle mixing sce-
nario where r; progressively infiltrates into r, and vice-versa.
As Fig. 2 shows, the scene contains binary mixtures only.

100

a) b)

Fig. 2. Computer-simulated scene CS1. (a) Abundance fractions for r;.
(b) Abundance fractions for r,.

b)

Fig. 3. Computer-simulated scene CS2. Mixture regions created in (a) the
simulation. Abundance fractions for (b) 71, (¢) 72, (d) 73, (¢) r4, and (f) 75.

2) Scene CS2: The second simulated scene was created
using five spectral signatures: ri, T2, T3, T4, arranged at the
vertices of the image, and 75, located at the central pixel. Sig-
nature abundance decreases linearly away from the specified
points, as shown in Fig. 3(b)—(f). Abundance fractions have
been assigned so that the contributions of the components add
to one for every pixel. The resulting image, with a size of 100
x 100 pixels, contains pure pixels, but also binary, ternary and
quaternary mixtures. Fig. 3(a) illustrates the endmembers that
participate in each resulting mixture region after the simulation.

Random noise was added to the two scenes above to simulate
contributions from ambient (clutter) and instrumental sources.
White gaussian noise was created by using numbers with a stan-
dard normal distribution obtained from a pseudorandom number
generator and added to each pixel. For the simulations, we con-
sider the SNR for each band as the ratio of the 50% signal level
to the standard deviation of the noise, hence following the def-
inition given in [25]. This results in noise standard deviation
that is roughly proportional to the average signal, a phenomenon
often observed in radiometric data [7]. Thus, the simulated hy-
perspectral data are created, based on a simple linear mixture
model, by the following expression:

SNR -
s(e) = (33 +aten))- Yoty vy an
j=1
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where s(z,y) denotes a vector containing the simulated
discrete spectrum at the pixel with spatial coordinates (z,y)
of the simulated image, R is the total number of reference
spectral signatures used to simulate the scene, «(x,y) is
the assigned fractional abundance of spectral signature r;
at the pixel, and n(z,y) is the noise factor. The ANC and
ASC constraints have been imposed in the expression in order
to provide the simulation with adequate physical meaning
[26]. Each simulated scene was generated by using radiance
and reflectance spectra (we name the data according to the
acronyms: CS1_RAD, CS1_REF, CS2_RAD, and CS2_REF).
Six different SNR values, i.e., 10:1,30:1,50:1,70:1,90:1,
and 110:1, have been considered in the generation of each
simulated hyperspectral dataset. As a result, a database formed
by 24 simulated scenes and two real AVIRIS images will be
used in the experiments.

B. Accuracy Assessment Framework

The primary objective of this section is to describe a quantita-
tive framework to assess and compare the effectiveness of end-
member extraction algorithms from real and simulated imagery.
When real hyperspectral data are used, selected image endmem-
bers are applied as ground-truth spectra for quantitative assess-
ment. In contrast, the proposed approach to assess endmember
extraction accuracy when simulated data are used is outlined
in Fig. 4. Due to the controlled environment used in the genera-
tion of simulated imagery, ground-truth is available in two forms
(see Fig. 4): 1) a (spectral) library of image endmembers, used
to create the scenes, and 2) a series of (spatial) fractional maps
representing the pixel by pixel abundance of selected image end-
members. In situation 1), extracted endmembers after algorithm
application can be directly compared with ground-truth spectra.
In situation 2), estimated fractional abundances of extracted sig-
natures can be compared with ground-truth fractional maps. We
next provide a description of the comparative strategies used to
evaluate endmember quality in each case.

1) Comparison With a Ground-Truth Spectral Library: In
this comparative approach, the quality of a suite of extracted
endmembers is evaluated by comparing them with ground-truth
spectral signatures using spectral similarity criteria. Let e; be a
spectral signature selected from the simulated scene by an end-
member extraction algorithm, and r; be a ground-truth spec-
tral signature. According to the previous notations, we define
I'r = {e;}E, as a set containing £ endmembers extracted
by an algorithm, and ' = {1‘j}j‘l»2:1 as a set containing R
ground-truth spectral signatures. Two distance metrics are con-
sidered in this work to compare the similarity of (e;,r;) pairs:
the spectral angle distance (SAD) and the spectral information
divergence (SID). SAD is given by the cosine of the spectral
angle formed by N-D vectors. As a result, this measurement
is invariant in the multiplication of e; and r; by constants and,
consequently, is invariant before unknown multiplicative scal-
ings that may arise due to differences in illumination and angular
orientation [2]. On the other hand, SID is based on the concept
of divergence, and measures the discrepancy of probabilistic
behaviors between two spectral signatures. SID offers a new
look at the spectral similarity between two spectral signatures
by making use of relative entropy to account for the spectral in-

Selection of AVIRIS
spectral signatures

E
{ Generationof )
)

artificial mixtures

[
Noise simulation

GROUND-TRUTH

-

Computer-
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simulated maps
data

m 3

—

Estimated

Fig. 4. Schematical description of the approach used to assess endmember
extraction accuracy with simulated data.

formation provided by each signature [27]. A spectral similarity
matching algorithm (SSMA) is used in this work to match ex-
tracted endmembers to available reference signatures, according
to a SAD-based similarity criterion. The criterion is based on the
use of a similarity threshold value 7', so that the algorithm al-
lows a matching only in the case that the SAD score between the
endmember and the reference is as low as possible and is strictly
under 7. Table II addresses a pseudocode of SSMA. As shown
in Table II, the inputs to SSMA are I'g, I'g, and T'. The output
of SSMA is a new set I'5,, which contains those endmembers
in I'p that have been matched to available reference signatures
according to a spectral similarity criterion.

2) Comparison With Ground-Truth Fractional Abundance
Maps: In case of abundance ground-truth availability, the
quality of endmembers can be assessed by estimating their
abundance in the scene and comparing the obtained values
with reference fractions. This approach allows an evaluation of
endmembers from a spatial viewpoint, and is particularly suit-
able for our database of simulated scenes, where high-quality
ground-truth values are given by the artificially assigned
abundance fractions used in the generation of data. In this
work, fractions of extracted endmembers are estimated by a
fully constrained linear spectral unmixing (FCLSU) approach
[26], which incorporates the ANC and ASC constraints used
in the image simulations. Let N and M be the corresponding
total number of samples and lines in a simulated hyperspectral
image. Also, let m; be an extracted endmember that has been
matched to an available reference signature r; by SSMA, i.e.,
m; € ['y. Similarly, let &;(z,y) denote the FCLSU-estimated
abundance of m; at the pixel with spatial coordinates (z, ). A
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TABLE 1I
PSEUDOCODE OF SPECTRAL SIMILARITY MATCHING ALGORITHM

Inputs: Tz, Ig, T
Output: Ty
Let Iy =&
For i=1 to E label & as "notmatched”
For j=1 to R do begin

Min = 0

k=0

For i=1 to E do begin

If e; is labeled as "not matched” then begin
If SAD(ei,rj) <T and SAD(ei,rj )<Ivﬁn begin
Min = SAD (ei ,rj)

k=i
Endif
Endif
Endfor

If k >0 thenbegin
Label e, as "matched”

mj =&

Ty=Tuv Bt
Endif
Endfor

simple statistical measurement to evaluate the similarity of true
versus estimated values is provided by the root mean square
error (RMSE), given by

ol

1 N M )
RMSE(m;,r;)= <WZZ [aj (2, y)—&;(z, )] )

r=1z=1

(12)
In order to compare a specified ground-truth with the results
provided by endmember extraction algorithms, we have created
a software toolkit that incorporates the metrics addressed in this
section [28]. The toolkit was used to generate the simulated data
described in Section III-A, as well as the results that will be

presented and discussed in the following section.

IV. COMPARATIVE PERFORMANCE ANALYSIS

This section describes a series of experiments that use sim-
ulated and real hyperspectral data to conduct a comprehensive
comparison among standard endmember extraction algorithms.
In order to ensure the fairest possible comparison, the best per-
formance must be obtained from each alternative method. Then,
prior to a full examination and discussion of results, it is im-
portant to outline parameter values used for PPI, IEA, AMEE,
and ORASIS algorithms, bearing in mind that the N-FINDR
and CCA methods do not require any input parameters. We also
remark that some of the methods (IEA, CCA, and ORASIS)
include an optional choice of setting a fixed number of end-
members to be identified by the algorithm, or allowing the algo-
rithm to decide how many endmembers are present in the scene.
In this work, the number of endmembers to be found by the

above methods was fixed in experiments involving simulated
data, where the number of available endmember constituents is
known a priori, but was not previously set in the case of pro-
cessing real imagery. In addition, although in practice it is dif-
ficult to fully optimize every method, we have used our experi-
ence with the methods to select parameters that are reasonably
close to optimal for the test data. Specifically, it was observed
that PPI produced the same final set of endmembers for the two
real scenes (AVJRBP_RAD and AVIRBP_REF) when the value
of L was above 3000 iterations (values of L = 10%, L = 105,
and L = 10° iterations were tested). For the simulated data,
only 1000 iterations were required to produce a final suite of
endmembers that were essentially the same as those found with
L = 106 iterations. Based on the above simple experiment, the
cutoff threshold parameter C' was set to the mean of PPI scores
obtained after L. = 1000 iterations for the simulated data, and
L = 3000 iterations for the real data. These parameter values
are in agreement with those used before in the literature [29].
Pixels were then grouped into smaller subsets based on their
clustering in the V-D space. Finally, resulting groups of extreme
pixels were linked to the original image, and the mean spectrum
of each group was used as a candidate endmember for unmixing
[15]. In order to determine appropriate parameters for IEA, we
tested the algorithm with our simulated/real datasets using pa-
rameter values in the following intervals: R = [10100] pixels
and 6 = [0.5,1.4] rad. In general terms, we observed that the
algorithm was not very sensitive to the setting of those parame-
ters. In fact, even if the parameters R and § were changed, within
rather liberal limits, essentially the same endmembers were ob-
tained. The only caution that we exercised, in accordance with
suggestions made by the authors of IEA [16], was to avoid
values for parameters R and 6 that were so small that single
pixel endmembers were returned. After analyzing the SSMA
similarity scores between selected and ground-truth endmem-
bers in both real and simulated imagery, we set R and 6 to their
corresponding 50 pixels and 1.2 rad. In similar terms, a previous
performance study of our AMEE algorithm revealed that satis-
factory results in most situations can be found by setting Sy,
and Sp,.x parameters to 3 x 3 pixels and 15 X 15 pixels, respec-
tively [18]. These values were also found appropriate for the
simulated/real datasets used in this work, mainly due to the ob-
served width in pixels of patterns of interest in the data. Finally,
the developers of the ORASIS method at NRL optimized each
algorithm run by carefully setting the TA parameter to an ap-
propriate value. This was done by taking into account the SNR
of each tested dataset. Using the empirically selected parameter
values described above, we have performed three comparative
experiments, summarized in Table III.

A. Experiment 1

In this subsection, we conduct an experiment-based compar-
ison among PPI, N-FINDR, IEA, AMEE, CCA, and ORASIS
algorithms by using simulated scenes CS1_RAD, CS1_REF,
CS2_RAD, and CS2_REF with different SNR values. For
clarity, we emphasize that CS1_RAD and CS1_REF represent
a simple mixing scenario formed by binary mixtures only,
while CS2_RAD and CS2_REF contain ternary and quaternary
mixtures in addition to binary mixtures. We focus on analyzing
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TABLE 1II
SUMMARY OF EXPERIMENTS

Experiment Datasets used Objective
1 CS1_RAD, CS1_REF, To compare algorithm performance in the task of extracting
CS2 RAD, CS2 REF. endmembers from simulated hyperspectral data.
2 CS1_RAD, CS1_REF, To compare algorithm performance in the task of estimating
CS2 RAD, CS2 REF.  endmember abundance fractions in simulated hyperspectral data.
3 AVJRBP RAD, To compare algorithm performance in the task of extracting
AVIRBP REF. endmembers from real hyperspectral data.

TABLE 1V
TOTAL NUMBER OF EXTRACTED ENDMEMBERS (E) BY PPI, N-FINDR, IEA, AMEE, CCA, AND ORASIS METHODS, ALONG WITH SAD-BASED
(BOLD TYPEFACE) AND SID-BASED SIMILARITY SCORES BETWEEN SSMA-MATCHED ENDMEMBERS AND CORRESPONDING
REFERENCE SPECTRAL SIGNATURES FOR CS1_RAD AND CS1_REF WITH DIFFERENT SNR VALUES

SNR
10:1 | 30:1 | 50:1 [ 70:1 [ 90:1 | 110:1

Method E m nm E my "y E "y E m my E m my E m iy
0.062 0.058 0.040 0.040 0.028 0.027 0022 0021 0.019 0.017
PPl 2 NMONMo 2 ho 0003 © poot 0001 0000 0000 © 0000 0000 ° 0000 0.000
N- 0.077 0.064 0.044 0.050 0.032 0028 0025 0.022 0.020 0.019
FIND! 7 NMONM 5 o goos ° poot 0002 > 0001 0000 > 0000 0000 > 0000 0000
FA , 008 0001 , 004 0029 , 002 0021 , 0020 006 , 0013 0015 , 0008 0009
CSI RAD 0.007  0.008 0.000  0.001 0.000  0.001 0.000  0.000 0.000  0.000 0.000  0.000
- AMFE o 0082 008 , 0017 0014 , 00l 0010 ., 0008 0009 , 0007 0008 , 0006 0.008
0.007  0.007 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000  0.000
0.057 0.062 0.041 0.045 0.028 0.032 0024 0.026 0.020 0.022
CoA 2 NMONM 2 s o4 ° oot o002 > oooi 0001 0000 0001 ° 0000 0000
0.077  0.066 0.046 0.039 0.032 0025 0024 0.019 0.020 0.015
ORASIS 2 NM  NM 2 .%o o004 > o002 0001 > 0001 0000 > 0000 0000 > 0000 0000
0.061 0.066 0.039 0.035 0.025 0.029 0.020 0.022 0.017 0.019
PPl 2 NMONM 2 g0 goo4 2 oo 0001 > 0000 0000 © 0000 0000 ° 0000 0000
N- 0.068 0.064 0.040 0.039 0.026 0.020 0022 0.024 0.016 0.019
FIND 6 NM NM 4 o o4 ° 0001 0001 > 0000 0001 ° 0000 0000 > (0000 0.000
IEA , 0083 0087 , 008 0034 , 003 0032 , 002 0035 , 0017 0031 , 0017 0012
cs1 REF 0.007  0.007 0.000  0.005 0.005  0.004 0.000  0.005 0.000  0.005 0.000  0.001
- AMFE o O0O8L 0075 ., 0015 0021 , 0010 0015 , 0008 0014 , 0007 0013 , 0006 0012
0.007  0.005 0.000 0.001 0.000  0.000 0.000 0.000 0.000  0.000 0.000  0.000
0.064 0.068 0.041 0.044 0.028 0.029 0020 0.024 0.019 0.021
cea 2 NMONM 2 0 gops * oot o002 > 0001 0001 © 0000 0000 > 0000 0.000
0.067 0.076 0.040 0.045 0.027 0.032 0021 0025 0.017 0.020
ORASIS 2 NM  NM 2 ooy poos > o001 0002 > 0000 0001 © 0000 0000 ° 0000 0000

the performance of the algorithms by deriving appropriate
endmembers from simulated data.

Table IV tabulates the spectral similarity scores produced
by SAD and SID metrics for extracted endmembers from
CS1_RAD and CS1_REF scenes with SNR values ranging
from 10:1 to 110:1. Results in Table IV show that PPI,
N-FINDR, CCA, and ORASIS produce endmembers that
are not matched (N/M) by SSMA to available ground-truth
signatures when the SNR equals 10: 1 (SID scores are only
shown for SSMA-matched endmembers). It should be noted
that the threshold value used to implement the SAD-based
similarity criterion of SSMA in experiments was 7' = 0.1, a
reasonable limit of tolerance for this metric. This value was
selected by observing the confusion matrix of SAD similarity
values among the five original spectral signatures used to create
the simulated scenes [27]. The previously addressed result
indicates that the above four methods, based on convex geom-
etry concepts (PPI, N-FINDR, CCA) and LVQ (ORASIS), are
more sensitive to noise than IEA and AMEE in a simple binary
mixing scenario. Overall, IEA and AMEE produce the best
SAD and SID similarity scores for CS1_RAD and CS1_REF,

with AMEE scores being slightly better than those obtained
by IEA. In contrast, we can observe that the results for all
the tested methods are similar for radiance and reflectance
endmembers. Even though the best results for all methods are
obtained when the SNR equals 110: 1, there is a significant
performance increase in most of the approaches examined
when the SNR is increased from 10: 1 to 30: 1.

Table V shows the statistics produced by SAD and SID for ex-
tracted endmembers using CS2_RAD and CS2_REF with SNR
values ranging from 30:1 to 110: 1. Results for SNR of 10:1
have been omitted, since most methods produced a majority of
N/M endmembers. This fact seems to indicate that the presence
of ternary and quaternary mixtures has a strong influence on
algorithm performance. Although the desired number of end-
members to be detected by PPI, IEA, CCA, and ORASIS was
set to five—the real number of endmembers in the scene—these
methods produced N/M endmembers for SNR values of 70: 1
and below. In general terms, the six methods find difficulties to
provide adequate correlations for r3, i.e., the shade endmember,
especially at low SNR values. In addition, with the single ex-
ception of ORASIS, most methods produced low SAD- and
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TABLE V
ToTAL NUMBER OF EXTRACTED ENDMEMBERS (E) BY PPI, N-FINDR, IEA, AMEE, CCA, AND ORASIS METHODS, ALONG WITH SAD-BASED
(BOLD TYPEFACE) AND SID-BASED SIMILARITY SCORES BETWEEN SSMA-MATCHED ENDMEMBERS AND CORRESPONDING
REFERENCE SPECTRAL SIGNATURES FOR CS2_RAD AND CS2_REF WITH DIFFERENT SNR VALUES

SNR
301 [ 70:1 [ 1101

Method E "y s "y s E m "y 3 my ms E "y 3 "y ;5
s 0W GbT OM v ww © obm OBt 0L OME gy , [OF o oms o oo
ot 100 OBC MBS ww ¢ MBI Im 0B 5 oms om ool ome oo

EA 0.066 0.081 0.069 0.026 0.029 0.042 0.055 0.018 0.018 0.022 0.028 0.078

e oS Imogm LW am tm omloaw L gm awn g oo
0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.005

a5 OBG USLONM w5 OR OB OB UM o o5 b omnm o or

s 5w OSL MBI IR w5 b G0N O OMS 5 OBL Om oo oms oo
w5 GbT ST OB w5 S0 OB OBZ 0N p g LB om o om:

o 0SB DT iy o 0SB R umd gy 5 ome ome uem ome oo

EA 0.069 0.071 0.067 0.012 0.025 0.033 0.041 0.008 0.007 0.027 0.033 0.076

e O gm0 W Cam w0k oom S i own i uon o
0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.005

a5 U EOETONM gy w5 B 0BT OGS UM g Lo om om0t

ouss 5w B ICIRT a5 MSIIOW BN OB g 5 Om oms om om0 oo

SID-based similarity scores for 74, i.e., the chaparral vegeta-
tion endmember. The shade component may be more difficult
to model because it is present in most mixtures in the scene,
including ternary and quaternary cases [see Fig. 3(f)]. In con-
trast, the spectral similarity of 74 with respect to r2 and 73
could be the main cause for the lower performance of methods
when modeling the chaparral component in both radiance and
reflectance data. The improved scores produced by ORASIS for
the SSMA-matched endmember m, (see Table V) seem to in-
dicate that the LVQ module makes the algorithm robust in the
presence of spectrally similar samples. Overall, the performance
of all tested methods is good when the SNR equals 110: 1, with
AMEE providing high similarity scores in many cases.

B. Experiment 2

In this subsection, CS1_RAD, CS1_REF, CS2_RAD, and
CS2_REF are used for experiments to evaluate the performance
of PPI, N-FINDR, IEA, AMEE, CCA, and ORASIS in the
task of estimating abundances from extracted endmembers.
Fig. 5(a)—(d) shows graphs of the RMSE error scores obtained
in abundance estimation of SSMA-matched endmembers m;
and m, provided by the six compared methods, on CS1_RAD
and CS1_REF using different SNR values. In general terms, the
methods work slightly better with reflectance data. This fact
could be explained by the higher spectral similarity between
radiance endmembers compared to reflectance endmembers,
a fact that was observed in the respective confusion matrices
of SAD and SID similarity values. Overall, both AMEE and
IEA produce the lowest error scores when the SNR is high or
moderate, and N-FINDR produces the highest error values.
In particular, when moderate-to-high SNR data are used, IEA
produces results that are much better than those found by the

same algorithm with lower image quality. The performance
of CCA and ORASIS is also significantly increased when
high SNR data are used. Contrary to the approaches above,
AMEE is characterized by a more stable behavior with respect
to SNR. This result provides some objective confirmation of
our introspection: that the incorporation of spatial information
reduces algorithm sensitivity to noise and outliers. However, it
must be noted that, because of the simple nature of mixtures in
CS1_RAD and CS1_REEF, this observation is not conclusive.
In order to test the above statement in a more complex mixing
scenario, Fig. 6 shows the RMSE error scores obtained after esti-
mating the abundance of SSMA-matched endmembers m1, mo,
ms, m4 and ms, provided by the six methods, on CS2_RAD
and CS2_REF using different SNR values. In the case of my,
and ms, performance comparison is only available for SNR
values superior to 50: 1 and 90 : 1, respectively (remaining SNR
values result in N/M endmembers). As a general comment, it
may be deduced from Fig. 6 that the performance of the six com-
pared methods is slightly better when reflectance data are used.
In addition, convex geometry-based methods (N-FINDR, PPI,
CCA) seem more sensitive to noise and complexity of spec-
tral mixtures than IEA and AMEE, with AMEE scores being
slightly better than those found by IEA in most cases. With the
single exception of my, the LVQ-based endmember selection
module of ORASIS produces better results than those found
by methods based on convex geometry concepts. In addition,
this algorithm produces the best abundance estimation results
for m, [see Fig. 6(g) and (h)]. This fact confirms the improved
performance of ORASIS when modeling the chaparral vegeta-
tion endmember, a result that was also observed in experiment
2. On other hand, it should be noted that the performance of [EA
decreases significantly when the SNR is reduced from 50: 1 to
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30: 1 [see Fig. 6(a)—(f)]. This last item seems to indicate that the
iterative minimization of constrained unmixing errors made by
IEA is not as effective as the integrated spatial/spectral treatment
of data performed by AMEE, in particular when lower quality
data are used.

C. Experiment 3

A comparative study of PPI, N-FINDR, IEA, AMEE, CCA,
and ORASIS in the task of extracting endmembers from real hy-
perspectral data is conducted. Contrary to computer-simulated
data, where noise and spectral mixture complexity can be easily
investigated, real imagery is conditioned by a great deal of addi-
tional circumstances. These factors, which include variations in
illumination through the scene, observation angle, and nonlinear
mixture effects caused by multiple scattering, have been re-
ported to influence the endmember selection process [2]. How-
ever, it is difficult to substantiate the individual effect of those
strongly interrelated parameters on algorithm performance. In
this experiment, we show a general performance comparison
of algorithms on real data (AVIRBP_RAD and AVIRBP_REF),
using selected image endmembers in Fig. 1 as ground-truth in-
formation. Before addressing the obtained results, we should
point out that SNR in the AVIRIS sensor at the time of data ac-
quisition was considerably higher than the values used in com-
puter simulations: the highest SNR levels calculated in 1998 for
a 50% reflectance target at sea level and 23.5° zenith angle cor-
responds in the A spectrometer (0.7 pm) to levels of 1000: 1,
and the lowest were measured in the SWIR region (2.2 pm) with
levels of 400:1 [30].
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RMSE scores for SSMA-matched endmembers by PPI, N-FINDR, IEA, AMEE, CCA, and ORASIS in CS1 at different SNR values. (a) m; in CS1_RAD.

Table VI shows the SAD and SID similarity scores ob-
tained by the six compared methods in AVIRBP_RAD and
AVJRBP_REF. Results in Table VI reveal that all tested
methods produce SSMA-matched endmembers for the five
materials studied. With the exception of ORASIS runs, where
some vegetation features are better modeled in the radiance
scene, the methods produce results that are slightly better for
reflectance data than for radiance data. When radiance data are
used, AMEE provides the best similarity scores for the soil
(my), evergreen forest (my), and dry grass (ms) constituents,
while ORASIS produces the best result for chaparral vegetation
(m4). When reflectance data are used, AMEE endmembers
provide the best similarity scores in four out of five materials.
These results apply for the two similarity metrics (SAD and
SID) used in the comparison. It should be noted that the
shade constituent (m;) is better characterized by IEA, in both
radiance and reflectance data. One explanation for this result
might be due to the fact that the spatial trend of the shade
component in the real scenes follows a very irregular pattern,
not necessarily correlated as observed in the spatial distribution
of the other studied endmembers [24]. Another reason might
be that the shade ground-truth spectrum was modeled by using
a water spectral signature from a lake outside JRBP scenes,
chosen because its albedo was the lowest in the entire scene
[24]. The results above demonstrate the importance of consid-
ering both spatial and spectral information in the selection of
endmembers for linear spectral unmixing. It is important to
emphasize that the linear mixture model is not flexible enough
to accommodate the full range of natural vegetation variability
throughout the landscape. In order to accurately characterize
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Fig. 6. RMSE scores for SSMA-matched endmembers by PPI, N-FINDR, IEA, AMEE, CCA, and ORASIS in CS2 at different SNR values. (a) m; in CS2_RAD.
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the JRBP ecosystem structure, it might be necessary to account
for changes in bidirectional reflectance (BRDF) in the subpixel
components, since multiple scattering overestimates the results
from a linear scattering model. In order to calibrate the impact
of the linear spectral unmixing algorithm used on the task of
estimating subpixel fractional abundances in the real datasets,
we have performed a qualitative comparison between two
different algorithms: fully constrained (FCLSU) and uncon-
strained (ULSU) linear spectral unmixing. In the qualitative
experiments, it was found that the correspondent endmember
fractional abundance maps, derived by using FCLSU and
ULSU, were in visual agreement for all the methods tested. In
addition, negative and/or unrealistic ULSU-derived abundance
fractions, which usually indicate a bad fit of the model and
reveal inappropriate endmember selections, were very rarely
found, in particular when the AMEE algorithm was applied.
Having those circumstances in mind, the results obtained in this
experiment indicate that the linear mixture model, improved by
the integration of spatial and spectral information in the task

of selecting endmembers, is able to provide a relatively good
characterization of general landscape conditions.

V. CONCLUSION AND FUTURE LINES

Several endmember extraction algorithms have been pro-
posed in the literature over the past decade. Comparing these
approaches has been a challenging task due to a lack of
rigorous criteria to substantiate any new algorithm. Another
difficulty arises from the fact that there are no commonly used
data to perform quantitative comparisons. In this paper, we
have conducted an evaluation of several endmember extrac-
tion algorithms for linear spectral unmixing, using a widely
available database of simulated and real AVIRIS images. The
comparison of methods has been carried out from two different
scopes. First, the issue was undertaken under the assumption
that reliable ground-truth spectral signatures are available. A
further attempt from the perspective of a mixed-pixel classi-
fication problem was also conducted by comparing estimated
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TABLE VI
SAD-BASED (BOLD TYPEFACE) AND SID-BASED SIMILARITY SCORES
BETWEEN SSMA-MATCHED ENDMEMBERS BY PPI, N-FINDR, IEA, AMEE,
CCA, AND ORASIS METHODS AND CORRESPONDING REFERENCE SPECTRAL
SIGNATURES FOR AVIRBP_RAD AND AVJRBP_REF

AVJRBP_RAD AVJRBP_REF

Method m m ms my ms m, my ms my ms
PPI 0.062 0.058 0.040 0.040 0.028 0.027 0.022 0.021 0.019  0.017
0.004 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000  0.000
N- 0.077 0.064 0.044 0.050 0.032 0.028 0.025 0.022 0.020 0.019
FINDR 0.005  0.004  0.001 0.002  0.001 0.000  0.000 0.000 0.000 0.000
[EA 0.014  0.029 0.022 0.021 0.020 0.016 0.013 0.015 0.008 0.009
0.000  0.001 0.000  0.001 0.000 0.000  0.000 0.000 0.000 0.000
AMEE 0.017 0.014 0.011 0.010 0.008 0.009 0.007 0.008 0.006 0.008
0.000  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000
CCA 0.057 0.062 0.041 0.045 0.028 0.032  0.024  0.026 0.020 0.022
0.003  0.004 0.001 0.002 0.001 0.001 0.000 0.001 0.000 0.000
ORASIS 0.067 0.076  0.040 0.045 0.027 0.032 0.021 0.025 0.017 0.020
0.004  0.005  0.001 0.002  0.000  0.001 0.000 0.000 0.000 0.000

abundance planes to ground-truth reference maps representing
the spatial distribution of endmember constituents in simulated
imagery. Experiments with simulated and real data indicate that
the combination of spatial and spectral information produces
results that are superior to those found by using the spectral
information alone. Low SNR data and complex spectral
mixtures are modeled better when a spatial/spectral model is
incorporated to endmember selection. Despite our effort to
conduct a comprehensive, impartial, and rigorous comparative
analysis of various algorithms, completion is not claimed. In
particular, the number of algorithms compared in this work is
limited to six methods, selected because they represent very
different design alternatives. In contrast, the application of the
proposed comparative framework to a larger number of images
with high-quality ground-truth data is required in order to
extrapolate the main conclusions drawn from the present study.

X PPI 0O N-FINDR
O I[EA A AMEE
X CCA © ORASIS
)
g 0,05 1 o
X R
4
z X
A &
0 : , :
80 % 100 110 120

[}

(Continued.) RMSE scores for SSMA-matched endmembers by PPI, N-FINDR, IEA, AMEE, CCA, and ORASIS in CS2 at different SNR values. (g) m,
in CS2_RAD. (h) m, in CS2_REEF. (i) m5 in CS2_RAD. (j) m5 in CS2_REF.

Further research on nonlinear mixture effects, observation
angle, and illumination/shadow effects is also needed. Finally,
another topic of interest is the development of new comparative
strategies to substantiate endmember extraction algorithms,
in particular when no ground-truth information is available.
This last item may help data analysts to decide whether any
particular comparative approach could generally prove more
suitable than others for evaluating endmember quality. From
the perspective of the experimentation carried out in this study,
the answer to this question has been posed from the viewpoint
of the particular use of the endmember concept made in the
application, either as a spectral feature that can be used to
identify materials by direct comparison to available reference
spectra or as a tool to estimate subpixel abundance fractions in
the scene.
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