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Hyperspectral Image Data Using Sequences of
Extended Morphological Transformations
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Abstract—This paper describes sequences of extended mor-
phological transformations for filtering and -classification of
high-dimensional remotely sensed hyperspectral datasets. The
proposed approaches are based on the generalization of concepts
from mathematical morphology theory to multichannel imagery.
A new vector organization scheme is described, and funda-
mental morphological vector operations are defined by extension.
Extended morphological transformations, characterized by si-
multaneously considering the spatial and spectral information
contained in hyperspectral datasets, are applied to agricultural
and urban classification problems where efficacy in discriminating
between subtly different ground covers is required. The methods
are tested using real hyperspectral imagery collected by the
National Aeronautics and Space Administration Jet Propulsion
Laboratory Airborne Visible-Infrared Imaging Spectrometer
and the German Aerospace Agency Digital Airborne Imaging
Spectrometer (DAIS 7915). Experimental results reveal that, by
designing morphological filtering methods that take into account
the complementary nature of spatial and spectral information in
a simultaneous manner, it is possible to alleviate the problems
related to each of them when taken separately.

Index Terms—Hyperspectral image analysis, morphological fil-
tering, multichannel morphological transformations, neural net-
work classifiers.

1. INTRODUCTION

YPERSPECTRAL remote sensing provides very high

spectral resolution image data and the potential for
discrimination of subtle differences in ground covers [1],
[2]. However, the high-dimensional data space generated
by hyperspectral sensors introduces new challenges in the
development of data analysis techniques [3], [4]. Previous
research has demonstrated that high-dimensional data spaces
are mostly empty, indicating that the data structure involved
exists primarily in a subspace [5]. As a result, there is a need for
feature extraction methods that can reduce the dimensionality
of the data to the right subspace without losing the original
information that allows for the separation of classes. In other
words, dimension reduction is the transformation that brings
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data from a high order dimension to a low order dimension,
thus overcoming the “curse” of dimensionality [6].

One of the most widely used dimension reduction tech-
niques in remote sensing is the principal component analysis
(PCA). PCA computes orthogonal projections that maximize
the amount of data variance, and yields a dataset in a new
uncorrelated coordinate system. Unfortunately, information
content in hyperspectral images does not always match such
projections [7]. This rotational transform is characterized by
its global nature, and as a result, it might not preserve all the
information useful to obtain a good classification. In order to
separate fine-scale from large-scale information, multiscale
approaches such as derivative spectroscopy [8] and the wavelet
transform [9] have been previously applied to extract relevant
features from hyperspectral signals. In derivative spectroscopy,
a smoothing operator is followed by a derivative operator to de-
tect “hills” and “valleys” in the spectral curves. More recently,
methods using the continuous wavelet transform (CWT) and
the discrete wavelet transform (DWT) have been investigated
as a means of systematically analyzing hyperspectral curves
via windows of varying width. Although the approaches above
are particularly suitable for the development of target detection
techniques operating at a subpixel level [3], their application
to land-cover classification scenarios is limited by the fact
that they rely on spectral properties of the data alone, thus
neglecting the information related to the spatial arrangement
of the pixels in the scene. As a result, feature extraction is
carried out without incorporating information on the spatially
adjacent data, i.e., the data is managed not as an image but
as a disarranged listing of spectral measurements where the
spatial coordinates can be randomly shuffled without affecting
the analysis [10]. However, one of the distinguishing proper-
ties of hyperspectral data, as collected by available imaging
spectrometers, is the multivariate information coupled with a
two-dimensional (2-D) pictorial representation amenable to
image interpretation. Subsequently, there is a need to incorpo-
rate the image representation of the data in the development of
appropriate feature extraction techniques for the understanding
of hyperspectral data.

This paper focuses on the problem of multiscale feature ex-
traction from a broader scope than the individual methods listed
above. Instead of focusing exclusively on the spectral informa-
tion contained in the data, we focus on the analysis of spatial and
spectral patterns simultaneously by the design of multichannel
filters. Our previous research [11], [12] has examined the appli-
cation of multichannel mathematical morphology (MM) opera-
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tions to integrate both spatial and spectral responses in hyper-
spectral data analysis. Classic MM is a nonlinear spatial pro-
cessing technique [13], [14] that provides a remarkable frame-
work to achieve the desired integration [11]. For perspective,
we briefly discuss fundamental operations of classic MM in the
context of their application to geoscience and remote sensing
problems, and then introduce our multichannel approach.

A. Classic Mathematical Morphology

Based on set theory, binary MM was established by intro-
ducing fundamental operators applied to two sets [15]. One set
is processed by another having a carefully selected shape and
size, known as the structuring element (SE), which is translated
over the image. The SE acts as a probe for extracting or sup-
pressing specific image structures by checking that each posi-
tion of the SE fits within the image objects. Based on these no-
tions, two fundamental operators are defined in MM, namely
erosion and dilation. The application of the erosion operator to
an image gives an output image, which shows where the SE fits
the objects in the image. In contrast, the application of the dila-
tion operator to an image gives an output image, which shows
where the SE hits the objects in the image. All other MM op-
erations can be expressed in terms of erosion and dilation [13].
For instance, the notion behind the opening operator is to dilate
an eroded image in order to recover as much as possible of the
eroded image. In contrast, the closing operator erodes a dilated
image so as to recover the initial shape of image structures that
have been dilated. The filtering properties of the opening and
closing are based on the fact that, depending on the size and
shape of the considered SE, not all structures from the original
image will be recovered when these operators are applied [14].

Binary MM operators have been extended to gray-tone
(monochannel) images by viewing these data as an imaginary
topographic relief; in this regard, the brighter the gray tone,
the higher the corresponding elevation [16]. It follows that, in
grayscale morphology, each 2-D gray tone image is viewed
as if it were a digital elevation model (DEM). In practice, set
operators are directly generalized to gray-tone images. For
instance, the intersection N (respectively, union U) of two sets
becomes the pointwise minimum A (respectively, maximum V)
operator [14]. Following a usual notation [17], let us consider
a grayscale image f, defined on the 2-D discrete space Z2, and
a SE designed by B C Z2. The latter is usually “flat” in the
sense that it is defined in the spatial domain of the image (the
z-y plane) [14]. The flat erosion of f by B is defined by the
following expression:

(z,y) € Z2

ey
where Z2(B) denotes the set of discrete spatial coordinates as-
sociated to pixels lying within the neighborhood defined by B
and A denotes the minimum. In contrast, the flat dilation of f
by B is defined by

(f®B)(.’lf7y) = A(s,t)EZQ(B)f($+87y+t)7

(z,y) € Z*
2)

(f@B)($7y) = v(s,t)EZQ(B)f(x - 87:‘/_f)/

where V denotes the maximum. Using the same notation above,
standard opening and closing filters [18] can be, respectively,
defined by

(foB)(z,y) =I[(f® B)® Bl(z,y)
(feB)(z,y) =I[(f® B)® Bl(z,y),

The basic operations above have been successfully employed
in a variety of geoscience and remote sensing applications [14].
In particular, the idea of using sequences of opening and closing
filters to extract adequate features from monochannel remotely
sensed data has been widely used by recent research. A com-
position of geodesic opening and closing operations [18] using
SEs of different sizes was used in [19] and [20] in order to build
pixel-level differential morphological profiles, which were then
used to characterize image structures in high-resolution urban
satellite data [21]. Neural-network-based approaches were
then used for the classification of the resulting morphological
features [21], [22]. More recently, sensor noise-independent
morphological profiles were constructed by applying sequences
of opening and closing operators alternately, using increasing
SE sizes [23]. Extension of the above spatial-based sequen-
tial approaches to multichannel imagery has not been fully
accomplished yet. An available technique computes the first
principal component of the multichannel dataset for use as the
base image for constructing morphological profiles by applying
monochannel morphological filters [22], [24]. However, ex-
tended (multichannel) morphological operations, based on the
integration of spatial and spectral properties of the data, should
be more effective in discrimination of relevant image features.

(z,y) € Z%. (3)

B. Multichannel Mathematical Morphology

The extension of classic MM operations to multichannel
image data is not straightforward. When such techniques are
applied independently to each image channel (marginal MM),
there is a possibility for loss or corruption of information of
the image due to the probability that new spectral constituents
(not present in the original image) may be created as a result
of processing image channels separately [25]. An alternative
way to approach the problem of multivariate morphology is to
treat the data at each pixel as a vector. In order to define vector
MM operations, a concept for a maximum (or minimum) is
necessary, and thus it is important to define an appropriate
arrangement of vectors in the selected vector space. Since there
are no natural means of defining arrangement in /N -dimensional
spaces, a number of vector ordering schemes has been explored
[26], [27]. In reduced ordering, a scalar parameter function
is computed for each pixel of the image and the ordering is
performed according to the resulting scalar values. In partial
ordering, the input multivariate samples are partitioned into
smaller groups, which are then ordered. In conditional ordering,
the vectors are initially ordered according to the ordered values
of their components, e.g., the first component. As a second step,
vectors that have the same value for the first component are
ordered according to the ordered values of another component,
e.g., the second component, and so on. Our approach to this
problem has been the definition of a reduced vector ordering
scheme based on the spectral purity of pixel vectors [11]. First,
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a lattice structure is imposed onto the /N-dimensional space by
ordering input vectors over the values obtained after calculating
a spectral-based distance between a certain sample and all
the other ordered ones. Second, morphological operations are
defined by extension [12].

C. Scale-Orientation Morphological Profiles (SOMPs)

One of our main goals in this paper is to incorporate the idea
of multiscale analysis into extended MM transformations. In
complex image scenes containing structures with several signif-
icant derivative maxima and directional features (for instance,
urban environments), orientation is worthwhile as an addition
to scale information in order to characterize image structures
[28], [29]. Morphological directional profiles were defined in
[30] by performing openings and closings with line segment SEs
of varying orientation [31]. Such profiles were then applied to
determine the local orientation of thin elongated structures such
as roads on satellite images. Taking advantage of our defini-
tion of multichannel morphological transformations, we extend
the concepts of differential and scale-orientation morphological
profiles to hyperspectral image analysis in this work.

The remainder of the paper is organized as follows. Section II
describes the approach followed to extend MM operations to
hyperspectral imagery. Section III provides a framework for
the calculation of extended morphological sequences, giving
various examples. Section IV shows how the above sequences
can be used to design a supervised, neural-network-based clas-
sification system that is then applied to precision agricultural
and urban classification problems. That system is tested using
real hyperspectral datasets collected by the Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) and the Digital Air-
borne Imaging Spectrometer (DAIS 7915) imaging spectrome-
ters. The last section summarizes relevant points made and hints
at plausible future research.

II. EXTENDED MORPHOLOGICAL TRANSFORMATIONS

Our attention in this section focuses primarily on the develop-
ment of a mechanism to extend classic MM filters to hyperspec-
tral image analysis. First, we provide a mathematical formula-
tion for the extension of basic erosion and dilation operations
to multichannel imagery. The section ends with an in-depth de-
scription of extended opening and closing by reconstruction, a
special class of morphological filters that will be used in this
work for multiscale image processing.

A. Mathematical Formulation for Extended Dilations
and Erosions

Following the notation in [17], let us consider a hyperspec-
tral image f, defined on the N-dimensional continuous space
RN, where N is the number of spectral channels. An ordering
relation can be imposed in the set of pixels lying within an SE,
denoted by B, by defining metrics that calculate the cumulative
distance between one particular pixel f(z, y), where f(z,y) de-
notes an N-dimensional vector at discrete spatial coordinates

(,y) € Z?, and every other pixel in the neighborhood given
by B [11]. Based on the previous considerations, extended di-
lation and erosion can, respectively, be defined as follows:

(f @ B)(z,y) =arg [V (s 1)e 22(B)

{ZZ Dist(f(a:,y),f(:v—s,y—t))H ,

(z,y) € 2% (4
(f ® B)(l/y) =arg [/\(s,t)ezz(B)

{ZZ Dist(f(z,y), f(z+s, y+t))}

(z,y) € Z* (5)

where Dist is a pointwise distance measure between two N -di-
mensional vectors, and the arg operator, respectively, selects the
N -dimensional pixel vector that maximizes and minimizes a
cumulative distance value between f(z,y) and its neighboring
pixels according to B. The choice of Dist is a key topic in
the resulting ordering relation. For this study, three standard
distance measures in hyperspectral analysis are used [3]:
spectral angle distance (SAD), spectral information divergence
(SID), and hidden Markov model-based information divergence
(HMMID). For illustrative purposes, let us consider two /V-di-
mensional spectral signatures 8; = (s;1,82,...,55)" and
s; = (sj1,82,.-.,8;n5)7. It is important to emphasize that
the term “spectral signature” does not necessarily imply “pixel
vector.” Subsequently, spatial coordinates are omitted from the
two signatures above, although the following argumentation
would be the same if two pixel vectors were considered. The
SAD between s; and s; is given by the following expression:

SAD(s;, s;) =cos™'(si - 5;/||s:lllsll)

N N Y21 W

—1 § § 2 E 2

= COS szlsjl S,L»l Sjl
=1 =1 =1

1/2

(6)

It should be noted that the SAD measurement is invariant in
the multiplication of the input vectors by constants and, conse-
quently, is invariant to unknown multiplicative scalings that may
arise due to differences in illumination and sensor observation
angle [32]. In contrast, SID is based on the concept of diver-
gence, and measures the discrepancy of probabilistic behaviors
between two spectral signatures. It is based on a process that
models s; and s; as a random variables. If we assume that s;;
and s;,l = 1,..., N, are nonnegative entries, which is gen-
erally a valid assumption in remote sensing due to the nature
of radiance and reflectance data, then two probability measures
can be, respectively, defined for s; and s; as follows:

N
M{sik]) = pr = Sik Z 541

N
M[Sjk] = (qk = Sjk Z Sjl.
=1 =1

N
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Using the above definitions, the self-information provided by
s; forbandlis given by I;(s;) = — log ¢;. We can further define
the relative entropy of s; with respect to s;, D(s; || s;), by [3]

]\T
D(si|ls;) =Y piDi(sil 5))
l;l
= pi(Li(s;) — Ii(si))
=1

N
=" milog(pi/aq)- ®)

=1

By means of (8), a symmetric hyperspectral measure, referred
to as SID, is defined as follows:

SID(si, ;) = D(s; | 5;) + D(s; || 5:). ©)

SID offers a new look at the spectral similarity between two
spectral signatures by making use of relative entropy, and ac-
counts for the spectral information provided by each signature
[33]. Following a similar approach, the HMMID makes use of a
hidden Markov model (HMM) to characterize spectral correla-
tion as well as band-to-band variability of hyperspectral image
pixel vectors. The HMM process is used to capture the unob-
served and hidden spectral properties of the hyperspectral sig-
nals. A detailed description of HMMID is available in [34] and
will not be discussed here due to similarities with respect to SID
and space considerations. Both SID and HMMID are informa-
tion-theorretic measures that use the concept of self-information
[3]. They can be viewed as stochastic measures as opposed to
SAD, which is considered to be a deterministic measure.

The use of any of the spectral similarity metrics addressed
above as the standard distance measure allows us to impose a
partial order relationship of the vectors within a SE in terms of
their spectral singularity. It is important to notice that, regard-
less of the distance metric used in (4) and (5), the proposed op-
erators are vector preserving in the sense that no single vector
(constituent) absent from the input data is generated as a result
of the extension process.

B. Extended Opening and Closing by Reconstruction Filters

Extended erosion and dilation allow for the construction of
more complex filtering operations with additional properties.
The sequential techniques developed in our research are mainly
based on opening and closing by reconstruction, a class of
morphological filters that do not introduce discontinuities and
therefore preserve the shapes observed in input images [35].
Thus, the basic contrast imposed by conventional opening
and closing [see (3)] versus reconstruction-based opening and
closing can be described as follows. Conventional opening and
closing remove the parts of the objects that are smaller than
the SE, whereas opening and closing by reconstruction either
completely removes the features or retains them as a whole.
Following the notation introduced above, extended opening by
reconstruction is defined by

(foB)*(z,y) = Viz1 [65(Fo B| )] (z,y)  (10)

where

k times

[65(f o B|f)] (z,y) = [665---65(f o B| fl(w,y). (1)

The elementary term [dg(f o B f)](z,y) is an extended
geodesic dilation [36], defined as the pointwise minimum be-
tween the elementary dilation of f o B using B at pixel (z,y)
and the value of f(z,y),

[0B(f o BIHl(z,y) = M[(foB)&Bl(z,y), f(z,y)}. (12)

As shown in (11), this operation is repeated k times until sta-
bility (i.e., no more pixel value modifications) is achieved [14].
In a similar fashion, extended closing by reconstruction is given
by

(f o B)*(x,y) = Az1 [ep(f o BIF)] (z,y)  (13)

where

k times
[h(f e BIf)] (2,y) = Epe-—-ep(f o B Pl(z.y). (14)

The elementary term [eg(f @ B| f)|(z,y) is an extended
geodesic erosion [36], defined as the pointwise maximum be-
tween the elementary erosion of f e B using B at pixel (z,y)
and the value of f(z,y),

[ea(f o Bl H)l(z,y) = V{[(feB)®@Bl(z,y), f(z,y)}. (15)

Extended opening and closing by reconstruction will be
considered hereinafter as the two letters of our morphological
alphabet. These filters demonstrate excellent properties when
employed to construct sequential morphological operations
for hyperspectral image analysis, in particular, when they are
combined with disk-shaped SEs due to their isotropy [22].
Let us denote by BE™*) 4 square SE of width « pixels.
Similarly, let BS"*™*™ be a diamond-shaped SE with a side
of a pixels (& > 2). By definition, B§d‘am°nd) is a single
pixel, and Bédiamond) is the elementary diamond (a pixel and
its four direct neighbors). Using the above definitions, disk SEs
of increasing radiuses can be approximated by starting with
BStamend) and then alternating binary dilations by B{™ "™

and Bgdiamond) [14]
is diamond
B((ld k) _ Bé )

a—2 times
A

% 69Bi()’square) @ Bédiamond) @ B:gsquare) S--- (16)

where o > 2 is the radius in pixels of the approximated disk
SE and @ is the binary dilation operator. In order to illustrate
the geodesic operations in (11) and (14), let f be a hyperspec-
tral image collected by the DLR ROSIS imaging spectrometer
[37] over a semiarid area in Caceres, southwest Spain. The scene
consists of 1.2-m 88 x 134 pixels, each containing 92 spectral
bands covering the spectral range from 504-864 nm. Fig. 1(a)
shows the spectral band collected at 584-nm wavelength by the
ROSIS imaging spectrometer, where three different materials
can be visually identified: cork-oak trees (dark areas), pasture
(gray areas), and soil (bright areas). Four target pixels circled
in Fig. 1(a) were identified by using an ASD FieldSpec Pro
spectroradiometer during a visit to the test site. The pixels in-
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(a) (®) (© (C)) (e)

Fig. 1. Spectral band at 584 nm of a ROSIS hyperspectral image and spatial
positions of four target pixels of interest (a). The same band in the resulting
image after applying a geodesic erosion to the original image using (b) k = 1
and (c) k = 2 repetitions. The same band in the resulting image after applying
a geodesic dilation to the original image using (d) ¥k = 1 and (e) k = 2
repetitions.

clude a small cork-oak tree (T1), a medium-sized cork-oak tree
(T2), a pure soil area (S), and a mixed area formed by soil and
pasture (M). Data collection revealed that T1, T2, and S can
be considered spectrally pure at a macroscopic level, while the
sensor spatial resolution available does not allow to separate
soil from pasture at M, which was labeled as spectrally mixed.
Fig. 1(b) and (c), respectively, shows the band at 584 nm of
the resulting image after applying an extended geodesic erosion
using £ = 1 and k = 2 repetitions [see (11)] to the original
hyperspectral image in Fig. 1(a). Similarly, Fig. 1(d) and (e),
respectively, shows the band at 584 nm of the resulting image
after an extended geodesic dilation using £ = 1 and k = 2 rep-
etitions [see (14)]. In all cases, the considered SE is given by
B = B,(j_lik). This figure intuitively shows how extended mor-
phological operations affect four pixels with different spectral
and spatial properties.

III. EXTENDED MORPHOLOGICAL SEQUENCES

We present below three different approaches to the construc-
tion of multiscale sequences of extended MM transformations.
Examples illustrating the application of extended morpholog-
ical sequences to extract relevant features from real hyperspec-
tral datasets are also provided in each subsection.

A. Extended Differential Morphological Profiles

Morphological profiles for grayscale (monochannel) re-
motely sensed imagery rely on the sequential application of
opening and closing by reconstruction operations using SEs of
increasing size [19], [20]. An extended differential morpho-
logical profile (EDMP) is defined as a vector where a measure
of the spectral variation of the multichannel opening-closing
profile is stored for every step of an increasing SE series. Using
(10) and (13), we can create EDMPs as follows. Let M} (z,y)
be a matrix of dimension (k+ 1) x N, which contains the
opening by reconstruction morphological profile at the point
(z,y) of a hyperspectral image f, given by

M (z,y) = {(f o B)Mz,9)},

where (foB)*(x, %) is the opening by reconstruction operation.
Similarly, let M (z,y) be a matrix of dimension (k + 1) x N,
which contains the extended closing by reconstruction morpho-
logical profile at the point (z,y) of f, defined by

M; (z,y) = {(f ¢ B)*(z.y)},

A={0,1,...,k} (A7)

A=1{0,1,....k} (18)

TABLE 1
SAD-BASED LEVEL OF THE DERIVATIVE RELATIVE TO A SERIES OF
OPENING AND CLOSING OPERATIONS FOR SEVERAL PIXELS IN A ROSIS
HYPERSPECTRAL SCENE OVER A SEMIARID AREA IN SPAIN: T1
(SMALL CORK-OAK TREE), T2 (MEDIUM-SIZED CORK-OAK TREE),
S (PURE SOIL) AND M (MIXED PIXEL FORMED BY SOIL AND PASTURE)

Pixel O, 0, O; C C, C; OC, 0OC, 0C; CO, CO, CO,

T1 0.210 0.014 0.007 0.002 0.001 0.001 0.210 0.007 0.009 0.030 0.010 0.008
T2 0.183 0.003 0.001 0.030 0.002 0.001 0.160 0.016 0.013 0.026 0.010 0.010
S 0.001 0.006 0.246 0.005 0.003 0.002 0.007 0.006 0.196 0.008 0.014 0.026
M 0.009 0.007 0.001 0.001 0.002 0.213 0.012 0.018 0.025 0.010 0.016 0.163

where (f ® B)*(z,y) is the closing by reconstruction operation.
Here (f o B)’(v,y) = f(z,y) = (f o B)"(x,y) for A = 0 by
the definition of opening and closing by reconstruction [14]. We
define the derivative of the extended opening profile, pj(z,y),
as the k-D vector

pi(x,y) = {Dist[(f o B)(z,y), (f o B} (x,y)]},
A=1{1,2,...,k}
where Dist refers to a spectral-based distance metric such as

SAD, SID, or HMMID. By duality, the derivative of the ex-
tended closing profile p} (x, y) is the k-D vector

pi(z,y) = {Dist[(f & B)*(z,y), (f ® B)* ()]},
A={1,2,... k}.
For illustrative purposes, Table I shows the level of the deriva-

tive relative to a series of opening and closing operations for the
target pixels shown in Fig. 1(a), where

Ox =SAD[(f o B)*(w,y), (f o B)*"*(z,y)]

Cx =SAD[(f & B)*(z,y), (f ® B)* ™' (2,y)]
B — pdisk)

19)

(20)

and A = {1,2,3}. As displayed in Table I, pixels that are
spectrally pure (T1, T2, and S) show the maximum derivative
score in the opening series, while mixed pixels show the max-
imum derivative score in the closing series. The step of the
opening/closing series iteration at which the derivative profile
provides a maximum value gives an intuitive idea of both the
spectral purity of the pixel and the spatial distribution of the ob-
jectin the scene. As a result, the derivative profile can be used as
a feature vector on which the classification is performed using
a spatial/spectral criterion.

B. Extended Alternated Sequential Filters

Before describing our approach to extend alternated sequen-
tial filters (ASFs) to hyperspectral imagery, it is important to
note that ASFs rely on reconstruction-based morphological op-
erations [35], [38]. Each opening and closing is followed by a
geodesic reconstruction [see (11) and (14)], enabling a perfect
preservation of the remaining image features. The sequential ap-
plication can be based on open—close or close—open filters, i.e.,
an arbitrary choice must be made on whether to start the se-
quence with an opening or a closing by reconstruction filter.
That choice results in the loss of the morphological self-du-
ality property [23], which was ensured by the EDMP approach
(two-sided morphological profile). Let A} (z,y) be a matrix of
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dimension (k4 1) x N, which contains the extended open—close
alternated sequential filter (EOASF) at the point (x, y) of a hy-
perspectral image f, defined by

A(z.y) ={[(foB) e BNz, y)},  A={0.1,....k}.
1)
Similarly, let A} (z, y) be a matrix of dimension (k+1) x N,
which contains the extended close—open alternated sequential

filter (ECASF) at the point (z, y) of the image f, defined by

Ax(z,y) = {[(f o B) o BIMz,m)},  A={0.1,..

.k}
(22)
With the above definitions in mind, we should note that both

EOASFs and ECASFs could be seen as one-sided morpho-

logical profiles, derived by applying alternately opening and

closing by reconstruction operators with increasing SE sizes.

The derivatives of the EOASF and ECASF are, respectively,

given by the k-D vectors

ai(z.y) ={Dist[[(foB) ¢ B*(x,y),[(fo B) & B*™*(x,y)]}.

A={1,2,....k} (23)
g7 (z, y) ={Dist[[(f ® B)o B|*(z,y), [(f @ B)o B]* *(z,y)]},
A={1,2,... k}. (24

For illustrative purposes, Table I shows the level of the deriva-
tive relative to a series of alternated openings and closings for
the target pixels shown in Fig. 1(a), where

OC =SAD[[(f o B) » BP(w,y).[(f o B) » B[~ (,y)]
COx =SAD[[(f » B) o BP(w,y).[(f » B) o B]*™ (s, y)]
B =B{{}

and A = {1,2,3}. As shown in Table I, open—close filters are
particularly useful to discriminate pure spectral features. For
instance, the maximum derivative score for pixels T1, T2, and S
is obtained in the open—close series. In contrast, the maximum
derivative score for mixed pixel M is obtained in the close—open
series.

C. Scale-Orientation Morphological Profiles

In order to extend the concept of directional morphological
profiles to multichannel imagery, we should first denote by
B,y (dx,4y) @ line segment SE with minimal length, where p is
the number of pixels along the line and dy/dx is the slope of
the line segment [31]. By assuming a management of images
digitized on a square grid, we can restrict our analysis to line
slopes in the form of an irreducible fraction dy/dz (i.e., dx
and dy are integers with no common divisors). By convention,
we include the forms 0/1 and 1/0 for referring to horizontal
and vertical lines, respectively [31]. Let us assume that: 1) a
basis set O contains a collection of (dz,dy) pairs that define
the orientations of the considered line segment SE and 2) the
resulting line segment SEs are approximated on a discrete grid
depending on the length of the line segment [14]. With the

above assumptions in mind, we define the SOMP by opening at
a given pixel (z,y) of a hyperspectral image f as

V(dil,’7dy) € 07 SZ,(dm,dy)(x7y)

= { [(f o pr(d.r,li?/)) ¢ BP,('LT:’ITJ)] (x,y)} ’
p={12,...,k}. (25

Similarly, we define the SOMP by closing at the pixel f(z, y)
as

Y(dz,dy) € O, S;,(dw,dy)(x,y)

= {[(f * Bp;(dx;d'y)) °© Bp;(d:mdy)] ("773/)}7
p=1{1,2,....k}. (26)

In both cases, a measure of line strength can be computed for
each scale and orientation by calculating the spectral distance
(Dist) between the spectral signature in the original image at the
pixel (z, y) and the spectral signature at the same location in the
image filtered by the considered line segment SE as follows:

TZ,(dm,dy) (z, y) = {DISt (f(il?, y)/

[(f °© Bp7(d:r7dy)) o BP7(dw7dy)] (xy))} J
V(dz,dy) € O, p={1,2,....k} (27)

‘rz:(dmdy) (z, y) = {DISt (f(il?, y)/

[(f ® By.(dw.a)) © Bp.(az.an)] (,9)) }
V(dz,dy) € O, p={1,2,...,k} (28)

where Dist is one of the previously defined SAD, SID or
HMMID distance metrics. The resulting values are combined
in a feature vector with dimensionality 2k x O, where O is
the number of considered orientations. This feature vector
can be used for classification purposes. If required by the
application under study, the SOMP at a given pixel can be
analyzed by plotting the opened and closed values versus
the orientation of the line segment by using a polar diagram
called “rose of directions” (ROD) [14]. In Fig. 2, the SAD
distance was used to construct ROD diagrams associated to
four different target object pixels in a DAIS 7915 hyperspectral
scene over the city of Pavia, Italy. The scene consists of 5-m
400 x 400 pixels, each containing 40 spectral bands covering
the spectral range from 496-1756 nm [22]. Selected target
objects include a small building [see Fig. 2(a)], a river [see
Fig. 2(b)], a shaded road [see Fig. 2(c)], and a large building
[see Fig. 2(d)]. For the sake of simplicity, we consider line
segment SEs with p equal to 3, 5, and 7 pixels and four ori-
entations, O = {(1,0),(1,—-1),(—1,1),(0,1)}. It should be
noted that, in the ROD diagrams, the axis denoted by O (4, 4y)
(respectively, C(4; q4y)) represents line strength values pro-
duced by morphological openings (respectively, closings) using
a line segment SE with a dy/dx slope. As shown in Fig. 2,
directional openings produce a high response with spectrally
pure image structures that occur in the direction of the consid-
ered line segment SE [see Fig. 2(a) and (d)]. Also, directional
closings are appropriate to characterize spectrally mixed image
structures in the direction of the considered line segment SE
[see Fig. 2(c)]. In both cases, line strength scores are highly
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Fig. 2. Roses of directions showing SOMP-based values of line strength, calculated using line segment SEs with p = 3,p = 5, and p = 7 pixels in length, for
different target objects in a DAIS 7915 hyperspectral scene over Pavia, Italy. (a) Small building. (b) River. (c) Shaded road. (d) Large building.

influenced by the relation between p and the length in pixels
of the object. It should be noted that, for pixels belonging to
wide (with respect to the line segment SE) objects of similar
spectral properties, several distinct orientations might output
similar distance values [see Fig. 2(b)]. In the case above, line
segment SEs having an increased length may be required in
order to accurately characterize the object.

IV. APPLICATIONS

This section presents two applications of extended morpho-
logical transformations focused on the extraction of relevant
features for hyperspectral data classification, respectively domi-
nated by agricultural and urban features. In the first application,
a portion of an AVIRIS imaging spectrometer dataset taken over
an agricultural test site located in Salinas Valley, CA, is used
to investigate the accuracy of extended MM sequences in dis-
criminating among several agricultural classes with very similar
spectral signatures. In the second application, data collected by
the DAIS 7915 airborne imaging spectrometer over the city of
Pavia, Italy, were used to test the performance of the morpho-
logical filtering techniques above in a more complex scenario
dominated by nested regions and directional urban features. In
both cases, the proposed analysis system is based on the archi-
tecture shown in Fig. 3. First, relevant morphological features
are extracted from the original image by using sequences of

Original
hyperspectral
image

Sequences of Extended
Morphological Transformations

Decision Boundary
Feature Extraction

Test
Samples

Training
Samples

Neural Network
Classifier

Test classification accuracy

Fig. 3. General architecture of the proposed classification system.

multichannel MM filters. Although morphological filtering usu-
ally reduces the dimensionality of the original hyperspectral im-
ages, redundancies may still be present in the resulting vectors
after the filtering process. Therefore, the application of feature
extraction techniques is of great interest to select the most rel-
evant morphological features for class discrimination. In pre-
vious literature, Lee and Landgrebe’s decision boundary fea-
ture extraction (DBFE) [39], [40] has been demonstrated to be a
very powerful approach for extracting all the necessary features
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Fig. 4. (a) Spectral band at 488 nm of an AVIRIS hyperspectral image
comprising several agricultural fields in Salinas Valley, CA, and a subscene of
the dataset (Salinas A), outlined by a white rectangle. (b) Land-cover ground
truth classes.

for classification of morphological feature vectors [21]. Lee and
Landgrebe have extended DBFE for neural networks [41]. This
approach has the advantage of preserving the nature of neural
networks. Since neural networks can define quite complex de-
cision boundaries without assuming any underlying probability
functions, and the DBFE algorithm can find a relevant subspace
in a way no other feature extraction method can, they can to-
gether provide a helpful insight into the valued applications. In
our research, the adopted neural network classifier uses standard
backpropagation for supervised learning [4]. This technique can
be used to perform efficient nonlinear supervised classification.

A. Experiment 1: AVIRIS Data Over Salinas Valley

This subsection is a report on the application of the pro-
posed analysis system to real hyperspectral data collected by
the AVIRIS imaging spectrometer over Salinas Valley, CA,
in 1998. The full scene consists of 512 lines x 217 samples
with 192 spectral bands from 0.4-2.5 pm after removing the
water absorption bands [7], [42], and it was taken at a low
altitude with a 3.7-m-pixel size. These data were available
only as at-sensor radiance data and include vegetables, bare
soils and vineyard fields. Fig. 4(a) shows the entire scene and
a subscene of the dataset (called hereinafter Salinas A), which
comprises 83 x 86 pixels and is dominated by directional fea-
tures. Fig. 4(b) shows available ground truth regions. Ground
truth is available for nearly half of the entire Salinas scene.
A random sample of less than 2% of the pixels was chosen
from the known ground truth of the 15 land-cover classes in
Fig. 4(b). The resulting number of training and testing pixels for
each class are given in Table II. Morphological sequences were
constructed for the selected training samples, and DBFE was
applied to extract the most relevant features from the sequences
above. The resulting features were used to train a backpropa-
gation neural-network-based classifier with one hidden layer,
where the number of hidden neurons was selected empirically.
The general rule was to select the number of hidden neurons as
the square root of the product of the number of input features

TABLE 1II
INFORMATION CLASSES AND SAMPLES FOR EXPERIMENT 1
(SALINAS AVIRIS SCENE)

Class Training Samples  Test Samples
Broccoli_green_weeds_1 40 1893
Broccoli_green_weeds_2 43 3704
Fallow 41 1960
Fallow_rough_plow 38 697
Fallow_smooth 47 1349
Stubble 48 1677
Celery 44 1926
Grapes_untrained 60 10305
Soil_vineyard_develop 58 6128
Corn_senesced_green_weeds 55 3154
Lettuce romaine_4_weeks 44 984
Lettuce_romaine_5_weeks 47 1850
Lettuce_romaine_6_weeks 42 818
Lettuce_romaine_7_weeks 39 1003
Vineyard_untrained 49 7055
Total 695 44503

and information classes [22]. However, in all cases, several
configurations of the hidden layer were tested and the one that
gave the higher overall accuracies was reported. In the two
considered experiments, the best performance was generally
observed by selecting the number of hidden neurons as twice
the number of input features. The trained classifier was then
applied to the remaining 98% of the known ground truth pixels
in the scene, yielding the results depicted in Fig. 5 for a variety
of input morphological sequences.

In order to ensure the fairest possible comparison between
the different feature extraction approaches tested, it is impor-
tant to find the most appropriate parameter values for each
method. Then, prior to a full examination and discussion of
the results, it is important to outline parameter values used for
the construction of morphological sequences. Fig. 5(a)-(c),
respectively, plots the overall test classification accuracies,
obtained after combining the DBFE-based system with multi-
channel EDMP, EOASF, and ECASF sequences, as a function
of the number of opening/closing operations. For compar-
ative purposes, standard differential morphological profiles
(DMPs), open—close alternated sequential filters (OASFs), and
close—open alternated sequential filters (CASFs) were also
constructed. These methods are equivalent to EDMP, EOASF,
and ECASEF, respectively, but they are based on monochannel
morphological processing of the first principal component. It
should be noted that, according to our experiments, the use of
other widely used component transformations such as the max-
imum noise fraction or singular value decomposition does not
have a significant impact on the performance of DMP, OASF,
and CASF methods. Three different distance metrics (SAD,
SID, and HMMID) were used for the development of EDMP,
EOASEF, and ECASF sequences, while the base distance for
the construction of DMP, OASF, and CASF sequences was the
Euclidean distance (ED). The 3-D graphs in Fig. 5(d)—(f) plot
test accuracies, produced by using SOMP-based morphological
sequences, as a function of both the length in pixels and the
number of directions considered in the design of line segment
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Fig. 5. Overall test accuracies obtained after applying the proposed classification system, based on morphological sequences, to the Salinas AVIRIS scene.

(a) DMP- and EDMP-based sequences. (b) OASF- and EOASF-based sequences. (c) CASF- and ECASF-based sequences. (d)—(f) SOMP-based sequences.

SEs. Again, the SAD [Fig. 5(d)], SID [Fig. 5(e)], and HMMID
[Fig. 5(f)] distance metrics were considered for the construction
of the sequences.

From Fig. 5(a)—(c), it is clear that the pixelwise width of
interesting patterns in the Salinas AVIRIS scene makes nine
opening/closing iterations a reasonable parameter selection for
both multi and monochannel morphological methods tested in
this experiment (the number of openings is always equal to
the number of closings). In particular, the best overall accura-
cies in Fig. 5(a) were achieved when EDMP sequences were
constructed using the SID distance (EDMP-SID hereinafter).
Both EDMP-HMMID and EDMP-SAD performed slightly
better than DMP-ED. It should be noted that EOASF-SID
also produced slightly better results than EOASF-SAD and
EOASF-HMMID [see Fig. 5(b)], while ECASF-SID improved
both ECASF-SAD and ECASF-HMMID [see Fig. 5(c)]. This
fact points out that SID has a better ability than HMMID and
SAD in characterizing spectral properties of land-cover classes
in this particular scene. However, DMP-ED produced clearly
better results than all EOASF- and ECASF-based approaches,
as shown in Fig. 5(b) and (c). This confirms the effectiveness
of two-sided morphological profiles with regards to one-sided
alternate filters in this example. Finally, the higher accuracies
for SOMP-based sequences were also found when the SID
distance was used [Fig. 5(e)]. A general trend observed in
Fig. 5(d)—(f) is that SOMP series produced the best classifica-
tion scores when line segment SEs having nine pixels in length
and eight equidistant directions were used. As a result, our
final choice for the construction of scale-orientation sequences
in this experiment was eight directions and p = 9. In gen-
eral, the best results for accuracy assessments were obtained

from utilizing a moderate number of scales and orientations.
The construction of morphological feature vectors with very
large data dimensions generally caused a loss in classification
performance.

With the above parameter settings in mind, the dimension
of feature vectors after morphological filtering, number of
features used for classification after DBFE feature extraction,
overall (OA), average (AVE) and individual test accuracies in
percentage exhibited by the aforementioned classifiers on the
Salinas dataset are given in Table III. For comparative purposes,
classification accuracies obtained using the original spectral
information in the hyperspectral image are also reported. The
OA and AVE accuracies were calculated as follows. Let us
assume that P ground truth categories C,...,Cp are given,
and spectrum data of n; test samples from the categories C; are
observed forz = 1,..., P. We classify all test samples into one
of the categories by a certain classification method. Let the term
a;; represent the number of test samples that actually belong
to class C; and are classified into C;, for4,j = 1,..., P. The
row total Zle a;; is equal to the sample number n; from Cj,

and the column total Zil a;; denotes the number of samples
classified into C;. Let N = Zil n; be the total number of
samples. The following coefficients for accuracy assessment
are used in this work:

1 & 1 <&
A= — . AVE = — i/ 2
o I ;a” \"% fz ;an/nz (29)

As shown in Table III, DBFE did not require many features
to produce high test accuracies. As a result, it was possible, in
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TABLE III
DIMENSION OF FEATURE VECTORS (DFV), NUMBER OF FEATURES (NOF) USED FOR CLASSIFICATION AFTER DBFE FEATURE EXTRACTION, OVERALL (OA),
AVERAGE (AVE), AND INDIVIDUAL TEST ACCURACIES IN PERCENTAGE OBTAINED AFTER APPLYING THE PROPOSED CLASSIFICATION SYSTEM, BASED ON
MORPHOLOGICAL SEQUENCES WITH NINE OPENING/CLOSING OPERATIONS, TO THE SALINAS AVIRIS SCENE (SOMP-BASED FEATURES WERE OBTAINED
BY APPLYING LINE SEGMENT STRUCTURING ELEMENTS WITH LENGTH OF NINE PIXELS AND EIGHT ORIENTATIONS). CLASSIFICATION RESULTS
OBTAINED USING THE ORIGINAL SPECTRAL INFORMATION OF THE HYPERSPECTRAL SCENE ARE ALSO INCLUDED FOR COMPARISON

Original

Class Speetral  DMP- EDMP- EDMP-  EDMP-  OASF- EOASF- EOASF- EOASF- CASF- ECASF- ECASF- ECASF- SOMP- SOMP-  SOMP-
(* denotes Salinas A classes) hf;ﬁm on ED SAD SID HMMID  ED SAD SID HMMID  ED SAD SID HMMID  SAD SID  HMMID
Broccoli_green_weeds_1* 78.42 79.03 8125  82.75 82.03 7225 7179 76.21 77.31 67.53  74.12 75.23 74.71 90.34  92.31 91.49
Broccoli_green_weeds_2 80.13 8127 83.02 8621 84.58 7069  79.42 81.42 8029 6648  72.97 75.76 73.65 90.05  91.45 90.19
Fallow - - 92.98 9538  96.59  98.08 96.73 8304  92.11 93.74 9325  78.02 8476 86.52 85.01 97.11 9824 97.89
Fallow_rough_plow 96.51 9227 9452 96.42 95.01 8277  89.34 92.15 91.92  77.69  84.65 85.28 84.72 94.89  96.89 96.45
Fallow_smooth 93.72 9279 9501  97.62 9635 8196  89.20 93.87 9324 7621 8479 86.34 85.21 9.12  97.91 97.94
Stubble’ 94.71 9535 98.02  98.12 9789 8244  91.16 95.12 9549 7694 8321 86.13 84.89 97.89  98.02 97.35
Celery 89.34 9347  99.05  98.10 99.12 8223 9327 95.03 9418 7805 8446 85.45 83.28 98.17 9824 98.31
Grapes_untrained 88.02 90.57 93.78 9525 94.16 7846  83.94 87.16 8628 7384  81.06 82.32 81.46 9503 9543 94.27
Soil_vineyard_develop 88.55 8841  89.13 9031 89.44 7586 8293 84.76 8425 7035 7824 79.73 79.94 9124  93.02 92.79
Corn_senesced_green_weeds* 87.46 8408 8390 8221 8229 6649  74.68 76.48 7527 6203  67.70 69.69 68.72 89.36  91.32 90.12
Lettuce_romaine_4_weeks* 78.86 8143 8228 8312 83.10 6836 7791 76.82 76.41 6386 7139 72.66 71.19 8821  90.87 89.45
Lettuce_romaine_S_weeks* 91.35 78.14 7928  82.03 80.57  69.13 7635 78.23 7763 6524 7128 73.18 71.94 87.93  89.49 88.76
thtuce:mmaine:ﬁ:weeks* 88.53 79.11 81.81 84.18 82.25 69.98 78.20 77.84 78.12 64.89 72.46 75.44 74.83 90.23 92.07 91.65
Lettuce_romaine_7_weeks* 84.85 8127 8423  86.43 8552 76.12 80.11 81.52 8132 7221 7654 71.15 71.03 91.94 9412 93.48
Vineyard_untrained 87.14 87.95 9127  92.79 91.07 7528 8407 85.67 84.69  70.13 7741 78.86 71.25 93.67 _ 94.26 94.69
DFV 192 18 18 18 18 18 18 18 18 18 18 18 18 144 144 144
NOF 15 6 7 8 7 5 9 8 8 6 7 8 8 13 14 14
OA 87.55 8821 9385  94.12 93.08  75.83 84.31 87.89 8627 7089  77.05 80.23 7849 9434 9527 95.03
AVE 88.03 86.67 88.93  90.66 89.34 7567  83.36 85.07 84.64  70.16  77.66 79.29 78.32 9281  94.24 93.65

most cases, to keep the number of features very low without sac-
rificing OA and AVE scores. As can be seen, the OAs exhibited
by both EDMP- and SOMP-based approaches are very high for
the three distance measures (i.e., 93.85%, and 94.34% for the
SAD, 94.12% and 95.27% for the SID, and 93.08% and 95.03%
for the HMMID). These scores are sensibly higher than the ac-
curacy obtained using the original spectral information of the
image (i.e., 87.55%). It is important to note that the dimension
of feature vectors (DFV) of the original spectral information in
Table IIT is 192. Since the network was trained using 695 sam-
ples, the performance of the baseline method suffers from lim-
ited training samples. However, we observed, that even when
the number of training samples was increased to 22 600 (i.e.,
half of the available ground-truth), the results obtained by the
classifier based on the original spectral information could not
improve those found by EDMP- and SOMP-based approaches
using only 695 training samples, as pointed out below. Finally,
the OAs provided by EOASF- and ECASF-based approaches
(i.e., 84.31%, and 77.05% for the SAD, 87.89%, and 80.23%
for the SID, and 86.27% and 78.49% for the HMMID) are all
lower than the OA produced by DMP-ED (i.e., 88.21%).
Comparisons between multichannel sequential filters (i.e.,
EDMP versus SOMP) point out that SOMP-based sequences
provide slightly better classification accuracies, although the
number of features required to produce optimal scores were
smaller in the case of EDMP. However, further analysis of
the results reveals important differences between the two
considered classifiers. For example, the accuracy exhibited
by SOMP-SID on directional features present in the Salinas
A subscene [see Fig. 4(a)] is significantly higher than the
one exhibited by EDMP-SID (it should be noted that the
romaine lettuce is at different weeks since planting and with
growth increasingly covering the soil, thus resulting in distinct
spectral signatures at the different lettuce_romaine fields).
From Table III, it is also clear that SOMP-SID outperforms
EDMP-SID in the six Salinas A classes in terms of individual
test accuracies, a fact that leads to a significant decrease in the
AVE score associated to EDMP-SID with regard to the one

(a)

Fig. 6. (a) Band at 639 nm of a DAIS 7915 scene over Pavia city, Italy.
(b) Available ground truth classes.

()

TABLE 1V
INFORMATION CLASSES AND SAMPLES FOR EXPERIMENT 2
(DAIS 7915 PAVIA SCENE)

Class Training Samples  Test Samples
Water 114 4176
Trees 101 2444
Asphalt 85 1614
Parking lot 59 229
Bitumen 65 620
Brick roofs 106 2132
Meadows 62 1183
Soil 74 1401
Shadows 52 181
Total 718 13979

exhibited by SOMP-SID. This last item, which also applies to
the SAD and HMMID distances, confirms the effectiveness
of SOMP-based sequences in exploiting both the spectral and
orientation information provided by directional features in the
scene.

As a final comment, it should be noted that increasing the
number of training samples to half of the available ground truth
did not have a significant impact on the performance of EDMP-
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Fig. 7. Overall test accuracies obtained after applying the proposed classification system, based on morphological sequences, to the Pavia DAIS 7915 scene.

(a) DMP- and EDMP-based sequences. (b) OASF- and EOASF-based sequences. (c) CASF- and ECASF-based sequences. (d)—(f) SOMP-based sequences.

TABLE V
DIMENSION OF FEATURE VECTORS (DFV), NUMBER OF FEATURES (NOF) USED FOR CLASSIFICATION AFTER DBFE FEATURE EXTRACTION, OVERALL (OA),
AVERAGE (AVE) AND INDIVIDUAL TEST ACCURACIES IN PERCENTAGE OBTAINED AFTER APPLYING THE PROPOSED CLASSIFICATION SYSTEM, BASED ON
MORPHOLOGICAL SEQUENCES WITH 10 OPENING/CLOSING OPERATIONS, TO THE PAVIA DAIS 7915 SCENE (SOMP-BASED FEATURES WERE OBTAINED
BY APPLYING LINE SEGMENT STRUCTURING ELEMENTS WITH LENGTH OF 10 PIXELS AND 12 ORIENTATIONS). CLASSIFICATION RESULTS
OBTAINED USING THE ORIGINAL SPECTRAL INFORMATION OF THE HYPERSPECTRAL SCENE ARE ALSO INCLUDED FOR COMPARISON

Class (S):e%:‘l::ll DMP- EDMP- EDMP- EDMP- OASF- EOASF- EOASF- EOASF- CASF- ECASF- ECASF- ECASF- SOMP- SOMP- SOMP-
Information ED SAD SID HMMID ED SAD SID HMMID ED SAD SID HMMID  SAD SID HMMID
Water 87.30 86.17  88.04 87.45 87.63 62.56 76.46 7701 76.51 60.23 70.49 75.91 73.54 94.27 95.16 94.89
Trees 94.64 97.62 97.94 97.58 97.12 68.44 75.81 76.36 76.12 58.85 69.58 74.48 74.61 96.68 97.21 96.94
Asphalt 97.79 84.48 8524 8623 86.15 63.07 73.12 74.54 73.89 59.39 72.25 75.86 73.28 95.16 95.72 95.35
Parking lot 83.82 - 8193 82.15 81.97 81.17 67.23 71.63 71.87 72.34 63.11 68.44 69.54 71.02 90.85 91.14 90.76
Bitumen 86.11 7548 7644 76.12 75.42 68.86 72.17 73.28 72.95 61.92 67.06 70.69 69.43 89.64 90.10 89.73
Brick roofs 83.69 82.36 8275 82.40 82.89 65.01 75.08 76.84 75.47 57.07 71.22 77.02 75.89 96.13 96.51 96.04
Meadows 88.88 89.86  89.39 89.67 88.63 60.35 73.99 7793 75.21 58.40 69.99 76.24 74.02 91.23 92.05 91.57
Soil 79.85 84.68 8521 84.87 85.38 62.11 72.65 75.87 73.67 60.98 66.80 74.49 70.54 9245 92.77 92.81
Shadows 89.64 92.81 92.64 92.50 92.44 61.19 77.24 79.03 78.76 58.03 67.79 79.85 7231 95.06 95.69 95.14
DFV 40 20 20 20 20 20 20 20 20 20 20 20 20 240 240 240
NOF 13 11 11 12 12 9 10 11 11 8 9 11 10 16 18 17
OA 88.65 89.75  90.94 90.71 90.65 63.21 75.02 76.49 75.94 59.93 69.63 75.14 73.28 94.48 95.57 95.26
AVE 87.96 86.14  86.64 86.53 86.31 64.31 74.23 75.85 74.99 59.77 69.29 74.89 72.73 93.49 94.03 89.75

and SOMP-based methods; the observed increase was always
below 1% in terms of OA. A more significant improvement
was observed when the original spectral information was used.
Specifically, the OA increased to 92.14%, which is below the
OAs obtained by using EDMP- and SOMP-based classifiers
with less training samples. This fact reveals that the proposed
morphological methods can perform well with limited training
samples. In order to fully assess the effectiveness of the pro-
posed approaches, we must take into account that large and
spectrally homogeneous regions dominate the Salinas scene. As
a result, a very simple behavior of morphological profiles was
generally observed, where each feature had only one or two sig-
nificant derivative maxima. Complex scenarios such as urban
environments are, however, characterized by small directional

features with several significant derivative maxima and nested
regions. As a result, further experimentation using real hyper-
spectral data collected over urban areas is rather pertinent.

B. Experiment 2: DAIS 7915 Data Over Pavia City, Italy

For this trial, data from the DAIS 7915 airborne imaging
spectrometer of DLR were used. The data were collected at
1500 m over the city of Pavia, Italy. The flight altitude was
chosen as the lowest available for the airplane, which resulted
in a 5-m spatial resolution [43]. Fig. 6(a) shows a 400 x 400
pixel scene collected at 639 nm by the DAIS 7915 imaging
spectrometer, which reveals a dense residential area on one
side of the river, as well as open areas and meadows on the
other side. Ground truth information is available for several
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areas of the scene [see Fig. 6(b)], comprising the following
land-cover classes: 1) Water; 2) Trees; 3) Asphalt; 4) Parking
lot; 5) Bitumen; 6) Brick roofs; 7) Meadows; 8) Bare soil; 9)
Shadows. Following a previous research study on this scene
[22], we take into account only 40 spectral bands of reflec-
tive energy, and thus skip thermal infrared bands and middle
infrared bands above 1958 nm because of low SNR in those
bands. A DBFE-based classifier was trained with a variety of
morphological sequences, constructed for a sample of 5% of
the pixels from the ground truth of the nine classes in Fig. 6(b)
where the information classes and training and test samples are
listed in Table IV.

A summary of the overall classification accuracies obtained
by the above system for test data as a function of the number of
opening/closing operations for multichannel (EDMP, EOASF,
and ECASF) and monochannel (DMP, OASF, and CASF)
morphological sequences is shown in Fig. 7(a)—(c). From this
figure, it is clear that classification based on EDMP and DMP
sequences was more accurate than classification based on
EOASF/ECASF, and on OASF/CASEF. In all cases, the SID
distance was found to be the most effective in characterizing
spectral features. A maximum in overall classification accuracy
was generally observed when the number of opening/closing
operations was set to 10. It is also interesting to note that the
overall accuracies for the EDMP-based sequences did not
improve much those found using DMP-ED sequences in this
experiment. This fact provides an objective confirmation of our
introspection: that scale-orientation information is required in
order to complement spectral information when complex image
scenes are to be analyzed.

Fig. 7(d)—(f) plots test classification accuracies obtained by
SOMP sequences as a function of the length in pixels (scale)
and number of directions (orientation). The difference from Ex-
periment 1 is that much more improvement was achieved as the
number of directions was increased. A probable reason for this
improvement is that the DAIS 7915 scene contains proportion-
ally more straight lines with arbitrary orientations and nested
regions than the AVIRIS scene. However, when the number of
directions was very high, a loss in classification performance
was generally observed. With the above results in mind, we use
line segment SEs with p = 10 pixels in length and 12 orienta-
tions to create SOMP-based sequences in this experiment. As
depicted in Table V, SOMP-based approaches clearly outper-
formed their EDMP-based counterparts. However, in terms of
both OA and AVE accuracies, using the feature set consisting
of EDMP-based sequences gave very similar results to the cases
when DMP-ED and the original spectral information in the hy-
perspectral image were used. Interestingly, SOMP-based pro-
files produced very accurate classification results for the classes
dominated by small directional features (Asphalt, Brick roofs,
and Shadows). The incorporation of scale-orientation informa-
tion also helped characterize large oriented objects (Water) and
classes given by a combination of homogeneous regions and di-
rectional features (Bitumen, Parking lot, Bare soil). The above
results were also observed when the number of training samples
was increased to half of the available ground truth. Specifically,

SOMP achieved at least 96% OA for the three considered dis-
tances and outperformed all the other approaches including the
spectral information, which achieved 92.79% OA.

In conclusion, we can state that experiments have demon-
strated that EDMPs and SOMPs can work efficiently at local and
global scales. This success is achieved by the fact that they pro-
vide a final classification output that is coherent in both spectral
and spatial terms for a complex, real-world analysis scenario.
Results in this section also point to the importance of having a
system that can resolve both scale- and orientation-based spec-
tral variations due to the integration of spatial/spectral infor-
mation. This significance may also lead to new fields of ap-
plication. For instance, in certain parts of the Pavia scene we
can appreciate a more regular urban structure. Scale-orientation
information may not be fully required in order to characterize
these features. However, EDMPs alone may be unreliable when
used for the accurate modeling of other areas in the scene where
the shape and location of buildings is more irregular. This em-
phasizes the possibility of combining both approaches in order
to solve problems related to city classification.

V. CONCLUSION AND FUTURE WORK

This paper has described new morphological filtering tech-
niques for hyperspectral image data analysis that take into ac-
count both the spatial and spectral information simultaneously.
The considered approaches were: 1) extended differential mor-
phological profiles; 2) extended alternated sequential filters; and
3) scale-orientation morphological profiles. The above methods
were used in this paper to build feature vectors for supervised
classification using DBFE for neural networks. Experimental re-
sults using two real hyperspectral datasets have demonstrated
that morphological operations, extended to multichannel im-
agery by using well-known spectral-based distance metrics such
as SAD, SID, and HMMID, provide an excellent tool for clas-
sification purposes. In addition, morphological operations pre-
serve the relevant spatial/spectral information that allows for the
separation of classes. Although the test data were different in
many ways (e.g., application areas, spatial, and spectral reso-
lution, radiance/reflectance data and sensor SNR), high overall
accuracies were achieved for both datasets. In particular, feature
extraction methods based on multichannel differential morpho-
logical operations were more effective than other approaches
that consider spatial and spectral features separately. It was also
found in the experiments that the incorporation of scale-orien-
tation information to morphological profiles allows for accurate
modeling of hyperspectral image scenes dominated by complex
image structures, such as those present in urban areas.

As with any new approach, there are some unresolved issues
that may present challenges over time. Specifically, the pro-
posed techniques are particularly well suited to separate slightly
different spectral features that are clearly distinct in the spatial
domain. However, in order to associate together features with
very similar spectral properties but different spatial properties,
further work is still needed. In such cases, joint spatial-spectral
classifiers may need to be replaced by more spectrally guided
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techniques. A drawback in the proposed approaches has to do
with the need to heed a range of morphological filters with
increasing scale and orientation features, which may result in
a heavy computational burden when processing high-dimen-
sional data. This phenomenon is particularly important in the
case of images with large and spectrally homogeneous regions.
In order to empower the proposed techniques with near real-time
capabilities, we currently experiment with their efficient im-
plementation on high-performance parallel computing architec-
tures such as field-programmable gate arrays and Beowulf-type
clusters.
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