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Abstract

The rapid development of space and computer technologies has made possible to store a large amount of remotely sensed image data,
collected from heterogeneous sources. In particular, NASA is continuously gathering imagery data with hyperspectral Earth observing sensors
such as the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) or the Hyperion imager aboard Earth Observing-1 (EO-1) spacecraft.
The development of fast techniques for transforming the massive amount of collected data into scientific understanding is critical for space-
based Earth science and planetary exploration. This paper describes commodity cluster-based parallel data analysis strategies for hyperspectral
imagery, a new class of image data that comprises hundreds of spectral bands at different wavelength channels for the same area on the
surface of the Earth. An unsupervised technique that integrates the spatial and spectral information in the image data using multi-channel
morphological transformations is parallelized and compared to other available parallel algorithms. The code’s portability, reusability and
scalability are illustrated by using two high-performance parallel computing architectures: a distributed memory, multiple instruction multiple
data (MIMD)-style multicomputer at European Center for Parallelism of Barcelona, and a Beowulf cluster at NASA’s Goddard Space Flight
Center. Experimental results suggest that Beowulf clusters are a source of computational power that is both accessible and applicable to
obtaining results in valid response times in information extraction applications from hyperspectral imagery.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Recent advances in sensor technology have led to the devel-
opment of hyperspectral imaging systems capable of collect-
ing hundreds of images corresponding to different wavelength
channels for the same area on the surface of the Earth [4]. A
chief hyperspectral sensor is the NASA’s Jet Propulsion Labora-
tory Airborne Visible-Infrared Imaging Spectrometer (AVIRIS)
system [9], which covers the wavelength region from 0.4 to
2.5 �m using 224 spectral channels and nominal spectral res-
olution of 10 nm. Another example is the Hyperion instrument
aboard Earth Observing-1 (EO-1) spacecraft, which has been
NASA’s first hyperspectral imager to become operational on-
orbit. It routinely collects images hundreds of kilometers long
with 220 spectral bands in the same spectral range as AVIRIS.
With such spectral detail, the ability to detect and identify indi-
vidual materials or land-cover classes is greatly enhanced with
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respect to other techniques available such as multispectral imag-
ing, which typically collects only tens of images. The incorpo-
ration of hyperspectral sensors on airborne/satellite platforms
is currently producing a nearly continual stream of multidimen-
sional data, and this high data volume demands robust and ef-
ficient data analysis techniques. Specifically, both AVIRIS and
Hyperion data repositories currently consist of hundreds of Ter-
abytes of image data. Since these archives are ever growing (it
is estimated that NASA collects and sends to Earth more than
850 Gb of hyperspectral data every day), the development of
fast, unsupervised analysis techniques for near real-time infor-
mation extraction and data mining has become a highly desired
goal yet to be fully accomplished.

A diverse array of techniques has been applied to analyze hy-
perspectral imagery during the last decade [4,13]. They are in-
herently either full pixel techniques or mixed pixel techniques,
where each pixel vector in a hyperspectral image records the
spectral information. The underlying assumption governing full
pixel techniques is that each pixel vector measures the response
of one predominantly underlying material at each site in a scene.
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Fig. 1. The concept of hyperspectral imaging using NASA Jet Propulsion Laboratory’s AVIRIS sensor.

In contrast, the underlying assumption governing mixed pixel
techniques is that each pixel vector measures the response of
multiple underlying materials at each site. Mixed pixels are a
mixture of more than one distinct substance, and exist for one
of two reasons. Firstly, if the spatial resolution of the sensor is
not high enough to separate different materials, these can jointly
occupy a single pixel, and the resulting spectral measurement
will be a composite of the individual spectra. Secondly, mixed
pixels can also result when distinct materials are combined into
a homogeneous mixture. This circumstance occurs independent
of the spatial resolution of the sensor. A hyperspectral image
(sometimes referred to as “image cube’’) is often a combination
of the two situations, where a few sites in a scene are pure
materials, but many other are mixtures of materials (see Fig. 1).

Spectral unmixing is a commonly used procedure in which
the measured spectrum of a mixed pixel is decomposed into
a collection of spectrally pure constituent spectra, or endmem-
bers, and a set of correspondent fractions, or abundances, that
indicate the proportion of each endmember present in the pixel
[12]. Hence, the identification of image endmembers is a cru-
cial objective in hyperspectral image analysis applications. It is
important to emphasize that most available techniques for hy-
perspectral data analysis focus on analyzing the data without
incorporating information on the spatially adjacent data; i.e.
the hyperspectral data is treated not as an image but as an un-
ordered listing of spectral measurements where the spatial coor-
dinates can be shuffled arbitrarily without affecting the analysis
[10]. However, one of the distinguishing properties of hyper-
spectral data, as collected by available imaging spectrometers,
is the multivariate information coupled with a two-dimensional
(2-D) pictorial representation amenable to image interpretation.
Subsequently, there is a need to incorporate the spatial compo-
nent of the data in the development of automated techniques
for hyperspectral data exploitation. Unfortunately, most avail-
able techniques for analyzing hyperspectral data are based on

the spectral information alone [13]. It should also be noticed
that such spectral-based techniques yield the same result for a
data cube, and for the same data cube where the spatial po-
sitions have been randomly permuted. By taking into account
the complementary nature of spatial and spectral information
in simultaneous fashion, it is possible to alleviate the problems
related to each of them taken separately [18].

While integrated spatial/spectral developments hold great
promise for Earth science image analysis, they also introduce
new processing challenges [14]. In particular, the price paid for
the wealth of spatial and spectral information available from
hyperspectral sensors is the enormous amounts of data that they
generate. In addition, analysis techniques in Earth observation
studies are often computationally tedious, and require lengthy
durations to calculate desired quantities [5,2]. Several applica-
tions exist, however, where having the desired information cal-
culated in near real-time is highly desirable. Such is the case of
military applications, where a commonly pursued goal is de-
tection of full or sub-pixel targets, often associated to hostile
weaponry, camouflage, concealment, and decoys. Other rele-
vant examples can be found in applications aimed at detecting
and/or tracking natural disasters such as forest fires, oil spills,
and other types of chemical contamination, where timely clas-
sification is highly desirable.

In recent years, high-performance computing systems have
become more and more widespread, especially with the ad-
vent of relatively cheap Beowulf clusters [3,7]. The new
processing power offered by such commodity cluster-based
systems can be employed to tackle large remotely sensed data
sets and to get reasonable response times in complex image
analysis scenarios [1,6,8,22]. Thanks to the geographic local
organization of the pixels of an image as a 2-D mesh [11],
and to the regularity of most low-level computations, mesh-
based parallel architectures have become quite popular for
image analysis applications since they allow for efficient
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implementations of basic neighbor-based primitives [24]. How-
ever, the development of appropriate parallel analysis tech-
niques for joint spatial/spectral analysis of multi-component
data such as hyperspectral imagery has not been fully explored
yet in the literature, and represents both a challenge and a
novel contribution. In order to take advantage of available
parallel computing architectures, designing and implementing
well-optimized spatial/spectral analysis techniques is essential
in order to reduce the total research time to complete these
studies [27].

This paper describes a parallel morphological technique that
allows for efficient spatial/spectral exploitation of hyperspectral
image data. The algorithm was specifically designed to be run
on similar computing nodes employed in a stand-alone man-
ner. In the following section, we describe standard approaches
for parallel hyperspectral imaging in the literature. Next, the
morphological analysis method is described in light of avail-
able approaches, and a detailed description of its parallel im-
plementation is provided. The algorithm is evaluated in Sec-
tion 4, which also includes a detailed survey on the parallel
code’s portability, scalability and performance in comparison
with other parallel hyperspectral analysis algorithms. Two high-
performance parallel computers at European Center for Par-
allelism of Barcelona (CEPBA) and NASA’s Goddard Space
Flight Center (NASA/GSFC) are used to investigate variables
such as impact of inter-processor communication and coordina-
tion, load balance, and speedup ratios. Finally, Section 5 con-
cludes with some remarks and future research lines.

2. Available parallel hyperspectral imaging algorithms

Despite the growing interest in hyperspectral imaging, only a
few research efforts devoted to the design of parallel implemen-
tations exist in the open literature. It should be noted that sev-
eral existing parallel techniques are subject to non-disclosure
restrictions, mainly due to their use in military and defense
applications. However, with the recent explosion in the amount
of hyperspectral imagery, parallel processing is expected to
become a requirement in virtually every remote sensing appli-
cation. As a result, this paper takes a necessary first step to-
ward the comparison of different techniques and strategies for
parallel hyperspectral image analysis. In the following, we de-
scribe two standard unsupervised parallel hyperspectral image
classification techniques. These methods will be used for com-
parative evaluation and assessment in this work.

2.1. Distributed spectral-screening principal component
transform algorithm (S-PCT)

The principal component transform (PCT) is one of the
most widely used spectral transformations in hyperspectral
analysis [13]. It is used to summarize and decorrelate the
images by reducing redundancy and packing the residual in-
formation into a small set of images, termed principal compo-
nents. PCT is a highly compute-intensive algorithm amenable
to parallel implementation. In order to speed performance
up, the S-PCT algorithm [1] uses a standard master–slave

decomposition technique, where the master coordinates the ac-
tions of the workers, gathers the partial results from them and
provides the final result. To reduce communication overhead,
the worker overlaps the request for its next subproblem with
the calculation associated with the current subproblem. Using
this approach, the S-PCT algorithm can be divided into eight
steps as shown below.

S-PCT algorithm

Inputs: N-Dimensional (N-D) image cube f, number of
unique spectra p.

Outputs: 2-D image which contains a classification label for
each pixel f (x, y) in the original image.
1. Divide the original image cube f into K partitions such that

there is no overlapping among different partitions, where K

is the number of workers in the system. Send each parti-
tion, consisting of a set of pixel vectors, to a worker. Each
worker proceeds concurrently to form a unique spectral set
by calculating the spectral angle for all vector pairs as:

SAD
[
f(x, y), f(x′, y′)

]
= cos−1

(
f(x, y) · f(x′, y′)

‖f(x, y)‖ ‖f(x′, y′)‖
)

.

2. The K unique sets are sent back to the master and combined,
one pair at a time. Upon completion, there will be only one
unique set left with p unique pixel vectors.

3. Calculate the N-D mean vector m concurrently, where each
component is the average of the pixel values of each spectral
band of the unique set. This vector is formed once all the
processors finish their parts.

4. All the pixel vectors in the unique set are divided into K

parts and sent to K workers. Each worker then computes the
covariance component and forms a covariance sum.

5. Calculate the covariance matrix sequentially as the average
of all the matrices calculated in step 4.

6. Obtain a transformation matrix T by calculating and sorting
the eigenvectors of the covariance matrix according to their
corresponding eigenvalues, which provide a measure of their
variances. As a result, the spectral content is forced into the
front components. Since the degree of data dependency of
the calculation is high and its complexity is related to the
number of spectral bands rather than the image size, this step
is also done sequentially at the master.

7. Transform each pixel vector in the original hyperspectral
image independently using T · [

f (x, y) − m
]
. This step is

done in parallel, where all workers transform their respective
portions of data concurrently.

8. Finally, a parallel post-processing step is applied to perform
classification at a pixel level in the PCT-transformed space.
First, K partitions of a reduced, p-dimensional data cube
given by the first PCT components are sent to the work-
ers, along with the spatial locations of the p unique pixel
vectors resulting from step 2. Each worker then labels each
pixel in its corresponding partition with a class label given
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by the most spectrally similar unique pixel vector in the
PCT-reduced space, and sends back the result to the master,
which composes a final 2-D classification image.
It should be noted that step 8 was not included in the origi-

nal S-PCT algorithm, which only generates a color composite
using the first PCT bands for visual interpretation of the data,
but is included in our implementation to allow a comparison
with other parallel classification algorithms for hyperspectral
imagery.

2.2. Distributed ISODATA algorithm (D-ISODATA)

One of the main drawbacks of PCT-based techniques is that
they are based on the statistical significance of the spectra,
rather than the uniqueness of the spectra. As a result, small
objects and ground features (which may be crucial in certain
applications) would likely manifest themselves in the last prin-
cipal components, thus being discarded prior to classification.
In order to resolve this issue, the D-ISODATA algorithm [6]
was designed as the first parallel approach able to deal with the
entire high-dimensional volume directly, thereby preserving all
the spectral information in the data. Since the ISODATA clas-
sification procedure is regarded as the benchmark for all unsu-
pervised classification algorithms, it will be of great interest to
include its parallel implementation in our comparative assess-
ment. The algorithm uses the Euclidean distance as a similarity
measure to cluster data elements into different classes [13]. A
master–slave parallel implementation of this algorithm can be
summarized as follows.

D-ISODATA algorithm

Inputs: N -D image cube f, number of clusters p, convergence
threshold t .

Outputs: 2-D image which contains a classification label for
each pixel f (x, y) in the original image.
1. Divide the original image cube f into K equally sized blocks

such that there is no overlapping among different blocks.
Send each partition, consisting of a set of pixel vectors, to a
worker, along with a set of p randomly selected pixel vectors
assumed to be initial centroids.

2. Each worker labels each pixel f (x, y) in the corresponding
partition. Let us denote by nij the number of pixels belong-

ing to the j th cluster of the ith worker, and by f j
k (x, y) the

kth pixel of the j th cluster. Then, to minimize inter-processor
communication, each worker sends the number of pixels be-
longing to each cluster and the summation of feature vectors
of all pixels belonging to each cluster, that is,

Yij =
[ nij∑

k=1

f 1
k (x, y), . . . ,

nij∑
k=1

f p
k (x, y)

]
.

3. The master collects all the information provided by the work-
ers and combines it to obtain a new centroid for each cluster
j using cj =

(∑pj

i=1 Yij /
∑pj

i=1 Yij

∑pj

i=1 nij

)
, where pj is

the number of pixels in the cluster.

4. The master compares the current centroids and the new cen-
troids. If the difference between them is less than the conver-
gence threshold t , then convergence occurs and the master
informs all workers about the current status of convergence.
Otherwise, steps 2–4 are repeated until the convergence sta-
tus is true.

5. Following convergence, each worker i computes the summa-
tion of the Euclidean distance of all pixels within a cluster j

from its centroid cj . Each worker then sends this information
to the master, which combines it to obtain the deviation of
pixels within each cluster j . It should be noted that this in-
formation is only exchanged when convergence has occurred
(instead of doing so every time new centroids are calculated)
in order to minimize inter-processor communication.

6. The master now decides about split or merge of the resulting
clusters, based on parameters such as the intercluster dis-
tances (separation), the intracluster distances (compactness),
the ratio of standard deviations along different axes for each
cluster, and the number of pixels per cluster [6]. The above
procedure is repeated (following the same steps for the pre-
vious convergence) until no cluster is further eligible for split
and merge.

7. When the stopping criterion is satisfied, each worker sends
the label (cluster number) associated with each local pixel
to the master, which combines all the individual results and
forms the final 2-D image.
To conclude this section, we must emphasize that the two par-

allel algorithms above rely exclusively on the spectral informa-
tion of the data, without considering the spatial correlation. In
the following subsection, we describe a parallel algorithm that
combines spectral and spatial information in the original data
through the use of multi-channel morphological operations.

3. Parallel morphological hyperspectral imaging algorithm

Mathematical morphology [26] is a classic non-linear spatial
processing technique that provides a remarkable framework to
achieve the desired integration of spatial and spectral responses
in hyperspectral data analysis. In this section, we first briefly
describe a sequential morphological algorithm for endmember
extraction and mixed pixel classification. We will refer to the
algorithm hereinafter as Automated Morphological Endmem-
ber Extraction (AMEE). In order to render this algorithm com-
putationally, it will be embedded in a parallel implementation
(AMEEPAR).

3.1. Automated morphological endmember extraction

In order to define morphological operations in hyperspectral
imaging, we first impose an ordering relation in terms of spec-
tral purity in a set of neighboring pixel vectors lying within
a kernel neighborhood, known as structuring element (SE) in
mathematical morphology terminology. Let us consider a flat
SE designed by B. Then, the cumulative distance between one
particular pixel f (x, y) and all the pixel vectors in the spatial
neighborhood given by B (B-neighborhood) can be defined
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as follows:

DB

[
f(x, y)

] =
∑

s

∑
t

SAD
[
f(x, y),f(s, t)

]
,

∀ (s, t) ∈ Z2 (B) , (1)

where SAD is the spectral angle between two N-D vectors. As a
result, DB

[
f(x, y)

]
is given by the sum of SAD scores between

f (x, y) and every other pixel vector in the B-neighborhood.
Based on the cumulative distance above, the flat extended ero-
sion of f by B is based on the selection of the B-neighborhood
pixel vector that produces the minimum value for DB :

(f�B) (x, y) = {
f
(
x + s′, y + t ′

)
,
(
s′, t ′

)
= arg min(s,t)∈Z2(B)

{
DB

[
f (x + s, y + t)

]}}
,

(x, y) ∈ Z2, (2)

where the arg min operator selects the pixel vector is most
highly similar, spectrally, to all the other pixels in the B-
neighborhood. On other hand, the flat extended dilation of f by
B selects the B-neighborhood pixel vector that produces the
maximum value for DB :

(f ⊕ B) (x, y) = {
f
(
x − s′, y − t ′

)
,
(
s′, t ′

)
= arg max(s,t)∈Z2(B)

{
DB

[
f (x − s, y − t)

]}}
,

(x, y) ∈ Z2, (3)

where the arg max operator selects the pixel vector that is most
spectrally distinct to all the other pixels in the B-neighborhood.
With the above definitions in mind, we provide below a morpho-
logical approach to endmember extraction that focuses on the
analysis of spatial and spectral patterns simultaneously [18,17].
The full image data cube, with no previous dimensionality re-
duction or pre-processing, is input to the method. The algorithm
can be summarized by the following steps.

AMEE algorithm

Inputs: N-D image cube f, structuring element B, number of
iterations IMAX, number of endmembers p.

Output: 2-D image which contains a classification label for
each pixel f (x, y) in the original image.
1. Set i = 1 and initialize a morphological eccentricity index

score MEI (x, y) = 0 for each pixel.
2. Move B through all the pixels of f, defining a local spatial

search area around each f (x, y) and calculate the max-
imum and the minimum pixel at each B-neighborhood
using dilation and erosion, respectively. Update the MEI at
each pixel using the SAD between the maximum and the
minimum.

3. Set i = i + 1. If i = Imax then go to step 4. Otherwise,
replace f by its dilation using B , and go to step 2.

4. Select the set of p pixel vectors in f with higher associated
score in the resulting MEI image and form a unique spec-
tral set of q �p endmembers by calculating the spectral

angle for all vector pairs. Estimate the fractional abundance,
�i (x, y), of those signatures at f (x, y) using the linear
mixture model in [12].

5. Obtain a classification label for each pixel f (x, y) by as-
signing it to a class given by the endmember with the
highest fractional abundance score in that pixel. This is
done by comparing all estimated abundance fractions{
�1 (x, y) , �2 (x, y) , . . . , �q (x, y)

}
and finding the one

with the maximum value, say

�i∗ (x, y) , with i∗ = arg

{
max

1� i �q
{�i (x, y)}

}
.

The AMEE algorithm has been described in [17,19,20]
and we will not expand on its detailed implementation
here. One of the main features of the algorithm is regu-
larity in the computations. Its computational complexity is
O

(
pf × pB × IMAX × N

)
, where pf is the number of pixels

in f and pB is the number of pixels in B. This results in high
computational cost as shown in [17]. However, an adequate
parallelization strategy can greatly enhance the computational
performance of the algorithm, as shown in the following sub-
section.

3.2. Parallel implementation

In this subsection, we describe AMEEPAR, a parallel ver-
sion of the AMEE algorithm. We should point out that the pro-
posed parallel algorithm has been implemented as an extension
of classic mesh-based parallel techniques [21]. To reduce code
redundancy and enhance reusability, our goal was to reuse much
of the code for the sequential algorithm in the parallel imple-
mentation. For that purpose, we adopted a domain decompo-
sition approach which is similar to the one provided in a user
transparent manner by the software architecture introduced by
Seinstra et al. [25]. The window SE-based nature of the algo-
rithm introduces some border-handling and overlapping issues
that are carefully addressed in the algorithm description given
below. This subsection ends with an overview of the opera-
tions performed by the parallel algorithm, and a summary of its
main contributions over existing parallel hyperspectral imaging
approaches.

3.2.1. Partitioning scheme
Two types of parallelism can be exploited in hyperspectral

image analysis algorithms [16]: spatial-domain parallelism
and spectral-domain parallelism. Spatial-domain parallelism
subdivides the image into multiple blocks made up of entire
pixel vectors, and assigns one or more blocks to each process-
ing element (PE). On other hand, the spectral-domain parallel
paradigm subdivides the whole multi-band data into blocks
made up of contiguous spectral bands (sub-volumes), and as-
signs one or more sub-volumes to each PE. The latter approach
breaks the spectral identity of the data because each pixel
vector is split amongst several PEs. A spatial-domain decom-
position partitioner (SDP) was developed in our application.
As a result, no partitioning of data was accomplished in the
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Processing node #1

Processing node #2

Fig. 2. Example SE-based parallel morphological operation performed using two processing units.

spectral domain, thus preserving the entire spectral signature
of each hyperspectral image pixel. There are several reasons
that justify the above decision. First, the application of spatial-
domain partitioning is a natural approach for low level image
processing, as many operations require the same function to be
applied to a small set of elements around each data element
present in the image data structure. A second reason has to
do with the cost of inter-processor communication. In spectral-
domain parallelism, the SE-based calculations made for each
hyperspectral pixel need to originate from several PEs, and thus
require intensive inter-processor communication.

In the following, we will refer to each partial data struc-
ture produced by the proposed SDP module as a paralleliz-
able spatial/spectral partition (PSSP). This definition should be
distinguished from the one given in [25], where the distinct,
but related term “parallelizable pattern’’ is used to describe a
parameterized sequential algorithm—hence, a piece of code.
Thus, a PSSP can be defined as a hyperspectral data partition
that can be processed independently, without communication.
In other words, all data accesses in a PSSP must refer to the
data local to the processing unit executing the operation. In
order to achieve this goal, it may be necessary to handle bor-
der effects, and also to introduce an overlapping scatter at each
partition that will be included in our definition of PSSP as ex-
plained in the following subsection. For illustrative purposes, a
pictorial view of a PSSP-based parallel operation to calculate
MEI scores (using a square-shaped 3 × 3 SE and two parti-
tions) is given in Fig. 2. In the example, a final MEI image is
formed after combining the individual results produced at each
PE. The generalized description of a PSSP given above allows
us to maximize code reusability since each PSSP can be ana-
lyzed independently at each processing unit. At the same time,
communication overhead is minimized, while—for the given
parallelization granularity—the available parallelism is fully
exploited.

MEI

3x3 SE

PSSPj MEIj

Fig. 3. Border-handling strategy implemented on a PSSP when pixels lying
outside the input image domain are required for the SE-based morphological
operation.

3.2.2. Border-handling and overlapping function
An important issue in SE-based morphological image pro-

cessing operations is that accesses to pixels outside the spatial
domain of the input image are possible. This is particularly so
when the SE is centered on a pixel located in the border of
the original image. In sequential implementations, it is com-
mon practice to redirect such accesses according to a predefined
border handling strategy. In our application, a border handling
strategy is adopted when the location of the SE is such that
some of the pixel positions in the SE are outside the input image
domain (see Fig. 3). In this situation, only those pixels inside
the image domain are read for the MEI calculation. This strat-
egy is equivalent to the common mirroring technique used in
digital image processing applications, but slightly faster since
less pixels are involved in the SE calculation.

Apart from the border handling strategy above, a function
to update overlapping parts of partial data structures has been
implemented in order to avoid inter-processor communication
when the SE computation is split amongst several different
processing nodes (see Fig. 4). It should be noted that communi-
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Original image

SDP without

overlapping

PSSP1

Communication
overhead

PSSP2

Fig. 4. Communication overhead introduced when the SE-based operation is
split among processing nodes.

cation overhead in Fig. 4 prevents adequate exploitation of the
concept of PSSP in the previous subsection, since processing
of a PSSP cannot be entirely accomplished at one single PE
without communication. In order to eliminate such overhead,
the proposed SDP module has been designed to allow overlap-
ping between adjacent PSSPs, as shown in Fig. 5. A so-called
overlap border is added to each of the adjacent PSSPs to avoid
accesses outside their domain. The line is filled with pixel val-
ues obtained from neighboring nodes in the logical CPU grid.
It should be noted that Fig. 5 gives a simplified view, as some
steps of the operation are not shown. For example, depending
on how many adjacent PSSPs are involved in the parallel com-
putation of a kernel, it may be necessary to place an overlap
border around each PSSP to completely avoid inter-processor
communication. In this regard, it is important to emphasize that
the amount of redundant information introduced by the over-
lapping scatter depends on the size of B, the SE used in the
morphological operations. However, our implementation of the
AMEE algorithm always uses a constant 3×3-pixel SE through
the different iterations (see Section 3.2). Instead of increasing
the size of the SE to consider a larger spatial neighborhood,
we replace the original image cube f or, equivalently, the local
PSSP in parallel processing, by the resulting cube after apply-
ing a dilation operation using B (see step 3 of the AMEE al-
gorithm). This allows us to perform multi-scale analysis of the
data without increasing the overlap border size between sub-
sequent iterations [21]. As will be shown in experiments, the
fraction of redundant information introduced in the system by
a constant 3×3-pixel structuring element is insignificant when
compared with the total volume of information to be processed.
As a result, the computational time to process redundant infor-
mation is insignificant compared to the total processing time. A
more detailed discussion on the above issues will be presented
in Section 4.

3.2.3. Sequence of operations
The parallel implementation of the AMEE algorithm

(AMEEPAR) relies entirely on the spatial-domain decompo-

Original image

PSSP2

PSSP1

SDP with
overlapping Overlapping scatter

or a 3x3-pixel SE

Fig. 5. Overlapping function implemented on adjacent PSSPs to avoid in-
ter-processor communication.

sition scheme implemented by the SDP, which also acts as a
root node in charge of all I/O operations. The partitioner has
been implemented so that it scatters hyperspectral data struc-
tures without creating partial structures at the root. Therefore,
although we will refer to individual PSSPs in our description,
it is important to note that such structures are not buffered be-
fore transmission in order to avoid wasting memory resources
and compute power. The proposed parallel algorithm has been
implemented in the C++ programming language using calls
to message passing interface (MPI). We make use of MPI
derived datatypes to directly scatter hyperspectral data struc-
tures, which may be stored non-contiguously in memory, in a
single communication step [23]. We describe next the oper-
ations executed by the SDP module in the proposed parallel
implementation.

AMEEPAR algorithm

Inputs: N-D image cube f, SE B, number of iterations IMAX,
number of endmembers p.

Outputs: 2-D image which contains a classification label for
each pixel f (x, y) in the original image.
1. Scatter K partial data structures

{
PSSPj

}K

j=1 of the origi-
nal image f (with their corresponding overlap borders) by
indicating all partial data structure elements which are to be
accessed and sent to each of the K workers. A standard non-
overlapping scatter, followed by overlap communication be-
fore the filtering, is adopted to have all data available in the
overlap border areas (thus sending all border data before-
hand, but only once).

2. Using parameters B, IMAX and p, each worker executes the
sequential AMEE algorithm locally at each processor for
the corresponding PSSPj , obtaining a classification label for
each pixel in the PSSPj .

3. Each worker sends the label associated with each local pixel
to the master, which gathers all the individual results and
forms the final 2-D classification image.
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It should be noted that the parallel implementation strategy
adopted in the design of AMEEPAR is not new in itself. How-
ever, the application of this parallelization strategy to hyper-
spectral imaging opens new perspectives which have not been
yet explored in the design of efficient hyperspectral algorithms,
as revealed by our experimental assessment of techniques in
Section 4.

Before concluding this section, we summarize the main con-
tributions of the proposed parallel algorithm with regards to
conventional approaches in Section 2. Firstly, AMEEPAR is
the only parallel hyperspectral algorithm available that inte-
grates spatial and spectral information simultaneously, which
is essential to obtain accurate classification results as will be
demonstrated by experiments in this paper. Both the S-PCT
and D-ISODATA algorithms rely on spectral clustering of the
data alone. As opposed to the two algorithms above, which
treat all the pixel vectors in the data as pure signatures under
a full-pixel classification assumption, AMEEPAR was specif-
ically designed to optimize a morphological endmember ex-
traction procedure that allows characterization of mixed pixels
(which are predominant in hyperspectral imagery). Most im-
portantly, the AMEEPAR algorithm falls into the category of
“pleasingly parallel’’ problems, because there is no dependence
between the calculations made at each PSSPj and only minimal
communication is required for the entire calculation. Specifi-
cally, communication only takes place at the beginning (scatter)
and at the end (gather) of the process. Although conventional
algorithms also use a master–slave decomposition, they show a
much higher degree of data dependency, with several synchro-
nization steps as described in Section 2. As a result, it may not
always be possible to have the master and the slaves work si-
multaneously, in particular, when the workers wait for calcula-
tions where the complexity depends on the specific properties
of the image data (e.g., step 6 in the D-ISODATA algorithm).
On the contrary, all the computations in the AMEEPAR algo-
rithm are characterized by their regularity and locality within
each PSSPj . These properties are accomplished at the expense
of introducing a small fraction of redundant information which,
on the other hand, enhances code reusability and minimizes
inter-processor communication. A quantitative and comparative
performance analysis of the proposed algorithm with regards
to conventional parallel techniques is given in the following
section.

4. Parallel performance evaluation

This section provides an assessment of parallel hyperspec-
tral algorithms in providing significant performance gains with-
out loss of accuracy in the analysis of real high-dimensional
data. The section is organized as follows. First, we provide
an overview of the parallel computing architectures used for
evaluation purposes. Second, a quantitative assessment of the
proposed parallel approach, in comparison with other parallel
hyperspectral image analysis approaches, is provided. Third,
comparisons between doing border exchange between proces-
sors and not doing this (i.e., computing the border locally) are
also provided to objectify the impact of redundant information

introduced by the proposed parallel approach. Finally, other
important aspects of the parallel implementations are analyzed,
including impact of inter-processor communication, coordina-
tion and load balance. In all cases, speedup characteristics are
discussed in light of the accuracy of classification results, thus
providing a study of computational cost versus classification
performance that may help image analysts in selection of par-
allel hyperspectral algorithms for specific applications.

4.1. Parallel computing architectures

The parallel algorithms described in this work have been im-
plemented and tested on two different high-performance paral-
lel computers. The first one is the SGI Origin 2000 multicom-
puter located at European Center for Parallelism of Barcelona
(CEPBA). The system used is composed of 64 MIPS R10000
processors at 250 MHz (each one with 4 MB of cache) and
12 Gb of main memory, interconnected via 1.2 Gbps communi-
cation network. The theoretical peak performance of the system
is 32 Gflops. At the time of measurement, the nodes ran the
Irix 6.5 operating system, with single-kernel architecture. The
software was compiled using version 7.3.1.2 of the MIPSpro
compiler suite. The second parallel computing architecture used
in experiments is the Thunderhead Beowulf cluster at NASA’s
Goddard Space Flight Center (NASA/GSFC). From the early
nineties, the overwhelming computational needs of Earth and
space scientists have driven NASA/GSFC to be one of the lead-
ers in the application of low cost high-performance computing
[7]. Up until 1997, the commodity clusters at NASA/GSFC
were in essence engineering prototypes, that is, they were built
by those who were going to use them. In spring of 1997 the
Highly Parallel Virtual Environment (HIVE) project was started
to build a commodity cluster intended to be exploited by differ-
ent users in a wide range of scientific applications. The idea was
to have workstations distributed among many offices and a large
number of compute nodes (the compute core) concentrated in
one area. The workstations would share the compute core as
though it was a part of each. The HIVE was the first commod-
ity cluster to exceed a sustained 10 Gflops on an algorithm. The
Thunderhead system can be seen as an evolution of the HIVE
project. It is composed of 256 dual 2.4 GHz Intel Xeon nodes,
each with 1 Gb of memory and 80 Gb of main memory. The
total peak performance of the system is 2457.6 Gflops. Along
with the 512-processor computer core, Thunderhead has several
nodes attached to the core with 2 GHz optical fibre Myrinet.
The parallel algorithms tested in this work were run from one
of such nodes, called thunder1. The operating system used at
the time of experiments was Linux RedHat 8.0, and MPICH
was the message-passing library used.

4.2. Quantitative and comparative analysis of parallel
hyperspectral imaging algorithms

Various code performance tests were carried out on the paral-
lel computing systems above. Before empirically investigating
the performance of parallel hyperspectral imaging algorithms,
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Fig. 6. (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and forest features at Indian Pines test site, Indiana. (b) Ground-truth
map with thirty mutually-exclusive land-cover classes.

we briefly describe a real hyperspectral image scene that will
be used in experiments. The scene was collected by the AVIRIS
sensor, and is characterized by very high spectral resolution
(224 narrow spectral bands in the range 0.4–2.5 �m and mod-
erate spatial resolution 20-m pixels). It was gathered over the
Indian Pines test site in Northwestern Indiana, a mixed agricul-
tural/forested area, early in the growing season. The data set
represents a very challenging classification problem. The pri-
mary crops of the area, mainly corn and soyabeans, were very
early in their growth cycle with only about 5% canopy cover.
This fact makes most of the scene pixels highly mixed in nature.
Discriminating among the major crops under this circumstances
can be very difficult, a fact that has made this scene a universal
and extensively used benchmark to validate classification accu-
racy of hyperspectral imaging algorithms [13]. Fig. 6(a) shows
the spectral band at 587 nm of the original scene and Fig. 6(b)
shows the ground-truth map, in the form of a class assignment
for each labeled pixel with 30 mutually exclusive ground-truth
classes. Part of these data, including ground-truth, are available
online (from http://dynamo.ecn.purdue.edu/∼biehl/MultiSpec).
As a result, people interested in the proposed algorithms can
reproduce our results and conduct their experiments to exploit
various algorithms.

For perspective, Table 1 reports the overall classification ac-
curacy scores produced by the considered parallel algorithms

on the AVIRIS scene. It should be noted that a previous discus-
sion on classification accuracy (separately from parallel pro-
cessing) is important in order to perform a preliminary vali-
dation of the considered algorithms, where input parameters
were set as follows. For the D-ISODATA algorithm, a tolerance
threshold t = 0.05 was used after experimental results in [6].
For the AMEEPAR, a constant 3×3-pixel SE was adopted, and
different values for the maximum number of iterations were
tested. In all cases, we assumed that the maximum number
of clusters/endmembers to be detected by the algorithms was
set to p = 30 after calculating the intrinsic dimensionality of
the data using the Harsanyi–Farrand–Chang (HFC) method in
[4]. As shown by Table 1, the AMEEPAR algorithm produced
higher classification scores than those found by S-PCT and D-
ISODATA, in particular, when parameter IMAX was set to 7 it-
erations (an overall accuracy of more than 90%. was achieved).
This table provides an objective confirmation of our introspec-
tion: that the incorporation of spatial and spectral informa-
tion simultaneously can greatly enhance classification scores
achieved using the spectral information only.

To empirically investigate the scaling properties of the con-
sidered parallel algorithms, Fig. 7 plots the speedup factors as
a function of the number of available processors at both the
SGI Origin 2000 and Thunderhead computers. Results in Fig. 7
reveal that the performance drop from linear speedup in both

http://dynamo.ecn.purdue.edu/~biehl/MultiSpec
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Table 1
Overall classification accuracies (in percentage) achieved by the parallel algorithms

S-PCT D-ISODATA AMEEPAR

IMAX = 1 IMAX = 3 IMAX = 5 IMAX = 7

82.25 69.84 75.23 81.94 87.95 90.02
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Fig. 7. Parallel performance of hyperspectral algorithms on SGI Origin 2000 (a) and Thunderhead (b).

S-PCT and D-ISODATA algorithms increases significantly as
the number of processors increase. This is due to the data
dependencies and sequential calculations present in the algo-
rithms, i.e., steps 5 and 6 (covariance matrix and eigenvec-
tor calculations) in the S-PCT, and step 6 (split and merge)
in the D-ISODATA. It should be noted that the complexity of
the eigenvector calculations is related to the number of spectra
used in the problem, while the split and merge is highly de-
pendent on the inherent complexity of the input data. Since the
AVIRIS scene represents a large-sized problem dominated by
mixed pixels, there is sufficient computation to gain an impact
from a large number of processors in parallel computations.
However, the complexity of sequential steps seems to domi-
nate that of parallel computations when the number of proces-
sors is high (in many cases, parallel computations cannot start
until sequential calculations are completed). As a result, the
performance gain achieved by both S-PCT and D-ISODATA
begins to drop off significantly as the number of processors
increase.

On the other hand, although the proposed AMEEPAR algo-
rithm introduces redundant calculations that may slow down
the computation, we can observe in Fig. 7 that the measured
speedups tend to be higher for large values of IMAX, a fact
that reveals that the proposed scheme scales better as the size
of the problem increases. As a result, the dominant issue in
AMEEPAR is problem size, which makes the algorithm very
appealing for high-dimensional imaging applications. Results
in Fig. 7 reveal that the algorithm obtains good scalability in
both the SGI Origin 2000 and Thunderhead parallel computers.
For a maximum number of 7 iterations, the algorithm achieved a
speedup of 7.62 for 8 processors in the SGI Origin 2000 system
(see Fig. 7(a)). On other hand, AMEEPAR performed within
10% of linear speedup using 64 processors (see Fig. 7(b)). Al-

though for a high number of processors graphs flatten out a
little, due to the relatively short execution times, they still out-
perform those found for the other tested algorithms. For illus-
trative purposes, Table 3 reports the algorithm processing times
in both the SGI Origin 2000 and Thunderhead. Interestingly,
the table shows that the utilization of a moderate number of
processors on Thunderhead allowed near real-time processing
of the AVIRIS scene—less than 4 minutes were required to
produce a classification map with over 90% accuracy using 64
processors.

In order to relate parallel performance to classification accu-
racy, we now compare results in Tables 1 and 2 to discuss the
cost of parallel computation in light of the overall classification
scores achieved by each algorithm. As shown by Table 2, pro-
cessing times obtained for both S-PCT and D-ISODATA gen-
erally prevented near real-time exploitation of the AVIRIS data
using a reduced number of processors. For instance, S-PCT re-
quired as many as 100 processors to classify the scene in less
than ten minutes, while D-ISODATA required 144 processors to
finish in about the same time. In both cases, classification scores
were only moderate as shown by Table 1. With 256 proces-
sors, S-PCT required about 4 min to complete the calculations,
while D-ISODATA required more than 6 min. On the contrary,
the utilization of 256 processors in the Thunderhead system al-
lowed AMEEPAR to obtain a better classification score in just
1 min, which is a good response time given the high dimen-
sionality and complexity of the data. To conclude this subsec-
tion, it is also interesting to compare the results produced by
the parallel algorithms on the two considered architectures. In
general, it was observed that the algorithms performed better
on Thunderhead, where moderately accurate results could be
accomplished in around 10 min using only 16 processors. As
reported in Table 2, running the parallel algorithms on the SGI



A. Plaza et al. / J. Parallel Distrib. Comput. 66 (2006) 345–358 355

Table 2
Execution times in seconds achieved by the parallel algorithms for different numbers of processors

Parallel computer # CPUs S-PCT D-ISODATA AMEEPAR

IMAX = 1 IMAX = 3 IMAX = 5 IMAX = 7

SGI Origin 2000 1 49781 60570 5867 8934 13567 19030
2 27656 33464 3278 4936 7454 10399
4 13867 16595 1639 2461 3677 5088
8 6885 8152 862 1285 1905 2497

Thunderhead 1 41239 49912 3867 6423 9456 13188
4 13521 21330 1427 2177 3031 4083

16 4314 5907 354 571 716 927
36 1759 2428 140 220 303 394
64 884 1299 73 118 168 226

100 572 865 48 77 109 148
144 392 630 33 54 77 105
196 314 444 26 41 58 79
256 265 386 21 33 47 63

Origin system always resulted in higher execution times than
those found in the commodity cluster for the same number of
processors (e.g., when 4 processors were used).

4.3. Quantifying the impact of redundant computations in the
parallel morphological algorithm

Although experiments in the previous subsection revealed
that the proposed algorithm can achieve significant speedups,
an important issue to fully understand the parallel properties
of the algorithm is to objectify the impact of using an overlap
border to reduce inter-processor communications and not us-
ing such strategy, but using a standard non-overlapping scatter
followed by overlap communication in the SE-based operation
for every pixel, as shown in Fig. 4. The exchange of border data
is performed in four steps as explained in [23], i.e., each node
first transmits a subset of its local partial data to the neighbor-
ing node on the right within a logical CPU grid organization.
After a node has received a full block of data, it transmits a
subset of its local partial data to the neighboring node on the
left (in both steps, non-contiguous blocks of data are involved).
Finally, the border data is exchanged in upward and downward
direction, in both cases involving contiguous data blocks only.

Table 3 shows the total time spent by AMEEPAR in commu-
nications and computations in the two considered implemen-
tations, for a case study of 7 algorithm iterations. It can be
seen that the cost of communications tends to dominate that of
computations as the number of processors increases. On other
hand, the table reveals that the increase in processing times
when the border is computed locally is not significant. This is
because the volume of computations involved in hyperspectral
imaging is very high. It should be noted that the relationship
between the number of iterations and the amount of redundant
information introduced by the overlap border is linear, because
the algorithm always uses a constant 3 × 3-pixel SE through-
out the different iterations. We have experimentally tested that

the fraction of redundant pixels that had to be introduced in
the parallel computations involving the entire AVIRIS scene in
one algorithm iteration was 0.35% of the size of the original
image (275 Mb). Subsequently, only a fraction of 2.45% of the
data was replicated for seven algorithm iterations. From results
in Table 3, we can conclude that communication times in the
proposed redundant computation-based implementation are al-
ways small compared to computation times in both parallel ar-
chitectures. As a result, the granularity of problem decomposi-
tion (defined as the ratio of computation to communication) is
much better when an overlap border is introduced. This result
is not surprising, especially in light of the proposed decom-
position technique, which aims at minimizing inter-processor
communication during morphological processing. We must also
note that communication overheads in Table 3 are very high, in
particular, for the SGI Origin 2000 experiments (even for the
“without border exchange’’ case). This is due to several rea-
sons, most notably, the large amount of data involved in each
overlap communication. Also, although we carefully optimized
our parallel code, it might still contain redundant operations
that could be avoided in future versions. Finally, we emphasize
that the execution of jobs on the SGI Origin 2000 facility is
based on a queue system.

Although we requested a time-window to run our experi-
ments in the Origin system, there is a possibility that other jobs
may have been active at the time of measurements, thus affect-
ing the measured communication times.

To conclude this subsection, Fig. 8 examines the scalabil-
ity of the implementation based on data communication be-
tween processors, using different numbers of algorithm itera-
tions. One can clearly see that, while the curves for the im-
plementation based on redundant computations were closer to
linear performance (see Fig. 7), the implementation based on
border data exchange did not scale as well. In particular, non-
linear changes in performance (which may be due to interrup-
tions in data transfers, packetization, etc.) were observed. This
seems to indicate that the proposed overlapping scatter-based
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Table 3
Computation/communication times in seconds achieved by AMEEPAR (with and without border exchange) for a case study of 7 algorithm iterations

Parallel computer # CPUs Without border exchange With border exchange

Computation Communication Computation Communication

SGI Origin 2000 2 10365 24 10112 215
4 5047 31 4924 233
8 2460 27 2399 251

Thunderhead 4 4074 9 3975 116
16 914 13 892 133
36 383 11 374 168
64 212 14 207 198

100 131 17 128 215
144 90 15 86 234
196 67 12 64 241
256 52 11 50 265
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Fig. 8. Parallel performance of a border exchange implementation on the SGI Origin 2000 (a) and Thunderhead (b).

implementation offers a more reliable solution in hyperspectral
imaging applications.

4.4. Study of load balance

To conclude our analytical study of parallel performance, we
evaluate the tested algorithms considering an important new
topic: the load balance. For that purpose, Table 4 shows the im-
balance scores [15] achieved by the different algorithms, where
the imbalance is defined as D = TMAX/TMIN, with TMAX and
TMIN, respectively, denoting the maxima and minima processor
run times. Therefore, perfect balance is achieved when D = 1.
In the table, we display the imbalance considering all proces-
sors, DAll, and also considering all processors but the root,
DMinus. It is clear from Table 4 that AMEEPAR provided almost
the same results for both DAll and DMinus. Most importantly,
the above remark seems to be true regardless of the number of
processors used in the computation and the number of iterations
executed by the algorithm. For the S-PCT and D-ISODATA,
however, load balance was much better when the root proces-
sor was not included. This means that the master node has high
load, which may be due to the sequential computations included
in both algorithms. Despite the fact that conventional hyper-
spectral imaging algorithms do not take into account the spatial

information explicitly into the computations (which has tradi-
tionally been perceived as an advantage for the development
of parallel implementations), the adopted PSSP-based parallel
framework can be considered as more “pleasingly parallel’’ for
hyperspectral imaging because it reduces sequential computa-
tions at the root node, and only involves minimal communica-
tion between the parallel tasks, namely, at the beginning and
ending of such tasks.

5. Conclusions and future work

The aim of this paper has been the examination of different
parallel strategies for hyperspectral image analysis on high per-
formance computers, with the purpose of evaluating the pos-
sibility of obtaining results in valid response times and with
adequate reliability for the remote sensing environment where
these techniques are intended to be applied. It has been shown
and proven that parallel computing at the massively parallelism
level, supported by message passing, provides a unique frame-
work to accomplish the above goals. For this purpose, com-
puting systems made up of arrays of commercial off-the-shelf
computing hardware are a cost-effective way of exploiting this
sort of parallelism in remote sensing applications. In partic-
ular, a redundant computation-based implementation (derived
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Table 4
Maxima and minima processor run times and load balancing rates for the parallel algorithms

Parallel computer # CPUs S-PCT D-ISODATA AMEEPAR

DAll DMinus DAll DMinus DAll DMinus

SGI Origin 2000 2 1.31 1.05 1.43 1.09 1.11 1.00
4 1.26 1.04 1.39 1.08 1.15 1.02
8 1.22 1.03 1.36 1.05 1.12 1.01

Thunderhead 4 1.47 1.08 1.74 1.13 1.15 1.04
16 1.35 1.05 1.62 1.08 1.10 1.02
36 1.32 1.05 1.57 1.10 1.09 1.04
64 1.30 1.04 1.42 1.04 1.11 1.03

100 1.23 1.03 1.39 1.07 1.07 1.01
144 1.24 1.04 1.28 1.05 1.10 1.02
196 1.21 1.04 1.31 1.07 1.05 1.03
256 1.19 1.03 1.27 1.06 1.04 1.01

as an extension of the classic mesh-based parallel processing
paradigm) allowed us to parallelize a morphological approach
for hyperspectral imaging that successfully integrates the spa-
tial and spectral information in the data. This implementation,
aimed at minimizing inter-processor communication and max-
imizing load balance, outperforms other parallel approaches
used for hyperspectral image classification. The proposed im-
plementation can be ported to any type of distributed memory
system, in particular, to a Beowulf cluster of PCs, an architec-
ture that has gained popularity in the last few years due to the
chance of building a “high performance system’’ at a reason-
able cost. Experimental results in this paper suggest that the
parallel morphological algorithm provides adequate results in
both the quality of the solutions and the time to obtain them, in
particular, when it is implemented on a Beowulf cluster. Fur-
ther, the proposed PSSP-based parallel framework offers an
unprecedented opportunity to explore methodologies in other
fields (e.g., data mining) that previously looked to be too com-
putationally intensive for practical applications due to the im-
mense files common to remote sensing problems. Combining
this readily available computational power with the new sensor
instruments may introduce major changes in the systems cur-
rently used by NASA and other agencies for exploiting Earth
and planetary remotely sensed data. As future work, we plan to
implement parallel hyperspectral imaging algorithms on other
high-performance parallel computing architectures, such as the
Medusa Beowulf cluster at NASA/GSFC or the Bull NovaScale
5160 multicomputer at CEPBA. We are also working toward
field programmable gate array (FPGA)-based implementations,
which may allow us to fully accomplish the goal of near real-
time processing of hyperspectral image data, with potential ap-
plications in exploitation-based on-board hyperspectral image
compression and analysis.
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