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Abstract. Hyperspectral imaging is a new technique in remote sensing that 
generates hundreds of images corresponding to different wavelength channels 
for the same area on the surface of the Earth. Most available techniques for hy-
perspectral image classification focus on analyzing the data without incorporat-
ing the spatial information; i.e. the data is treated not as an image but as an un-
ordered listing of spectral measurements where the spatial coordinates can be 
shuffled arbitrarily without affecting the final analysis. Despite the growing in-
terest in the development of techniques for interpretation and classification of 
such high-dimensional imagery, only a few efforts devoted to the design of par-
allel implementations exist in the open literature. In this paper, we describe 
AMEEPAR, a parallel morphological algorithm that integrates the spatial and 
spectral information. The algorithm has been specifically optimized in this work 
for execution on heterogeneous networks of workstations. The parallel proper-
ties and classification accuracy of the proposed approach are evaluated using 
four networks of workstations distributed among different locations, and a mas-
sively parallel Beowulf cluster at NASA’s Goddard Space Flight Center. 

1   Introduction 

The rapid development of space and computer technologies has made possible to 
store a sheer volume of remotely sensed image data, collected from heterogeneous 
sources. In particular, NASA is continuously gathering imagery data with hyperspec-
tral Earth observing sensors such as Jet Propulsion Laboratory’s Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS)1, which covers the wavelength region 
from 0.4 to 2.5 µm using 224 spectral channels at nominal spectral resolution of 10 
nm (see Fig. 1). The incorporation of hyperspectral sensors on airborne/satellite plat-
forms is currently producing a nearly continual stream of high spatial and spectral 
resolution data, and this high data volume demands efficient and robust data analysis 
techniques. 

The underlying assumption governing most available techniques for hyperspectral 
analysis is that each pixel vector measures the response of multiple underlying mate-
rials at each site. A hyperspectral image (sometimes referred to as “image cube”) is 
often a combination of two situations: a few sites in a scene are pure macroscopic 
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materials, e.g., soil or water, but many other are mixtures of materials. For instance, 
the vegetation pixel in Fig. 1 may comprise a mixture of different types of vegetation, 
soil, atmospheric interferers, etc. Further, most available techniques only use the spec-
tral information available in the image data. Therefore, such techniques would yield 
the same result for a data cube, and for the same data cube where the spatial positions 
have been randomly permuted. By taking into account the complementary nature of 
spatial and spectral information in simultaneous fashion, it is possible to alleviate the 
problems related to each of them taken separately. 

 

Fig. 1. Hyperspectral imaging. Each pixel is given by a vector of values or “spectral signature”. 

While integrated spatial/spectral developments hold great promise, they also intro-
duce new processing challenges. In turn, many applications require a quick response 
(e.g., target detection for homeland defense/security purposes, risk/hazard preven-
tion/response including wild land fire tracking, biological threat detection, monitoring 
of oil spills and other types of chemical contamination). In recent years, several ef-
forts have been focused on the incorporation of high-performance computing (HPC) 
models in remote sensing applications. Unfortunately, only a few research efforts 
devoted to HPC-based hyperspectral imaging exist in the open literature (which is 
partly due to non-disclosure restrictions in some cases). This paper develops an effi-
cient parallel algorithm for spatial/spectral analysis in heterogeneous computing envi-
ronments2, which are expected to become a tool of choice in many on-going and 
planned remote sensing missions. The method is a parallel version of the Automated 
Morphological Endmember Extraction (AMEE) algorithm3, which integrates the 
spatial and spectral information in the data. The paper is organized as follows. In the 
following section, we introduce the AMEE algorithm and its parallel implementation. 
The parallel algorithm is then evaluated using four networks of workstations and a 
Beowulf cluster at NASA’s Goddard Space Flight Center. The paper concludes with 
some remarks. 
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2   Parallel Algorithm for Hyperspectral Image Classification 

The AMEEPAR algorithm is based on mathematical morphology3, a classic nonlinear 
spatial processing technique that provides a remarkable framework to achieve the 
desired integration of spatial and spectral responses. First, we provide an overview of 
the AMEE algorithm. Then, we provide a description of its parallel implementation.  

2.1   AMEE Algorithm 

The AMEE algorithm relies on two basic morphological operations: erosion and dila-
tion3. Let us denote by ( )yx,f  the pixel vector at spatial coordinates ( )yx,  of a hyper-
spectral scene., The erosion of f  by B (a so-called “structuring element”) consists of 
selecting the “minimum” pixel vector in the spatial neighborhood of ( )yx,f  defined 
by B. Similarly, the dilation of f  by B consists of selecting the “maximum” pixel 
vector (called endmember in hyperspectral analysis terminology). We provide below 
a version of AMEE which is tuned for unsupervised classification of hyperspectral 
data. 

 
AMEE algorithm 
Inputs: Image cube f , B , Number of iterations maxI , Number of endmembers p. 

Output: MEI image. 

1. Set 1=i  and initialize ( ) 0,MEI =yx  for each pixel. 
2. Move B  through all the pixels of f , defining a local spatial search area around 

each ( )yx,f , and calculate the maximum and the minimum pixel at each B-
neighborhood using morphological dilation and erosion, respectively, as follows: 
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3. Update ( )yx,MEI  at each pixel using ( ) ( ) ( )[ ]),(),,(SAD,MEI yxByxByx ⊕⊕=  f f , 
where SAD is the spectral angle distance3, i.e., the arc cosine of the vector dot 
product divided by the product of the norms. 

4. Set 1+= ii . If maxIi =  then go to step 4. Otherwise, set f = B⊕ f  and go to 2. 

5. Select the set of  p pixel vectors in f  with higher associated score in the result-
ing MEI image (called endmember pixels) and form a unique spectral set of  

pq ≤  pixels by calculating the SAD for all vector pairs. Estimate the fractional 
abundance, ( )yxi ,α , of those q signatures at ( )yx,f  using a linear mixture model. 

6. Obtain a classification label for each pixel ( )yx,f  by assigning it to a class given 
by the endmember with the highest fractional abundance score in that pixel. All 
estimated abundance fractions ( ) ( ) ( ){ }yxyxyx q , ..., ,, ,, 21 ααα  are compared, and the 

one with the maximum value is found, say:  
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2.2   AMEEPAR Algorithm 

A major requirement for efficient parallel algorithms on distributed memory systems 
is finding a data decomposition that minimizes the communication between the proc-
essors4. For that purpose, AMEEPAR adopts a spatial-domain partitioning approach, 
in which the same pixel vector is never split among several processors (in spectral-
domain parallel, the structuring element-based calculations made for each hyperspec-
tral pixel need to originate from several processing elements, and thus require inten-
sive inter-processor communication). A second important issue in the design of the 
AMEEPAR is that redundant information (overlap borders) are added to local parti-
tions to avoid accesses outside the partition domain when the structuring element 
computation requires pixel vectors from other partitions5.  

The algorithm has been implemented in the C++ programming language using 
calls to message passing interface (MPI). It uses a master-slave paradigm in which the 
master scatters hyperspectral data without creating partial data structures at the root. 
For that purpose, we make use of MPI derived datatypes to directly scatter data struc-
tures, which may be stored non-contiguously in memory, in a single communication 
step. In order to slice the available data into chunks, there is a need to balance the 
workloads of k heterogeneous resources so that each processor iP  will accomplish a 

share iα  of the total workload, with 0i ≥α  for ki ≤≤1  and ∑ =
=

k

i
i

1
1α .  

 
AMEEPAR algorithm 
Inputs: Image cube f , B , Number of iterations maxI , Number of endmembers p. 

Output: MEI image. 

1. Obtain necessary information about the heterogeneous system, including the 

number of available processors, k, each processor’s identification number, { }k
iiP 1= , 

and processor cycle-times, { }k
iiw 1= . 

2. Determine the total volume of information, R, that needs to be replicated from the 
original data volume, V, in accordance with the adopted border overlap strategy.  

3. Let the total workload to be handled by the algorithm be given by RVW += . 

4. Set 
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1
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and set 1+= kk αα . 

6. Use the resulting { }k
ii 1=α  to obtain a set of k spatial-domain heterogeneous parti-

tions of f , and send its corresponding partition to each processor along with B.  
7. Broadcast B , maxI , p to heterogeneous processors, and execute AMEE in parallel. 

8. Collect all the individual classification results provided by each processor iP , 

and merge them together to form a final classification image. 
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It should be noted that a homogeneous version of the AMEEPAR algorithm above 
(called HomoAMEEPAR)5 can be obtained by rewriting step 4 as iwpi =α  for all 

{ }ki  ,,...1∈ , where iw  is a constant communication speed between each processor pair. 

3   Experimental Results 

Before describing our results, we introduce the parallel computing architectures used 
in experiments, which include four networks of workstations and a Beowulf cluster: 

1. Fully heterogeneous network. Consists of 16 different SGI, Solaris and Linux 
workstations, and four communication segments. Table 1 shows the cycle-times 
of the processors. The communication network consists of four communication 
segments interconnected by three slower communication links with capacities 

( ) 05.291,2 =c , ( ) 31.482,3 =c , ( ) 14.583,4 =c  in milliseconds. Table 2 shows the ca-
pacity of all point-to-point communications, expressed as the time in milliseconds 
to transfer a one-megabit message between each pair ( )ji PP ,  in the network.  

2. Fully homogeneous network. Consists of 16 identical Linux workstations with 
processor cycle-time of 0131.0=w  seconds per megaflop, interconnected via a 
homogeneous communication network with capacity 64.26=c  milliseconds.  

3. Partially heterogeneous network. Formed by the set of 16 heterogeneous work-
stations in Table 1 but interconnected using the same homogeneous communica-
tion network with capacity 64.26=c  milliseconds. 

4. Partially homogeneous network. Formed by 16 identical Linux workstations with 
processor cycle-time of 0131.0=w  seconds per megaflop but interconnected us-
ing the heterogeneous communication network shown in Table 2. 

5. Thunderhead Beowulf cluster. Formed by 256 identical 2.4 GHz Intel Xeon 
nodes, each with 1 GB of memory and 80 GB of main memory (see 
http://newton.gsf.nasa.gov/thunderhead). 

Table 1. Processor cycle-times (in seconds per megaflop) for the heterogeneous processors 

P1
 P2

 P3
 P4

 P5
 P6

 P7
 P8

 P9
 P10 P11 P12 P13 P14

 P15
 P16

 

.005 .010 .020 .007 .010 .007 .007 .010 .007 .045 .013 .013 .013 .013 .013 .013 

According to a recent study2, the four networks of workstations above can be con-
sidered equivalent since they satisfy the following three principles: 1) they have the 
same number of processors; 2) the average processor speed is the same in all cases; 
and 3) the aggregate characteristics of the communication network are all the same. 
At this point, we reiterate that the configuration of the four networks above was care-
fully designed to make sure that the three principles above were satisfied, and the 
aggregate performance was the same. 

The AMEEPAR algorithm (and its homogeneous version) were applied to a hyper-
spectral scene collected by the AVIRIS sensor, which consists of 2048x614 pixels, 
224 spectral bands, and moderate spatial resolution (20-meter pixels). It was gathered 
over the Indian Pines region in Indiana, and represents a challenging classification 
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problem. Part of these 275 MB data set are available online, along with ground-truth, 
from http://dynamo.ecn.purdue.edu/~biehl/MultiSpec. In experiments, the structuring 
element size was fixed to 3x3B  to reduce the amount of redundant computations3. The 

number of iterations maxI  was increased from 1 to 5 (according to our implementa-

tion, increasing the value of maxI  is equivalent to considering a larger spatial context). 

Finally, we set the number of endmembers to be extracted, p, to 16 after estimating 
the intrinsic dimensionality of the data1.  

Table 2. Capacity of links (measured by the time in milliseconds to transfer a one-megabit 
message) for the heterogeneous communication network 

 P1
 P2

 P3
 P4

 P5
 P6

 P7
 P8

 P9
 P10 P11 P12 P13 P14

 P15
 P16

 

P1
 - 19.2 19.2 19.2 48.3 48.3 48.3 48.3 96.6 96.6 154 154 154 154 154 154 

P2
 19.2 - 19.2 19.2 48.3 48.3 48.3 48.3 96.6 96.6 154 154 154 154 154 154 

P3
 19.2 19.2 - 19.2 48.3 48.3 48.3 48.3 96.6 96.6 154 154 154 154 154 154 

P4
 19.2 19.2 19.2 - 48.3 48.3 48.3 48.3 96.6 96.6 154 154 154 154 154 154 

P5
 48.3 48.3 48.3 48.3 - 17.6 17.6 17.6 48.3 48.3 106 106 106 106 106 106 

P6
 48.3 48.3 48.3 48.3 17.6 - 17.6 17.6 48.3 48.3 106 106 106 106 106 106 

P7
 48.3 48.3 48.3 48.3 17.6 17.6 - 17.6 48.3 48.3 106 106 106 106 106 106 

P8
 48.3 48.3 48.3 48.3 17.6 17.6 17.6 - 48.3 48.3 106 106 106 106 106 106 

P9
 96.6 96.6 96.6 96.6 48.3 48.3 48.3 48.3 - 16.3 58.1 58.1 58.1 58.1 58.1 58.1 

P10
 96.6 96.6 96.6 96.6 48.3 48.3 48.3 48.3 16.3 - 58.1 58.1 58.1 58.1 58.1 58.1 

P11
 154 154 154 154 106 106 106 106 58.1 58.1 - 14.2 14.2 14.2 14.2 14.2 

P12
 154 154 154 154 106 106 106 106 58.1 58.1 14.2 - 14.2 14.2 14.2 14.2 

P13
 154 154 154 154 106 106 106 106 58.1 58.1 14.2 14.2 - 14.2 14.2 14.2 

P14
 154 154 154 154 106 106 106 106 58.1 58.1 14.2 14.2 14.2 - 14.2 14.2 

P15
 154 154 154 154 106 106 106 106 58.1 58.1 14.2 14.2 14.2 14.2 - 14.2 

P16
 154 154 154 154 106 106 106 106 58.1 58.1 14.2 14.2 14.2 14.2 14.2 - 

Table 3. Execution times and classification accuracies on the four networks of workstations 

 

Algorithm 
 

AMEEPAR 
 

 

HomoAMEEPAR 

maxI  1 
 

3 
 

5 
 

1 
 

3 
 

5 

Fully heterogeneous network  284 321 379 1456 1528 1589 
Fully homogeneous network 298 339 372 281 317 355 
Partially heterogeneous network 288 325 365 1223 1267 1301 
Partially homogeneous network 294 336 371 437 472 512 
Classification accuracy (%) 69.23 74.48 91.05 69.23 74.48 91.05 

Table 3 shows the classification accuracies and execution times obtained by both 
algorithms in the four considered networks of workstations. As expected, the execu-
tion times reported on Table 3 show that the heterogeneous algorithm was able to 
adapt much better to fully (or partially) heterogeneous environments than the homo-
geneous version, which only performed satisfactorily on the fully homogeneous net-
work. One can see that AMEEPAR was several times faster than its homogeneous 
counterpart in the fully heterogeneous network, and also in both the partially  
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homogeneous and the partially heterogeneous networks. On the other hand, the Ho-
moAMEEPAR algorithm only slightly outperformed its heterogeneous counterpart in 
the fully homogeneous network. Table 3 also reveals that the performance of the 
heterogeneous algorithm on the fully heterogeneous network was almost the same as 
that evidenced by the homogeneous algorithm on the fully homogeneous network. 
This reveals that the heterogeneous algorithm was very close to the optimal heteroge-
neous modification of the basic homogeneous one2. 

In order to explore load balance of the two algorithms above on the four networks 
of workstations, Table 4 shows the imbalance scores achieved by the different algo-
rithms (implemented with maxI  set to 5 iterations). The imbalance is defined as 

minmax RRD /= , where maxR  and minR  are the maxima and minima processor run 

times, respectively. Therefore, perfect balance is achieved when 1=D . In the table, 
we report the imbalance considering all processors, AllD , and also considering all 

processors but the root, MinusD . In all cases, load balance was similar when the root 

processor was not included, which means that the master node does not have high 
computation load. It is also clear from Table 4 that the homogeneous algorithm exe-
cuted on the heterogeneous network provided the highest values of AllD  and MinusD  

(and hence the highest imbalance), while the heterogeneous algorithm always resulted 
in values of AllD  and MinusD  which were closer to 1, regardless of the platform where 

it was run. 

Table 4. Load balancing rates on the four networks of workstations 

 

Algorithm 
 

AMEEPAR 
 

HomoAMEEPAR 
 

 

Imbalance AllD  MinusD  AllD  MinusD  

Fully heterogeneous network  1.09 1.02 1.51 1.47 
Fully homogeneous network 1.16 1.07 1.08 1.02 
Partially heterogeneous network 1.11 1.03 1.44 1.41 
Partially homogeneous network 1.13 1.05 1.33 1.26 

 
Fig. 2. Scalability of AMEEPAR and HomoAMEEPAR on the Thunderhead Beowulf cluster 

Finally, and with the ultimate goal of exploring issues of scalability and portability 
of heterogeneous algorithms to existing massively parallel computing platforms (which 
are mainly homogeneous in nature), we have also compared the performance of the 
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two algorithms on the Thunderhead Beowulf cluster. Fig. 2 shows the speedups 
achieved by AMEEPAR (and its homogeneous version) over a single-processor run of 
the sequential AMEE algorithm on Thunderhead, all of them implemented with maxI  

set to 5. As Fig. 2 shows, the scalability of AMEEPAR was similar to that achieved by 
its homogeneous prototype on the Beowulf cluster. Although AMEEPAR introduces 
redundant calculations, which are expected to slow down the computation a priori, the 
measured speedups tend to be higher for large structuring element sizes, a fact that 
reveals that the proposed scheme scales better as the size of the problem increases. As 
a result, the dominant issue in AMEEPAR is problem size, which makes the algorithm 
particularly appealing for high-dimensional imaging applications. To conclude this 
section, we must also note that AMEEPAR was able to provide near real-time classifi-
cation performance in the Thunderhead cluster. The algorithm only required 8 seconds 
to produce a result using 256 processors, and 30 seconds with 64 processors. This is a 
relevant achievement, in particular, if we take into account that 1874 seconds were 
required to process the entire data set using a single Thunderhead processor.  

4   Conclusions 

This paper provided an investigation of a parallel morphological technique to extract 
relevant information from hyperspectral image data sets in heterogeneous computing 
environments. Experimental results reveal that the proposed algorithm offers a simple, 
yet highly scalable and relatively platform-independent solution in the context of hy-
perspectral image classification applications. Although many available approaches do 
not take into account the spatial information explicitly (a fact that has been perceived 
as an advantage for the development of parallel implementations), experimental results 
in this paper suggest that spatial/spectral classification approaches may indeed be tuned 
for “pleasingly parallel execution” due to the windowing nature of such algorithms, 
and also because they can effectively balance the load in heterogeneous systems. The 
proposed method seems ideally suitable for data mining applications, which previously 
looked too computationally intensive due to the immense data archives common to 
remote sensing problems. Combining the readily available computational power  
offered by heterogeneous platforms with the new sensor instruments may introduce 
major changes in the systems used for exploiting Earth and planetary data. 
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