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Abstract 

 
 Hyperspectral sensors represent the most advanced 
instruments currently available for remote sensing of the Earth.  
The high spatial and spectral resolution of the images supplied 
by systems like the Airborne Visible Infra-Red Imaging 
Spectrometer (AVIRIS), developed by NASA Jet Propulsion 
Laboratory, allows their exploitation in diverse applications, 
such as detection and control of wildland fires and hazardous 
agents in water and atmosphere, detection of military targets 
and management of natural resources.  Even though the above 
applications generally require a response in near real time, few 
solutions are currently available to provide fast and efficient 
processing of such high-dimensional image data sets.  This is 
mainly due to the extremely high volume of data collected by 
hyperspectral sensors, which often limits their exploitation in 
analysis scenarios where the spatial and temporal requirements 
are very high.  In this paper, we describe new parallel 
processing methodologies for hyperspectral image processing, 
based on neural architectures and morphological concepts.  
The computational performance of the proposed methods is 
demonstrated using real analysis scenarios based on the 
exploitation of AVIRIS data using two parallel computer 
systems, an SGI Origin 2000 multicomputer located at the 
Barcelona Supercomputing Center (BSC), and the 
Thunderhead Beowulf cluster at NASA’s Goddard Space 
Flight Center (NASA/GSFC). 
 Key Words:  Hyperspectral analysis, spectral classification, 
parallel computing, clusters of computers. 
 

1 Introduction 
 
 The development of advanced instruments for remote 
observation of the Earth has created a growing interest in the 
design of efficient techniques for the interpretation of the 
images provided by these sensors.  In particular, hyperspectral 
sensors represent the most advanced generation of remote 
sensing instruments for Earth observation and planetary 
exploration, and are characterized by their high resolution in 
both spatial and spectral domains [3].  For instance, the 
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Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS), 
developed by NASA Jet Propulsion Laboratory [5] covers the 
range of wavelengths from 0.4 to 2.5 µm using 224 spectral 
channels, with a spatial resolution of 20 meters per pixel and a 
nominal spectral resolution of 10 nm.  As shown by Figure 1, 
the analytic capability of AVIRIS allows for the collection of a 
detailed spectral signature for each pixel in the image, where 
each spectral signature comprises a set of reflectance values 
measured by the sensor at different wavelengths.  Such 
fingerprints can be used to accurately characterize the 
composition of each site in the scene.  The exploitation of the 
data sets provided by this emerging type of sensors has been 
quite notorious in the recent years, especially since their 
incorporation to spatial satellite type platforms like NASA’s 
Earth Observing (EO-1) or European Space Agency’s 
ENVISAT, which offer almost global covering of the planet. 

Despite the significant technological evolution of 
hyperspectral instruments, the developments in techniques for 
analysis of the data provided by these sensors have not been so 
notorious.  In particular, the design of analysis techniques able 
to naturally integrate both the spatial and the spectral 
information contained in the data is still a challenge for the 
scientific community [15].  Many studies reveal that is it 
indeed possible to obtain thematic maps where each pixel is 
labeled as belonging to a single land-cover class by taking 
advantage of the high spectral resolution provided by 
hyperspectral sensors.  However, it should be noted that the 
spatial resolution of hyperspectral sensors is usually in the 
order of several meters (e.g., 20-meter pixels for the AVIRIS 
instrument).  As a result, pure pixel-based classification 
techniques may suffer from sub-pixel estimation errors.  For 
demonstration purposes, we can use the following toy 
example:  let us assume that a low resolution pixel, made up of 
a mixture of water and sand, is classified as either water or 
sand.  In this scenario, the estimation error introduced by such 
a pure pixel-based (hard) classification approach could be as 
high as 50 percent depending on the dominant sub-pixel 
constituent.  In order to overcome this limitation, a current 
trend in hyperspectral analysis is to resort to mixed pixel (soft) 
classification techniques, where a single pixel may be 
classified into several pure classes with different land-cover 
proportions.  
 In recent work, morphological approaches have been 
successfully applied to mixed pixel decomposition in  
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Figure 1:  The concept of hyperspectral imaging 
 

hyperspectral imaging.  One of such approaches has been the 
Automated Morphological Endmember Extraction algorithm 
(AMEE) method, which automatically extracts a set of pure 
spectral signatures corresponding to non-contaminated 
macroscopic components such as water, soil, vegetation, etc.  
These components, often called spectral “endmembers” in 
hyperspectral analysis terminology, can be used to “unmix” a 
given pixel by expressing its associated spectrum as a 
linear/nonlinear combination of pure components.  In some 
cases, spectral endmembers are ,also suitable to be used as 
input information for other applications.  For instance, there 
are many situations where a detailed knowledge of image 
endmembers is not enough to extract a detailed land-cover 
classification map.  In this context, artificial neural networks 
(ANNs) have demonstrated to be a powerful tool for 
hyperspectral imaging because the information provided by 
ANNs can not only be used to provide a hard classification, 
but also to obtain a soft classification, e.g., by taking into 
account the degree of membership (or similarity) of a certain 
input pattern (pixel vector) to a certain output class 
(endmember).  In the field of ANN-based hyperspectral 
imaging, self-organizing maps (SOMs) have been recognized 
as a very powerful tool to perform both hard and soft 
classification.  This model is based on an unsupervised 
learning strategy that does not require any previous test 
samples [8, 9].  Again, one of the main restrictions of SOM-
based analysis is the computation time involved. 
 While integrated spatial/spectral developments hold great 
promise for Earth science image analysis, they create new 
processing challenges.  In particular, the price paid for the 
wealth spatial and spectral information available from 
hyperspectral sensors is the enormous amounts of data that 
they generate.  In addition, analysis techniques in Earth 
observation studies are often computationally tedious, and 
require lengthy durations to calculate desired quantities.  
Several applications exist, however, where having the desired 
information calculated in near real-time is highly desirable.  
For instance, detection and/or tracking of natural disasters such 
as forest fires, oil spills, and other types of chemical 
contamination demands timely processing output. 

It is worth noting that, although parallel computing 

techniques have been widely used in general-purpose image 
processing applications [14], the use of large-scale computing 
facilities in hyperspectral imaging has been traditionally 
limited to a few institutions only.  However, nowadays it is 
possible to design low cost “commodity” high-performance 
systems by resorting to personal computers or workstations, 
connected through high performance communications 
networks.  In particular, Beowulf clusters were originally 
conceived at NASA’s Goddard Space Flight Center 
(NASA/GSFC) to create a cost-effective parallel computing 
system to satisfy specific computational requirements for 
applications such as those present in the Earth and space 
sciences community [10]. 

In this paper, we develop a new parallel 
morphologyical/neural approach for hyperspectral image 
classification, and specifically discuss implementation aspects 
using several commodity cluster-based architectures.  
Although several parallel algorithms for remote sensing image 
analysis already exist in the open literature [1, 2, 4, 6, 7, 16], 
our parallel algorithm is one of the few available methods that 
considers both the spatial and the spectral information in a 
natural way.  It relies on domain decomposition techniques 
aimed at minimizing inter-processor communication and 
maximizing load balance.  The remainder of the paper is 
organized as follows.  Section 2 describes the fundamentals of 
the proposed methodology, which rely on multi-channel 
mathematical morphology and ANNs.  Section 3 provides a 
detailed description of the parallel implementation, which is 
based on C++ and the MPI message passing library.  Section 4 
conducts a detailed study of the computational performance of 
the parallel implementation using two parallel computers:  an 
SGI Origin 2000 located at Barcelona Supercomputer Center 
(BSC) and the Thunderhead massively parallel supercomputer 
at NASA’s Goddard Space Flight Center (NASA/GSFC).  The 
paper concludes with some remarks and hints at plausible 
future research. 
 

2 Methodology 
 
 The proposed methods for hyperspectral analysis can be 
included in the category of spectral unmixing and 
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classification approaches, respectively [11].  In the following 
subsection we provide a detailed description of the (soft) 
classification problem of spectral mixing, and then introduce a 
set of morphological operations oriented to solve this problem 
using and endmember extraction-based approach.  The section 
concludes with the description a (hard) SOM-based 
classification technique which takes advantage of 
morphological endmember extraction to provide accurate class 
labels.  The latter approach, although subject to potential 
inaccuracies at a sub-pixel level, is particularly useful for the 
purpose of developing thematic maps in land-cover and land-
use applications.  The two types of algorithms addressed above 
will be parallelized in the following section. 
 
2.1 Spectral Unmixing 
 
 Mixed pixels are predominant in hyperspectral images and 
result as mixtures of more than one distinct substance.  Mixed 
pixels exist for one of two reasons.  Firstly, if the spatial 
resolution of the sensor is not high enough to separate different 
materials, these can jointly occupy a single pixel, and the 
resulting spectral measurement will be a composite of the 
individual spectra.  Secondly, mixed pixels can also result 
when distinct materials are combined into a homogeneous 
mixture.  This circumstance occurs independent of the spatial 
resolution of the sensor.  A hyperspectral image is often a 
combination of the two situations, where a few sites in a scene 
are pure materials, but many other are mixtures of materials.  
Spectral unmixing is a commonly used procedure in which the 
measured spectrum of a mixed pixel is decomposed into a 
collection of spectrally pure constituent spectra, or 
endmembers [12, 13], and a set of correspondent fractions, or 
abundances, that indicate the proportion of each endmember in 
the pixel.  

Identification of image endmembers is a crucial objective in 
hyperspectral image analysis applications.  It is important to 
emphasize that most available techniques for endmember 
selection focus on analyzing the data without incorporating 
information on the spatially adjacent data; i.e., the 
hyperspectral data is treated not as an image but as an 
unordered listing of spectral measurements where the spatial 
coordinates can be shuffled arbitrarily without affecting the 
analysis.  However, one of the distinguishing properties of 
hyperspectral data, as collected by available imaging 
spectrometers, is the multivariate information coupled with a 
two-dimensional (2-D) pictorial representation amenable to 
image interpretation.  Subsequently, there is a need to 
incorporate the image representation of the data in the 
development of automated techniques for endmember selection 
and hyperspectral data exploitation.  The main contribution of 
the endmember extraction algorithm described in this work is 
simultaneous consideration of both spatial and spectral 
information.  By taking into account the complementary nature 
of spatial and spectral information in simultaneous fashion, it 
is possible to alleviate the problems related to each of them 
taken separately.  The proposed method is based on 
mathematical morphology [13], a classic image analysis 
technique that is generalized to the case of multidimensional 

data in the following subsection. 
 

2.2 Morphological Endmember Extraction Algorithm 
 
 Two basic operations articulate classic MM theory: erosion 
and dilation.  They are respectively based on the selection of 
the maximum and minimum value of a neighborhood or spatial 
region around each pixel of the image, where the shape and 
size of the considered region are determined by the spatial 
properties of a neighborhood function called structuring 
element (SE).  The main challenge in order to extend these 
operations to the case of hyperspectral image data is the lack of 
an ordering relation between the pixels of the image, which 
can be seen as L-dimensional (L-D) vectors where L is the 
number of spectral channels (see Figure 1).  Following a usual 
notation, let f  be an image defined on an L-D space and let 
B  a so-called SE.  We impose an ordering relation in terms of 
spectral purity in the set of pixel vectors lying within a flat SE, 
designed by B , by defining a cumulative distance between 
one particular pixel ( )yx,f , where ( )yx,f  denotes an L-D 
vector at discrete spatial coordinates ( ) 2y,x Z∈ , and all the 
pixel vectors in the spatial neighborhood given by B  ( B -
neighborhood) as follows: 
 

[ ] [ ]∑∑=
s t

t)(s, ),,(Dist),( fff yxyxDB  

  ( ) ( )BZts 2, ∈∀ , (1)  
 
where Dist is a linear point-wise distance measure between 
two L-D vectors.  As a result, [ ])y,x(D fB  is given by the 
sum of Dist scores between ( )yx,f  and every pixel vector in 
the B -neighborhood.  Based on the cumulative distance 
above, the extended erosion of f  by B  is based on the 
selection of the B -neighborhood pixel vector that produces 
the minimum value for BD :  
 
( ) ( ) ( ){ ',' ,t'y,s'x),( tsyxB ++=Θ f f ,   

( ) ( ) ( )[ ]{ }}tys,xminarg 2, ++=
∈

fBBZts D ( ) 2, Zyx ∈ , 

  (2) 
 
where the arg min operator selects the pixel vector is most 
highly similar, according to the linear distance Dist, to all the 
other pixels in the in the B -neighborhood.  On other hand, the 
extended dilation of f  by B  selects the B -neighborhood 
pixel vector that produces the maximum value for BD : 
 
( ) ( ) ( ){ ',' ,t'y,s'x),( tsyxB −−=⊕ f f , 

( ) ( ) ( )[ ]{ }}tys,xmaxarg 2, −−=
∈

fBBZts D ( ) 2, Zyx ∈ , 

   (3) 
 
where the arg max operator selects the pixel vector that is 
most highly different, according to Dist, to all the other pixels 
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in the B -neighborhood.  In this work, our choice for Dist is a 
widely used distance metric in remote sensing applications: the 
spectral angle distance (SAD) [3].  If we consider our 
definition of an endmember as a spectrally pure element that 
can be used to describe mixed pixels in the image, it is clear 
that morphological operations exhibit a great potential in the 
task of detecting endmembers using the spatial and spectral 
information contained in the original image.  
 Based on the morphological concepts introduced above, we 
develop a methodology for endmember extraction which 
incorporates both spatial and spectral information.  The 
proposed method is called Automated Endmember Extraction 
Algorithm (AMEE), and allows for soft classification of 
hyperspectral images in fully automated fashion.  The algo-
rithm consists of a sequence of steps which are outlined below.  

 
AMEE algorithm 
 
Inputs:  N-D image f , Structuring element B , Number of 
iterations MAXI , Number of endmembers p. 

Outputs:  Set of endmembers { }p
j 1j =

e ; Set of fractional 

abundances ( ){ }p
ii yx 1, =α  for each pixel ( )yx,f . 

 
1) Set 1i =  and initialize a morphological eccentricity 

index ( ) 0, =yxMEI  for each pixel ( )yx,f . 
2) Move B  through all the pixels of f , defining a local 

spatial search area around each ( )yx,f  and calculate 
the maximum pixel ( )( )yxB ,⊕f  and the minimum 
pixel ( )( )yxB ,Θ f  at each B -neighborhood.  Update 
the resulting MEI score at each pixel selected as a local 
maximum, ( ) ( )( )yxByx ,',' ⊕= ff , using the 
following expression: 

 
 ( )( ) ( )( )[ ]yxByxBSADyxMEIyxMEI , ,,)','()','( Θ⊕+=  ff  
   (4) 
 

1) Set 1+= ii .  If maxIi =  then go to step 4.  Otherwise, 
set B⊕= ff  and go to step 2. 

2) Select the set of  p  pixels { }p
j 1j =

e  in f  with higher 

score in the resulting MEI image.  These pixels form 
the final endmember set. 

 
Once a final set of endmembers has been extracted, these 

endmembers are generally coupled with a linear or nonlinear 
model to expressed each mixed pixel as a combination of 
endmembers.  In this work, and for illustrative purposes, we 
resort to a simple linear mixture model.  There are two main 
reasons for our choice of this model:  i) it is the most 
standardized approach in the remote sensing community, and 
ii) it is very easy to implement, resulting in an “embarrassingly 
parallel” implementation which can work on a pixel-by-pixel 
basis, thus allowing a simple distribution of the workload 

among a set of parallel processors.  The linear model is 
extensively described in the literature, but the specific 
implementation used in this paper is described in detail in [3]. 

 
2.3 Self-Organizing Map (SOM) 
 
 In this section, we describe a SOM neural architecture which 
can use a set of input endmembers to produce a thematic map 
with a classification label for each pixel.  The neural model 
proposed in this work consists of N input neurons and M 
output neurons, where N is the dimensionality of the input 
vectors and M is the number of endmembers provided by 
AMEE algorithm.  The network consists of two layers, with 
feedforward connections from the input to the output layer and 
a set of associated weights arranged in a matrix that will be 
denoted hereinafter as MxNW .  The network procedure is 
given by two different stages: training and clustering.  In the 
former step, different training patterns are presented to the 
network so that feedforward connections change to adapt to the 
information provided by training data.  In the clustering step, 
feedforward connections project input patterns (i.e., pixel 
vectors to be classified) onto the feature space and the 
Euclidean distance is used to identify a winning neuron.  The 
entire procedure can be summarized by the following steps: 
 

1) Weight initialization.  Normalized random values are 
used to initialize the weigth vectors: ( )0

iw , with 
M , 2, ,1 ⋅⋅⋅=i . 

2) Training.  In this work, this step is accomplished by 
using AMEE-generated endmember signatures. 

3) Clustering.  For each input pattern x  (i.e., a spectral 
endmember), a winning neuron *i  is obtained at time t  
by using an Euclidean distance-based similarity criterion, 
i.e., [ ] 2

1
min jwxx −=
≤≤ Mj

*i . 

4) Weight adjustment.  The winning neuron (and those 
neurons in the neighborhood of the winning one) adapt 
their weights using the following expression, where α(t) 
and σ(t) are the learning and neighbouring functions, 
respectively.  It should be noted that the weigths 
associated to *i  are modified proportionally to the 
learning rate. 

 

  ( ) ( ) ( )∑
=

+ ⋅σ⋅α+=
max

0

)()(1)( -''
t

tt'

't
i

t
i

t
i tt wxww  (4) 

 
5) Stopping rule.  The SOM algorithm terminates as soon as 

a pre-determined number of iterations, maxt , has been 
accomplished. 

 
From the above description, it is clear that the SOM algorithm 
is sequential in nature.  As a result, parallelization strategies 
for this algorithm must cope with data dependencies.  In the 
following section, we discuss parallelization strategies for both 
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the AMEE and SOM algorithms. 
 

3 Parallel Implementation 
 
 The combined characteristics of the proposed 
morphological/neural algorithm described in the previous 
section introduces new considerations that need to be taken 
into account in order to exploit parallelism through well-
defined strategies.  In particular, two types of data parallelism 
can be exploited to optimize the proposed algorithm: spatial-
domain parallelism and spectral-domain parallelism.  Spatial-
domain parallelism subdivides the input image into multiple 
blocks made up of entire pixel vectors, and assigns one or 
more blocks to each processing element (PE).  On other hand, 
the spectral-domain parallel paradigm subdivides the whole 
multi-band data into blocks made up of contiguous spectral 
bands (sub-volumes), and assigns one or more sub-volumes to 
each PE.  The latter approach breaks the spectral identity of the 
data because each pixel vector is split amongst several PEs.  In 
the following, we provide a discussion on the two types of 
parallelism above and their impact on the individual steps 
(morphological/neural) of the proposed method. 
 
3.1 Parallelization of the Morphological Algorithm 
 
 In order to describe the partitioning scheme for the 
morphological operations described in Section 2, we have 
considered two different approaches to the problem: 
partitioning in the spatial domain and partitioning in the 
spectral domain.  The first option divides the hyperspectral 
image in multiple blocks, in a way that the pixels for each 
block preserve its entire spectral identity.  The second option 
divides the original image in blocks constituted by several 
bands, in a way that we can preserve the spatial identity for 
each band but all the pixels in each block lose their spectral 

identity.  In other words, if the partitioning scheme adopted 
were in the spatial domain, the information of a single pixel in 
the image would be scattered across several different 
processing units. 

If we take in account the fundamental characteristics of our 
method, which works with all of the spectral information 
associated to each pixel, the selection of a partitioning scheme 
in the spectral domain is critical and could substantially 
increase the costs of communication and/or coordination 
between processors [5].  Besides, the overhead introduced by 
the communication increases with the number of processors, 
thus introducing problem in the load balance accomplished by 
the designed algorithms [5].  On other hand, the spatial 
information is particularly relevant in the local neighborhood 
around each pixel [13].  This is a reason why a partitioning 
scheme in the spatial domain is able to preserve most of the 
information required for our morphological processing.  A 
final major point is that selection of a spatial partitioning 
scheme enhances load balance between different processors. 

At this point, we can introduce the concept of 
spatial/spectral parallelizable pattern (PEEP), which is defined 
as the maximum amount of information that the parallel 
system can process without the need for additional 
communication and/or coordination between processors [5].  
Such patterns are automatically generated by a partitioning 
module, as Figure 2 describes using two computing units.  In 
the example, the partition module divides the image into two 
PEEPs.  The values of the MEI index for two pixels of the 
original hyperspectral image are calculated in parallel by each 
of the processors, using a square-shaped SE of 3x3 pixels.  
Such values are then updated in a local 2-D image.  At the end 
of the process, the PM fuses the various local images obtaining 
a resulting 2-D image used as a baseline to extract a final set of 
endmembers. 
 An issue of major importance in the design of SE-based

 
 

 
 

Figure 2:  Concept of spatial/spectral parallelizable pattern (PEEP) and proposed partitioning scheme. 
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parallel image processing applications is the possibility to 
access pixels out of the spatial domain of the partition 
available in the processor.  This is normally managed by a 
determined border-handling strategy (BHS).  In our parallel 
implementation, two BHSs have been implemented, both of 
which are briefly addressed next: 

 
1) BHS relative to the pixels out of the domain of the 

original image.  This strategy is necessary in situations in 
which the SE is centered around a pixel located in the 
border of the input image.  In this case, the BHS adopted 
only uses the pixels of the SE which fall inside the image 
domain.  In our application, this strategy is similar to the 
mirroring technique commonly used in kernel-based 
image processing applications. 

2) BHS relative to the pixels out of the domain of the SSPP.  
This strategy is applied when the pixel located in a re-
mote processor is required in the calculation of the MEI 
index associated with another pixel in a given processor 
(see Figure 3).  To resolve this issue, we aim at minimiz-
ing the communication/coordination between processors. 

 
It should be noted that the BHS adopted in the latter situa-

tion is based on the replication of the information necessary to 
avoid border effects between different processors, as shown in 
Figure 3.  According to our preliminary experiments, the cost 
of processing the information resulting from the policy above 
is sensibly inferior to dealing with the overhead introduced by 
communication among different processors if no redundant 
information is introduced in the system. 
 Given the characteristics of the implementation proposed in 
Section 2, which relies on the utilization of an SE of 3x3 pixels 
iteratively, the number of redundant pixels R introduced in the 
processing of a hyperspectral image is given by 
 

2 2log log
2 2R 2 2 1 2 2 1

N N

F CI I
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= × − × + × − ×⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

, (5) 

 

where N is the number of processors, IF is the number of rows 
in the original image and IC is the number of columns in the 
original image.  For example, in order to process an AVIRIS 
image of 512x512 pixels using 16 processors, the total number 
of redundant pixels is ]1)2[(2512]1)2[(2 22 −×+×−×=R  

.6144512 =×   If we assume that each pixel has 224 spectral 
values, each of them coded using two bytes, the total amount if 
redundant information introduced in the system is 2,625 Mb 
(6144 × 224 × 2) which, compared with the total size of the 
original image in bytes (about 114 Mb), can be considered 
insignificant.  As noted above, the amount of redundant 
information is below 2.5 percent of the total information 
present in the original image.  It is important to point out that 
the amount of redundant information grows as the number of 
processors increases, a fact that introduces a limit to the 
performance of the parallel code which is directly related to the 
problem of having more redundant information than pixels to 
process inside a certain SE. 

 
3.2. Parallelization of the Neural Algorithm 
 
 A straightforward approach to parallelization of the neural 
algorithm is to simply replicate the whole neural network 
architecture, which is a feasible approach due to the random 
nature of the initial weights of the network.  However, this 
option results in the need for very complex rules of reduction, 
and integrity hazards.  Taking into account our previous 
studies [9] and considering the relatively small size of the 
training set, we can state that the overhead of the neural 
network is mainly located in the training process (in the form 
of Euclidean distance calculations and adjustment of weight 
factors).  This fact makes partitioning of the neural network 
(weight factors matrix) an appealing solution in order to reduce 
the processing load and time.  Again, two main alternatives 
can be adopted to carry out such partitioning:  (1) Division by 
input neurons (endmembers/training patterns); or (2) Division 
by output neurons (class prototypes).  The two options are 
graphically illustrated in Figure 4. 

 

       
 
Figure 3: Problem of accessing pixels out of the SSPP domain (left) and BHS relative to the pixels out of the PEEP domain (right). 
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Figure 4: Partitioning options for the considered neural 

algorithm 
 

It should be noted that, in the latter case, the parallelization 
strategy is very simple.  Quite opposite, when the former 
approach is adopted, there is a need to communicate both 
calculations and intermediate results among different 
processors.  This introduces an overhead in communications 
that may significantly slow down the algorithm: according to 
our preliminary experiments, this option could even give worst 
results than those found by the sequential version of the 
algorithm.  On the other hand, the partitioning scheme based 
on dividing by class prototypes only introduces a minor 
communication overhead, i.e., that created by the need to 
obtain the winner class.  To do so, a protocol similar to 
logarithmic synchronization barriers is adopted.  Also, there is 
a need to introduce a broadcast/all-reduce protocol to obtain 
the class prototype through local minimum calculations in a 
batch SOM processing way.  The winner neuron for each 
pattern needs to be tailored, and subsequent modifications for 
the weighting factor need to be stored for later 
addition/subtraction.  This approach also allows directly 
obtaining of the winner neuron at each iteration without the 
need for any further calculations.  It also facilitates a more 
pleasingly parallel solution, aimed at taking full advantage of 
the processing power available in the considered parallel 
architecture while minimizing the communication overhead. 

At this point, we must emphasize that the proposed scheme 
still introduces the need to replicate calculations in order to 
reduce communications.  However, the amount of replicated 
data is limited to the presence of the complete training pattern 
set at each processor, along with administrative information, 
i.e., which processor holds the winner neuron, which processor 
holds the neurons in the neighborhood of the winner neuron, 
etc.  Such administrative information can be used to reduce the 
communication overhead even further.  For instance, using the 
above information we consider two implementations of the 
neighborhood modification function ( )'tσ , where the first one 
is applied when a node is in the neighborhood of the winner 
neuron and the second is considered when the node is outside 
the domain of that processor.  To assess the integrity of the 
considered neighborhood function, a look-up table is locally 
created at each processor so that the value of ( )tσ  is stored for 
every pair of neurons.  While in the present work the function 

selected is gaussian, i.e., ( ) ⎟
⎠
⎞⎜

⎝
⎛ −−

=σ
tii

et
* 

, other 
neighborhood functions may also be considered [9].  In any 
regard, we emphasize that when the neighborhood function is 
applied to the processor that holds the winner neuron, it is used 
in a traditional way.  On the contrary, when the function is 
applied to other processors, a modified version is implemented 
to average the distances with all possible winners.  There are 
two main reasons for this decision:  (1) First and foremost, this 
approach significantly reduces the amount of communications; 
and (2) It represents a more meaningful and robust 
neighborhood function.  As a final major remark, we must 
point out that our MPI-based implementation makes use of 
blocking primities, thus ensuring that all processors are 
synchronized and preventing integrity problems in the 
calculations with the matrix of weights MxNW .  
 
3.3 Summary of Operations 
 
 The parallel implementation described in the above 
subsections is based on a partitioning scheme in the spatial 
domain in which one of the processors acts as the master node 
in charge of the I/O operations.  The master node implements a 
spatial partitioning policy that enhances load balance between 
processors.  The partitioner has been implemented so that it 
automatically determines the optimum size for the PEEPs to be 
distributed between the different processors.  In the parallel 
implementation, the master node sends to each processor a 
portion of the original image, or weight matrix depending on 
the stage, using the MPI_Send primitive.  Each processor 
works locally with its corresponding portion.  Once it has 
finished the local processing, each processor sends the results 
back to the master (which receives the portions using 
MPI_rcvd primitive) to get the local results.  Finally, the 
master compounds the partial results and carries out the 
process of selecting the final endmembers using the 
information provided by each of the processors.  By 
distributing data evenly among the processors, load balance is 
achieved.  Also, the utilization of the concept of PEEP allows 
us to greatly minimize interprocessor communication 
overhead.  To conclude this section, we emphasize that the 
proposed parallel algorithm fully exploits the underlying 
parallelism inherent in image processing methods [14], i.e. it 
minimizes the communication between processors.  The 
parallel code described in this section is portable to any 
distributed system, provided that the memory available to each 
processing is large enough to store the respective PEEP or 
partial weight matrix.  Performance data for the parallel 
algorithm are given in section 4. 
 

4 Experimental Results 
 
 This section describes the performance of the parallel 
implementations outlined in Section 3 in terms of their 
computational efficiency (speedup) compared with the serial 
version of the code, the scalability of the parallel code, and 
also in terms of its accuracy in the context of automated 
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classification of hyperspectral images.  In a first subsection we 
describe the parallel computers used in the study.  Then, we 
discuss the obtained results in the analysis of a well-known 
AVIRIS image.  
 
4.1 Parallel Computers 
 
 Two parallel computers have been used to evaluate the 
computational performance of the morphological algorithm 
proposed.  The first is an SGI Origin 2000 multicomputer 
located in the European Center of Parallelism of Barcelona.  It 
is a system with a MIMD cc-NUMA distributed memory 
composed of 64 MIPS R10000 processors (each of them with 
4 Mb of cache and 12 Gb of main memory) connected through 
an intercommunication network of 1.2 Gbps.  The theoretical 
peak performance of the system is 32 Gflops.  The operating 
system used during our experiments was Irix 5.6, and the 
software was compiled using mpicc available from MIPSpro 
7.3.1.2 suite.  This system is no longer available, and was 
mainly used in this work to provide preliminary tests of the 
parallel algorithms as separate modules.  The second parallel 
computer used in the study is a Beowulf type cluster named 
Thunderhead located at the Applied Information Sciences 
Branch of NASA/GSFC.  This system consists of 256 nodes, 
each of them with two 2.4 GHz Intel Xeon processors.  Each 
node has 1 Gb of local memory.  The full system has a total of 
80 Gb of distributed memory.  The communication network is 
Myrinet at 2 GHz (optical fibre).  The maximum theorical 
performance of the system is 2457.6 Gflops.  The operating 
system in Thunderhead is Linux Red Hat 8.0, and MPICH is 
the communication library.  Thunderhead was used in this 
work to test the combined morphological/neural classification 
method developed in Section 3. 
 
4.2 Results and Discussion 
 
 To empirically investigate the scaling properties of the 
parallel algorithm, we have used a hyperspectral image 
obtained by the AVIRIS sensor in June 1992 over a small area  
 

(145 lines by 145 samples and 220 spectral bands) gathered 
over the Indian Pines test site in Northwestern Indiana, a 
mixed agricultural/forested area, early in the growing season.  
The data set represents a very challenging classification 
problem with due to the presence of mixed pixels.  Figure 5(a) 
shows the spectral band at 587 nm of the original scene, and 
Figure 5(b) shows the ground-truth map.  The image is 
available, along with ground truth information, from 
http://dynamo.ecn.purdue.edu/~biehl/Multispec/. 

Using the information provided by ground truth, we have 
analyzed the cost-performance accuracy of the proposed 
morphological.  Our classification scheme consisted of the 
following steps:  1) Endmember extraction via morphological 
operations, 2) Fully constrained linear unmixing using the 
extracted endmembers [1], and 3) Classification of each pixel 
as belonging to a class given by the most abundant endmember 
in the pixel.  The following parameters were considered: 

MAXI  was set to 1, 3, 5 and 7 iterations, respectively.  B  is a 
3x3-pixel structuring element of fixed size, and p , the 
maximum number of endmembers to be detected that was set 
to 61=p  after removing the image background and 
calculating the intrinsic dimensionality of the data using the 
Harsanyi-Farrand-Chang (HFC) method in [3].  Table 1 
quantitatively shows overall and individual classification 
accuracy scores produced by the parallel algorithm with 
different values of MAXI . As shown in Table 1, setting 

7IMAX =  results in an overall accuracy of more than 90 
percent and very high classification scores for all the 
individual ground-truth classes.  We have experimentally 
tested that classification accuracies do not significantly 
improve when 7IMAX > .  
 In order to illustrate the efficiency of the parallel AMEE 
algorithm, Table 2 shows execution times in seconds of the 
proposed algorithm with the AVIP92 scene for several 
combinations of number of iterations and number of 
processors, along with speedup factors on the SGI Origin 2000  
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Figure 5: (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural features at Indian Pines test site, 

Indiana.  (b) Ground-truth map with 16 mutually-exclusive land-cover classes 
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multicomputer.  On the other hand, Table 3 summarizes 
similar experiments conducted on the Thunderhead Beowulf 
cluster.  It should be noted that a maximum number of 8 and 
256 processors were respectively utilized in the SGI Origin 
2000 and Thunderhead, respectively, due to system availability 
at the time of the experiments.  From results in Table 2, we can 

conclude that the proposed parallel version of the AMEE 
algorithm achieves significant speedups when compared to the 
serial implementation in the two parallel computers.  Also, the 
measured speedups tend to be higher for large values of MAXI , 
a fact that reveals that the proposed scheme scales better when 

 
 

Table 1: Overall and individual classification accuracies of the proposed algorithm using different number of 
iterations, MAXI  

Class (number of pixels) 1IMAX =  3IMAX =  5IMAX =  7IMAX =  
Alfalfa (54) 41.23 55.55 61.11 75.92 
Corn-notill (1434) 84.65 79.91 83.82 89.47 
Corn-min (834) 66.54 69.06 75.42 84.53 
Corn (234) 40.29 64.10 70.51 82.05 
Grass/Pasture (497) 65.99 73.64 79.67 85.71 
Grass (747) 67.20 94.11 95.58 97.45 
Grass/pasture-mowed (26) 45.21 84.61 84.61 96.15 
Hay-windrowed (489) 42.32 99.59 99.59 99.79 
Oats (20) 40.78 75.00 85.00 80.00 
Soybeans-notill (968) 63.43 71.17 77.06 85.95 
Soybeans-min (2468) 75.77 77.39 81.56 89.30 
Soybean-clean (614) 70.24 72.80 80.13 87.78 
Wheat (212) 52.36 99.52 99.52 100.00 
Woods (1294) 87.17 88.79 91.19 95.13 
Bldg (380) 81.05 82.63 86.05 91.31 
Stone-steel towers (95) 70.52 71.57 75.78 90.52 
Overall (10366) 66.16 79.92 83.98 90.24 

 
 
Table 2: Execution times in seconds of the AMEE algorithm at 

the SGI Origin 2000 multi-computer for several 
combinations of number of iterations, MAXI , and 
number of processors, N  

N  1IMAX =  3IMAX =  5IMAX =  7IMAX =  
1 372 1066 1809 2476 
2 182 522 864 1178 
4 89 252 429 569 
8 64 143 338 293 
 
 
Table 3: Execution times in seconds of the AMEE algorithm 

at the Thunderhead Beowulf cluster for several 
combinations of number of iterations, MAXI , and 
number of processors, N . 

N  1IMAX =  3IMAX =  5IMAX =  7IMAX =  
1 311 947 1528 1925 
4 124 321 557 685 

16 45 95 144 156 
36 26 46 61 71 
64 19 29 41 43 
100 12 20 26 29 
144 9 15 20 23 
196 6 11 17 20 
256 4 10 14 18 

the number of morphological operations to be accomplished is 
very high.  In this case, the proposed algorithm is able to 
obtain high classification accuracies in near real-time.  In order 
to analyze the scalability of the parallel code, Figure 6 plots 
the speedup factors as a function of the number of available 
processors N  at the SGI Origin 2000 computer. 
 It should be noted that the speedup factors in Figure 6 were 
calculated as follows:  if we approximate the real time required 
to complete a task on N  parallel processors, ( )NT , by 
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Figure 6: Parallel performance of the parallel AMEE 

algorithm in the SGI Origin 2000 computer 
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( )
K

B
ANT N

N += , where NA  is the sequential (non-

parallelizable) portion of the computation and NB  is the 
parallel portion.  In the parallel code, NA  corresponds to the 
sequence of operations implemented by the partitioning 
module in the case of the AMEE algorithm (in the case of the 
parallel SOM, the sequential time corresponds to the 
generation of random weight values).  On the other hand, NB  
corresponds to the selection of endmembers (AMEE) and the 
training process (SOM).  Then, we can define the speedup for 

N processors, NS , as follows: ( )
( ) ( )NBA

BA
NT

TS
NN

NN
N /

1
+
+

≈= , 

where ( )1T  denotes single processor time.  The relationship 
above is generally known as Amdahl’s Law.  It is obvious 
from this expression that the speedup of a parallel algorithm 
does not continue to increase with increasing the number of 
processors.  The reason is that the sequential portion NA  is 
proportionally more important as the number of processors 
increase and, thus, the performance of the parallelization is 
degraded for a large number of processors.  Since only the 
parallel portion NB  scales with the time required to complete 
the calculation and the serial component remains constant,  
 

there is a theoretical limit for the maximum parallel speedup 
achievable for N  processors, which is given by: 

N

N

N

NN
N

N
N

A
B

A
BA

SS +=
+

==
∞→

∞ 1lim .  Once the speedup 

values are obtained, we may also calculate the parallel 
efficiency as ( )

F
T NE

N
= .  

With the above performance metrics in mind, Figure 7 
shows the speedups and parallel efficiencies obtained by the 
parallel implementations of both AMEE and SOM algorithms 
in Thunderhead cluster (reported in separate fashion to better 
evaluate the specific aspects of each parallel algorithm).  As 
shown by Figure 7(a), the morphological algorithm scales 
reasonably well on Thunderhead.  This is because it takes 
andvantage of some of the intrinsic characteristics of window-
moving image processing algorithms, such as spatial and 
temporal data locality that result in cache reuse.  The best 
speedup compromise for 7I =  algorithm iterations was 
achieved for 16=N  processors, with 33.1216 =S  and 

77.016 =E .  The degradation in parallel efficiency as the 
number of processors is increased [see Figure 7(b)] is likely 
due to the effect of redundant computations.  On the other 
hand, Figure 7(c) reveals that, although parallelization of the  
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(b) Parallel efficiency for morphological algorithm
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(c) Speedup for the neural algorithm
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(d) Parallel efficiency for the neural algorithm
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Figure 7:  Speedup/parallel efficiency achieved by morphological/neural algorithms on Thunderhead 
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neural algorithm is more complicated a priori due the expected 
impact of communications, the parallel neural code also scales 
relatively well (for a reduced number of processors).  It should 
be noted that the cost of communications in the parallel neural 
algorithm cannot be reduced by introducing redundant 
computations, as it was the case in the morphological 
algorithm.  Even though the amount of data to be exchanged is 
minimized by the proposed parallel neural strategy, we still 
had to deal with the size of the minimum transfer unit (MTU) 
of the communication network, a parameter that is not easily 
adjustable in the Thunderhead system.  In future 
developments, we are planning on incorporating techniques 
able to automatically adjust the size of the MTU according to 
the properties of the input data.  For instance, the domain of a 
single batch-mode iteration could be expanded to several 
network epochs (with all training patterns involved at each 
one) instead of just one epoch as in the current 
implementation.  This could lead to much better data 
compaction inside the considered MTU.  Also, results in 
Figure 7(d) reveal that the parallel efficiency achieved for 
large training sets is significantly higher than that found for 
smaller training sets.  This is because computations clearly 
dominate communications in this case, thus greatly enhancing 
the granularity of the parallel computation.  As one would 
expect, the use of large training sets also results in much 
higher classification accuracies by the SOM neural network.  
Although only results with 4 processors are reported in this 
work for the combined morphological/neural method, we also 
observed that increasing the number of processors introduced 
fluctuations in the achieved speedups with significant drops in 
parallel efficiency.  This is due in part to the scheduling 
policies implemented in the Thunderhead cluster, which tend 
to assign high priority to jobs that require a very large number 
of processors.  Even in spite of the above limitations, our 
measured speedups reveal slight superlinear scaling effects in 
some cases, probably due to cache reuse (e.g., when 510  
training iterations were considered, values of 135.12 =E  and 

01.14 =E  were measured).  This reveals that cache spatial and 
temporal locality could be partially used to overcome the 
limitations imposed by excessive communications.  The above 
results also lead us to believe that the best configuration for the 
parallel SOM algorithm is likely to be achieved when most 
neural network partitions fit completely in the local processor 
caches.  Further experimentation, however, is highly desirable 
in order to adapt the parallel properties of the neural algorithm 
to those observed in the morphological algorithm.  In 
particular, there is a need to balance the combined computing 
power achieved by the pool of processors employed by the 
morphological algorithm and those used by the neural 
algorithm in the same algorithm run.  This feature brings out 
new exciting future perspectives, such as the possibility to 
launch multiple neural-based classifiers in parallel.  Such 
multiple classifier-based processing framework represents a 
completely novel data analysis paradigm in hyperspectral 
imaging, which previously looked too computationally 
complex to be developed in practical applications. 

5 Conclusions and Future Work 
 
 The aim of this paper has been the parallel implementation 
on high performance computers of an innovative 
morphological/neural technique for unsupervised classification 
of high-dimensional remotely sensed data sets, with the 
purpose of obtaining processing results in valid response times 
and with adequate reliability for the remote sensing 
environment where it is intended to be applied.  It has been 
shown and proven that parallel computing at the massively 
parallelism level, supported by message passing, provides a 
unique framework to accomplish the above goals.  For this 
purpose, computing systems made up of arrays of commercial 
off-the-shelf computing hardware are a cost-effective way of 
exploiting this sort of parallelism in remote sensing 
applications.  Specifically, the proposed MPI-based parallel 
implementation minimizes inter-processor communication 
overhead. and can be ported to any type of distributed memory 
system.  In particular, it can be easily ported to a Beowulf 
cluster of PCs, an architecture that has gained popularity in the 
last few years due to the chance of building a “high 
performance system” at a reasonable cost. Experimental results 
in this paper suggest that our parallel algorithm provides 
adequate results in both the quality of the solutions and the 
time to obtain them, in particular, when it is implemented on 
low-cost Beowulf clusters.  Further, the proposed parallel 
framework offers an unprecedented opportunity to explore 
methodologies in other fields that previously looked to be too 
computationally intensive for practical applications due to the 
inmense files common to remote sensing problems.  
Combining this readily available computational power with the 
new sensor instruments may introduce major changes in the 
systems currently used by NASA and other agencies for 
exploiting Earth and planetary remotely sensed data. 
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