
IJCA, Vol. 14, No. 1, Mar 2007

ISCA Copyright© 2007

23

Parallel Processing of High-Dimensional Remote Sensing Images
Using Cluster Computer Architectures

David Valencia*, Antonio Plaza*, Pablo Martínez*, Javier Plaza*
University of Extremadura, 10071 Caceres, SPAIN

Abstract

 Hyperspectral sensors represent the most advanced
instruments currently available for remote sensing of the Earth.
The high spatial and spectral resolution of the images supplied
by systems like the Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS), developed by NASA Jet Propulsion
Laboratory, allows their exploitation in diverse applications,
such as detection and control of wildland fires and hazardous
agents in water and atmosphere, detection of military targets
and management of natural resources. Even though the above
applications generally require a response in near real time, few
solutions are currently available to provide fast and efficient
processing of such high-dimensional image data sets. This is
mainly due to the extremely high volume of data collected by
hyperspectral sensors, which often limits their exploitation in
analysis scenarios where the spatial and temporal requirements
are very high. In this paper, we describe new parallel
processing methodologies for hyperspectral image processing,
based on neural architectures and morphological concepts.
The computational performance of the proposed methods is
demonstrated using real analysis scenarios based on the
exploitation of AVIRIS data using two parallel computer
systems, an SGI Origin 2000 multicomputer located at the
Barcelona Supercomputing Center (BSC), and the
Thunderhead Beowulf cluster at NASA’s Goddard Space
Flight Center (NASA/GSFC).
 Key Words: Hyperspectral analysis, spectral classification,
parallel computing, clusters of computers.

1 Introduction

 The development of advanced instruments for remote
observation of the Earth has created a growing interest in the
design of efficient techniques for the interpretation of the
images provided by these sensors. In particular, hyperspectral
sensors represent the most advanced generation of remote
sensing instruments for Earth observation and planetary
exploration, and are characterized by their high resolution in
both spatial and spectral domains [3]. For instance, the

* Computer Architecture and Technology Section, Department of
Computer Science, Avda. de la Universidad s/n. E-mail: {davaleco,
aplaza, pablomar, jplaza}@unex.es.

Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS),
developed by NASA Jet Propulsion Laboratory [5] covers the
range of wavelengths from 0.4 to 2.5 µm using 224 spectral
channels, with a spatial resolution of 20 meters per pixel and a
nominal spectral resolution of 10 nm. As shown by Figure 1,
the analytic capability of AVIRIS allows for the collection of a
detailed spectral signature for each pixel in the image, where
each spectral signature comprises a set of reflectance values
measured by the sensor at different wavelengths. Such
fingerprints can be used to accurately characterize the
composition of each site in the scene. The exploitation of the
data sets provided by this emerging type of sensors has been
quite notorious in the recent years, especially since their
incorporation to spatial satellite type platforms like NASA’s
Earth Observing (EO-1) or European Space Agency’s
ENVISAT, which offer almost global covering of the planet.

Despite the significant technological evolution of
hyperspectral instruments, the developments in techniques for
analysis of the data provided by these sensors have not been so
notorious. In particular, the design of analysis techniques able
to naturally integrate both the spatial and the spectral
information contained in the data is still a challenge for the
scientific community [15]. Many studies reveal that is it
indeed possible to obtain thematic maps where each pixel is
labeled as belonging to a single land-cover class by taking
advantage of the high spectral resolution provided by
hyperspectral sensors. However, it should be noted that the
spatial resolution of hyperspectral sensors is usually in the
order of several meters (e.g., 20-meter pixels for the AVIRIS
instrument). As a result, pure pixel-based classification
techniques may suffer from sub-pixel estimation errors. For
demonstration purposes, we can use the following toy
example: let us assume that a low resolution pixel, made up of
a mixture of water and sand, is classified as either water or
sand. In this scenario, the estimation error introduced by such
a pure pixel-based (hard) classification approach could be as
high as 50 percent depending on the dominant sub-pixel
constituent. In order to overcome this limitation, a current
trend in hyperspectral analysis is to resort to mixed pixel (soft)
classification techniques, where a single pixel may be
classified into several pure classes with different land-cover
proportions.
 In recent work, morphological approaches have been
successfully applied to mixed pixel decomposition in

 IJCA, Vol. 14, No. 1, Mar 2007

24

Figure 1: The concept of hyperspectral imaging

hyperspectral imaging. One of such approaches has been the
Automated Morphological Endmember Extraction algorithm
(AMEE) method, which automatically extracts a set of pure
spectral signatures corresponding to non-contaminated
macroscopic components such as water, soil, vegetation, etc.
These components, often called spectral “endmembers” in
hyperspectral analysis terminology, can be used to “unmix” a
given pixel by expressing its associated spectrum as a
linear/nonlinear combination of pure components. In some
cases, spectral endmembers are ,also suitable to be used as
input information for other applications. For instance, there
are many situations where a detailed knowledge of image
endmembers is not enough to extract a detailed land-cover
classification map. In this context, artificial neural networks
(ANNs) have demonstrated to be a powerful tool for
hyperspectral imaging because the information provided by
ANNs can not only be used to provide a hard classification,
but also to obtain a soft classification, e.g., by taking into
account the degree of membership (or similarity) of a certain
input pattern (pixel vector) to a certain output class
(endmember). In the field of ANN-based hyperspectral
imaging, self-organizing maps (SOMs) have been recognized
as a very powerful tool to perform both hard and soft
classification. This model is based on an unsupervised
learning strategy that does not require any previous test
samples [8, 9]. Again, one of the main restrictions of SOM-
based analysis is the computation time involved.
 While integrated spatial/spectral developments hold great
promise for Earth science image analysis, they create new
processing challenges. In particular, the price paid for the
wealth spatial and spectral information available from
hyperspectral sensors is the enormous amounts of data that
they generate. In addition, analysis techniques in Earth
observation studies are often computationally tedious, and
require lengthy durations to calculate desired quantities.
Several applications exist, however, where having the desired
information calculated in near real-time is highly desirable.
For instance, detection and/or tracking of natural disasters such
as forest fires, oil spills, and other types of chemical
contamination demands timely processing output.

It is worth noting that, although parallel computing

techniques have been widely used in general-purpose image
processing applications [14], the use of large-scale computing
facilities in hyperspectral imaging has been traditionally
limited to a few institutions only. However, nowadays it is
possible to design low cost “commodity” high-performance
systems by resorting to personal computers or workstations,
connected through high performance communications
networks. In particular, Beowulf clusters were originally
conceived at NASA’s Goddard Space Flight Center
(NASA/GSFC) to create a cost-effective parallel computing
system to satisfy specific computational requirements for
applications such as those present in the Earth and space
sciences community [10].

In this paper, we develop a new parallel
morphologyical/neural approach for hyperspectral image
classification, and specifically discuss implementation aspects
using several commodity cluster-based architectures.
Although several parallel algorithms for remote sensing image
analysis already exist in the open literature [1, 2, 4, 6, 7, 16],
our parallel algorithm is one of the few available methods that
considers both the spatial and the spectral information in a
natural way. It relies on domain decomposition techniques
aimed at minimizing inter-processor communication and
maximizing load balance. The remainder of the paper is
organized as follows. Section 2 describes the fundamentals of
the proposed methodology, which rely on multi-channel
mathematical morphology and ANNs. Section 3 provides a
detailed description of the parallel implementation, which is
based on C++ and the MPI message passing library. Section 4
conducts a detailed study of the computational performance of
the parallel implementation using two parallel computers: an
SGI Origin 2000 located at Barcelona Supercomputer Center
(BSC) and the Thunderhead massively parallel supercomputer
at NASA’s Goddard Space Flight Center (NASA/GSFC). The
paper concludes with some remarks and hints at plausible
future research.

2 Methodology

 The proposed methods for hyperspectral analysis can be
included in the category of spectral unmixing and

IJCA, Vol. 14, No. 1, Mar 2007

25

classification approaches, respectively [11]. In the following
subsection we provide a detailed description of the (soft)
classification problem of spectral mixing, and then introduce a
set of morphological operations oriented to solve this problem
using and endmember extraction-based approach. The section
concludes with the description a (hard) SOM-based
classification technique which takes advantage of
morphological endmember extraction to provide accurate class
labels. The latter approach, although subject to potential
inaccuracies at a sub-pixel level, is particularly useful for the
purpose of developing thematic maps in land-cover and land-
use applications. The two types of algorithms addressed above
will be parallelized in the following section.

2.1 Spectral Unmixing

 Mixed pixels are predominant in hyperspectral images and
result as mixtures of more than one distinct substance. Mixed
pixels exist for one of two reasons. Firstly, if the spatial
resolution of the sensor is not high enough to separate different
materials, these can jointly occupy a single pixel, and the
resulting spectral measurement will be a composite of the
individual spectra. Secondly, mixed pixels can also result
when distinct materials are combined into a homogeneous
mixture. This circumstance occurs independent of the spatial
resolution of the sensor. A hyperspectral image is often a
combination of the two situations, where a few sites in a scene
are pure materials, but many other are mixtures of materials.
Spectral unmixing is a commonly used procedure in which the
measured spectrum of a mixed pixel is decomposed into a
collection of spectrally pure constituent spectra, or
endmembers [12, 13], and a set of correspondent fractions, or
abundances, that indicate the proportion of each endmember in
the pixel.

Identification of image endmembers is a crucial objective in
hyperspectral image analysis applications. It is important to
emphasize that most available techniques for endmember
selection focus on analyzing the data without incorporating
information on the spatially adjacent data; i.e., the
hyperspectral data is treated not as an image but as an
unordered listing of spectral measurements where the spatial
coordinates can be shuffled arbitrarily without affecting the
analysis. However, one of the distinguishing properties of
hyperspectral data, as collected by available imaging
spectrometers, is the multivariate information coupled with a
two-dimensional (2-D) pictorial representation amenable to
image interpretation. Subsequently, there is a need to
incorporate the image representation of the data in the
development of automated techniques for endmember selection
and hyperspectral data exploitation. The main contribution of
the endmember extraction algorithm described in this work is
simultaneous consideration of both spatial and spectral
information. By taking into account the complementary nature
of spatial and spectral information in simultaneous fashion, it
is possible to alleviate the problems related to each of them
taken separately. The proposed method is based on
mathematical morphology [13], a classic image analysis
technique that is generalized to the case of multidimensional

data in the following subsection.

2.2 Morphological Endmember Extraction Algorithm

 Two basic operations articulate classic MM theory: erosion
and dilation. They are respectively based on the selection of
the maximum and minimum value of a neighborhood or spatial
region around each pixel of the image, where the shape and
size of the considered region are determined by the spatial
properties of a neighborhood function called structuring
element (SE). The main challenge in order to extend these
operations to the case of hyperspectral image data is the lack of
an ordering relation between the pixels of the image, which
can be seen as L-dimensional (L-D) vectors where L is the
number of spectral channels (see Figure 1). Following a usual
notation, let f be an image defined on an L-D space and let
B a so-called SE. We impose an ordering relation in terms of
spectral purity in the set of pixel vectors lying within a flat SE,
designed by B , by defining a cumulative distance between
one particular pixel ()yx,f , where ()yx,f denotes an L-D
vector at discrete spatial coordinates () 2y,x Z∈ , and all the
pixel vectors in the spatial neighborhood given by B (B -
neighborhood) as follows:

[] []∑∑=
s t

t)(s,),,(Dist),(fff yxyxDB

 () ()BZts 2, ∈∀ , (1)

where Dist is a linear point-wise distance measure between
two L-D vectors. As a result, [])y,x(D fB is given by the
sum of Dist scores between ()yx,f and every pixel vector in
the B -neighborhood. Based on the cumulative distance
above, the extended erosion of f by B is based on the
selection of the B -neighborhood pixel vector that produces
the minimum value for BD :

() () (){ ',' ,t'y,s'x),(tsyxB ++=Θ f f ,

() () ()[]{ }}tys,xminarg 2, ++=
∈

fBBZts D () 2, Zyx ∈ ,

 (2)

where the arg min operator selects the pixel vector is most
highly similar, according to the linear distance Dist, to all the
other pixels in the in the B -neighborhood. On other hand, the
extended dilation of f by B selects the B -neighborhood
pixel vector that produces the maximum value for BD :

() () (){ ',' ,t'y,s'x),(tsyxB −−=⊕ f f ,

() () ()[]{ }}tys,xmaxarg 2, −−=
∈

fBBZts D () 2, Zyx ∈ ,

 (3)

where the arg max operator selects the pixel vector that is
most highly different, according to Dist, to all the other pixels

 IJCA, Vol. 14, No. 1, Mar 2007

26

in the B -neighborhood. In this work, our choice for Dist is a
widely used distance metric in remote sensing applications: the
spectral angle distance (SAD) [3]. If we consider our
definition of an endmember as a spectrally pure element that
can be used to describe mixed pixels in the image, it is clear
that morphological operations exhibit a great potential in the
task of detecting endmembers using the spatial and spectral
information contained in the original image.
 Based on the morphological concepts introduced above, we
develop a methodology for endmember extraction which
incorporates both spatial and spectral information. The
proposed method is called Automated Endmember Extraction
Algorithm (AMEE), and allows for soft classification of
hyperspectral images in fully automated fashion. The algo-
rithm consists of a sequence of steps which are outlined below.

AMEE algorithm

Inputs: N-D image f , Structuring element B , Number of
iterations MAXI , Number of endmembers p.

Outputs: Set of endmembers { }p
j 1j =

e ; Set of fractional

abundances (){ }p
ii yx 1, =α for each pixel ()yx,f .

1) Set 1i = and initialize a morphological eccentricity

index () 0, =yxMEI for each pixel ()yx,f .
2) Move B through all the pixels of f , defining a local

spatial search area around each ()yx,f and calculate
the maximum pixel ()()yxB ,⊕f and the minimum
pixel ()()yxB ,Θ f at each B -neighborhood. Update
the resulting MEI score at each pixel selected as a local
maximum, () ()()yxByx ,',' ⊕= ff , using the
following expression:

 ()() ()()[]yxByxBSADyxMEIyxMEI , ,,)','()','(Θ⊕+= ff
 (4)

1) Set 1+= ii . If maxIi = then go to step 4. Otherwise,
set B⊕= ff and go to step 2.

2) Select the set of p pixels { }p
j 1j =

e in f with higher

score in the resulting MEI image. These pixels form
the final endmember set.

Once a final set of endmembers has been extracted, these

endmembers are generally coupled with a linear or nonlinear
model to expressed each mixed pixel as a combination of
endmembers. In this work, and for illustrative purposes, we
resort to a simple linear mixture model. There are two main
reasons for our choice of this model: i) it is the most
standardized approach in the remote sensing community, and
ii) it is very easy to implement, resulting in an “embarrassingly
parallel” implementation which can work on a pixel-by-pixel
basis, thus allowing a simple distribution of the workload

among a set of parallel processors. The linear model is
extensively described in the literature, but the specific
implementation used in this paper is described in detail in [3].

2.3 Self-Organizing Map (SOM)

 In this section, we describe a SOM neural architecture which
can use a set of input endmembers to produce a thematic map
with a classification label for each pixel. The neural model
proposed in this work consists of N input neurons and M
output neurons, where N is the dimensionality of the input
vectors and M is the number of endmembers provided by
AMEE algorithm. The network consists of two layers, with
feedforward connections from the input to the output layer and
a set of associated weights arranged in a matrix that will be
denoted hereinafter as MxNW . The network procedure is
given by two different stages: training and clustering. In the
former step, different training patterns are presented to the
network so that feedforward connections change to adapt to the
information provided by training data. In the clustering step,
feedforward connections project input patterns (i.e., pixel
vectors to be classified) onto the feature space and the
Euclidean distance is used to identify a winning neuron. The
entire procedure can be summarized by the following steps:

1) Weight initialization. Normalized random values are
used to initialize the weigth vectors: ()0

iw , with
M , 2, ,1 ⋅⋅⋅=i .

2) Training. In this work, this step is accomplished by
using AMEE-generated endmember signatures.

3) Clustering. For each input pattern x (i.e., a spectral
endmember), a winning neuron *i is obtained at time t
by using an Euclidean distance-based similarity criterion,
i.e., [] 2

1
min jwxx −=
≤≤ Mj

*i .

4) Weight adjustment. The winning neuron (and those
neurons in the neighborhood of the winning one) adapt
their weights using the following expression, where α(t)
and σ(t) are the learning and neighbouring functions,
respectively. It should be noted that the weigths
associated to *i are modified proportionally to the
learning rate.

 () () ()∑
=

+ ⋅σ⋅α+=
max

0

)()(1)(-''
t

tt'

't
i

t
i

t
i tt wxww (4)

5) Stopping rule. The SOM algorithm terminates as soon as

a pre-determined number of iterations, maxt , has been
accomplished.

From the above description, it is clear that the SOM algorithm
is sequential in nature. As a result, parallelization strategies
for this algorithm must cope with data dependencies. In the
following section, we discuss parallelization strategies for both

IJCA, Vol. 14, No. 1, Mar 2007

27

the AMEE and SOM algorithms.

3 Parallel Implementation

 The combined characteristics of the proposed
morphological/neural algorithm described in the previous
section introduces new considerations that need to be taken
into account in order to exploit parallelism through well-
defined strategies. In particular, two types of data parallelism
can be exploited to optimize the proposed algorithm: spatial-
domain parallelism and spectral-domain parallelism. Spatial-
domain parallelism subdivides the input image into multiple
blocks made up of entire pixel vectors, and assigns one or
more blocks to each processing element (PE). On other hand,
the spectral-domain parallel paradigm subdivides the whole
multi-band data into blocks made up of contiguous spectral
bands (sub-volumes), and assigns one or more sub-volumes to
each PE. The latter approach breaks the spectral identity of the
data because each pixel vector is split amongst several PEs. In
the following, we provide a discussion on the two types of
parallelism above and their impact on the individual steps
(morphological/neural) of the proposed method.

3.1 Parallelization of the Morphological Algorithm

 In order to describe the partitioning scheme for the
morphological operations described in Section 2, we have
considered two different approaches to the problem:
partitioning in the spatial domain and partitioning in the
spectral domain. The first option divides the hyperspectral
image in multiple blocks, in a way that the pixels for each
block preserve its entire spectral identity. The second option
divides the original image in blocks constituted by several
bands, in a way that we can preserve the spatial identity for
each band but all the pixels in each block lose their spectral

identity. In other words, if the partitioning scheme adopted
were in the spatial domain, the information of a single pixel in
the image would be scattered across several different
processing units.

If we take in account the fundamental characteristics of our
method, which works with all of the spectral information
associated to each pixel, the selection of a partitioning scheme
in the spectral domain is critical and could substantially
increase the costs of communication and/or coordination
between processors [5]. Besides, the overhead introduced by
the communication increases with the number of processors,
thus introducing problem in the load balance accomplished by
the designed algorithms [5]. On other hand, the spatial
information is particularly relevant in the local neighborhood
around each pixel [13]. This is a reason why a partitioning
scheme in the spatial domain is able to preserve most of the
information required for our morphological processing. A
final major point is that selection of a spatial partitioning
scheme enhances load balance between different processors.

At this point, we can introduce the concept of
spatial/spectral parallelizable pattern (PEEP), which is defined
as the maximum amount of information that the parallel
system can process without the need for additional
communication and/or coordination between processors [5].
Such patterns are automatically generated by a partitioning
module, as Figure 2 describes using two computing units. In
the example, the partition module divides the image into two
PEEPs. The values of the MEI index for two pixels of the
original hyperspectral image are calculated in parallel by each
of the processors, using a square-shaped SE of 3x3 pixels.
Such values are then updated in a local 2-D image. At the end
of the process, the PM fuses the various local images obtaining
a resulting 2-D image used as a baseline to extract a final set of
endmembers.
 An issue of major importance in the design of SE-based

Figure 2: Concept of spatial/spectral parallelizable pattern (PEEP) and proposed partitioning scheme.

 IJCA, Vol. 14, No. 1, Mar 2007

28

parallel image processing applications is the possibility to
access pixels out of the spatial domain of the partition
available in the processor. This is normally managed by a
determined border-handling strategy (BHS). In our parallel
implementation, two BHSs have been implemented, both of
which are briefly addressed next:

1) BHS relative to the pixels out of the domain of the

original image. This strategy is necessary in situations in
which the SE is centered around a pixel located in the
border of the input image. In this case, the BHS adopted
only uses the pixels of the SE which fall inside the image
domain. In our application, this strategy is similar to the
mirroring technique commonly used in kernel-based
image processing applications.

2) BHS relative to the pixels out of the domain of the SSPP.
This strategy is applied when the pixel located in a re-
mote processor is required in the calculation of the MEI
index associated with another pixel in a given processor
(see Figure 3). To resolve this issue, we aim at minimiz-
ing the communication/coordination between processors.

It should be noted that the BHS adopted in the latter situa-

tion is based on the replication of the information necessary to
avoid border effects between different processors, as shown in
Figure 3. According to our preliminary experiments, the cost
of processing the information resulting from the policy above
is sensibly inferior to dealing with the overhead introduced by
communication among different processors if no redundant
information is introduced in the system.
 Given the characteristics of the implementation proposed in
Section 2, which relies on the utilization of an SE of 3x3 pixels
iteratively, the number of redundant pixels R introduced in the
processing of a hyperspectral image is given by

2 2log log
2 2R 2 2 1 2 2 1

N N

F CI I
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= × − × + × − ×⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

, (5)

where N is the number of processors, IF is the number of rows
in the original image and IC is the number of columns in the
original image. For example, in order to process an AVIRIS
image of 512x512 pixels using 16 processors, the total number
of redundant pixels is]1)2[(2512]1)2[(2 22 −×+×−×=R

.6144512 =× If we assume that each pixel has 224 spectral
values, each of them coded using two bytes, the total amount if
redundant information introduced in the system is 2,625 Mb
(6144 × 224 × 2) which, compared with the total size of the
original image in bytes (about 114 Mb), can be considered
insignificant. As noted above, the amount of redundant
information is below 2.5 percent of the total information
present in the original image. It is important to point out that
the amount of redundant information grows as the number of
processors increases, a fact that introduces a limit to the
performance of the parallel code which is directly related to the
problem of having more redundant information than pixels to
process inside a certain SE.

3.2. Parallelization of the Neural Algorithm

 A straightforward approach to parallelization of the neural
algorithm is to simply replicate the whole neural network
architecture, which is a feasible approach due to the random
nature of the initial weights of the network. However, this
option results in the need for very complex rules of reduction,
and integrity hazards. Taking into account our previous
studies [9] and considering the relatively small size of the
training set, we can state that the overhead of the neural
network is mainly located in the training process (in the form
of Euclidean distance calculations and adjustment of weight
factors). This fact makes partitioning of the neural network
(weight factors matrix) an appealing solution in order to reduce
the processing load and time. Again, two main alternatives
can be adopted to carry out such partitioning: (1) Division by
input neurons (endmembers/training patterns); or (2) Division
by output neurons (class prototypes). The two options are
graphically illustrated in Figure 4.

Figure 3: Problem of accessing pixels out of the SSPP domain (left) and BHS relative to the pixels out of the PEEP domain (right).

IJCA, Vol. 14, No. 1, Mar 2007

29

Classification pattern

C
lass

prototype

Figure 4: Partitioning options for the considered neural

algorithm

It should be noted that, in the latter case, the parallelization
strategy is very simple. Quite opposite, when the former
approach is adopted, there is a need to communicate both
calculations and intermediate results among different
processors. This introduces an overhead in communications
that may significantly slow down the algorithm: according to
our preliminary experiments, this option could even give worst
results than those found by the sequential version of the
algorithm. On the other hand, the partitioning scheme based
on dividing by class prototypes only introduces a minor
communication overhead, i.e., that created by the need to
obtain the winner class. To do so, a protocol similar to
logarithmic synchronization barriers is adopted. Also, there is
a need to introduce a broadcast/all-reduce protocol to obtain
the class prototype through local minimum calculations in a
batch SOM processing way. The winner neuron for each
pattern needs to be tailored, and subsequent modifications for
the weighting factor need to be stored for later
addition/subtraction. This approach also allows directly
obtaining of the winner neuron at each iteration without the
need for any further calculations. It also facilitates a more
pleasingly parallel solution, aimed at taking full advantage of
the processing power available in the considered parallel
architecture while minimizing the communication overhead.

At this point, we must emphasize that the proposed scheme
still introduces the need to replicate calculations in order to
reduce communications. However, the amount of replicated
data is limited to the presence of the complete training pattern
set at each processor, along with administrative information,
i.e., which processor holds the winner neuron, which processor
holds the neurons in the neighborhood of the winner neuron,
etc. Such administrative information can be used to reduce the
communication overhead even further. For instance, using the
above information we consider two implementations of the
neighborhood modification function ()'tσ , where the first one
is applied when a node is in the neighborhood of the winner
neuron and the second is considered when the node is outside
the domain of that processor. To assess the integrity of the
considered neighborhood function, a look-up table is locally
created at each processor so that the value of ()tσ is stored for
every pair of neurons. While in the present work the function

selected is gaussian, i.e., () ⎟
⎠
⎞⎜

⎝
⎛ −−

=σ
tii

et
*

, other
neighborhood functions may also be considered [9]. In any
regard, we emphasize that when the neighborhood function is
applied to the processor that holds the winner neuron, it is used
in a traditional way. On the contrary, when the function is
applied to other processors, a modified version is implemented
to average the distances with all possible winners. There are
two main reasons for this decision: (1) First and foremost, this
approach significantly reduces the amount of communications;
and (2) It represents a more meaningful and robust
neighborhood function. As a final major remark, we must
point out that our MPI-based implementation makes use of
blocking primities, thus ensuring that all processors are
synchronized and preventing integrity problems in the
calculations with the matrix of weights MxNW .

3.3 Summary of Operations

 The parallel implementation described in the above
subsections is based on a partitioning scheme in the spatial
domain in which one of the processors acts as the master node
in charge of the I/O operations. The master node implements a
spatial partitioning policy that enhances load balance between
processors. The partitioner has been implemented so that it
automatically determines the optimum size for the PEEPs to be
distributed between the different processors. In the parallel
implementation, the master node sends to each processor a
portion of the original image, or weight matrix depending on
the stage, using the MPI_Send primitive. Each processor
works locally with its corresponding portion. Once it has
finished the local processing, each processor sends the results
back to the master (which receives the portions using
MPI_rcvd primitive) to get the local results. Finally, the
master compounds the partial results and carries out the
process of selecting the final endmembers using the
information provided by each of the processors. By
distributing data evenly among the processors, load balance is
achieved. Also, the utilization of the concept of PEEP allows
us to greatly minimize interprocessor communication
overhead. To conclude this section, we emphasize that the
proposed parallel algorithm fully exploits the underlying
parallelism inherent in image processing methods [14], i.e. it
minimizes the communication between processors. The
parallel code described in this section is portable to any
distributed system, provided that the memory available to each
processing is large enough to store the respective PEEP or
partial weight matrix. Performance data for the parallel
algorithm are given in section 4.

4 Experimental Results

 This section describes the performance of the parallel
implementations outlined in Section 3 in terms of their
computational efficiency (speedup) compared with the serial
version of the code, the scalability of the parallel code, and
also in terms of its accuracy in the context of automated

 IJCA, Vol. 14, No. 1, Mar 2007

30

classification of hyperspectral images. In a first subsection we
describe the parallel computers used in the study. Then, we
discuss the obtained results in the analysis of a well-known
AVIRIS image.

4.1 Parallel Computers

 Two parallel computers have been used to evaluate the
computational performance of the morphological algorithm
proposed. The first is an SGI Origin 2000 multicomputer
located in the European Center of Parallelism of Barcelona. It
is a system with a MIMD cc-NUMA distributed memory
composed of 64 MIPS R10000 processors (each of them with
4 Mb of cache and 12 Gb of main memory) connected through
an intercommunication network of 1.2 Gbps. The theoretical
peak performance of the system is 32 Gflops. The operating
system used during our experiments was Irix 5.6, and the
software was compiled using mpicc available from MIPSpro
7.3.1.2 suite. This system is no longer available, and was
mainly used in this work to provide preliminary tests of the
parallel algorithms as separate modules. The second parallel
computer used in the study is a Beowulf type cluster named
Thunderhead located at the Applied Information Sciences
Branch of NASA/GSFC. This system consists of 256 nodes,
each of them with two 2.4 GHz Intel Xeon processors. Each
node has 1 Gb of local memory. The full system has a total of
80 Gb of distributed memory. The communication network is
Myrinet at 2 GHz (optical fibre). The maximum theorical
performance of the system is 2457.6 Gflops. The operating
system in Thunderhead is Linux Red Hat 8.0, and MPICH is
the communication library. Thunderhead was used in this
work to test the combined morphological/neural classification
method developed in Section 3.

4.2 Results and Discussion

 To empirically investigate the scaling properties of the
parallel algorithm, we have used a hyperspectral image
obtained by the AVIRIS sensor in June 1992 over a small area

(145 lines by 145 samples and 220 spectral bands) gathered
over the Indian Pines test site in Northwestern Indiana, a
mixed agricultural/forested area, early in the growing season.
The data set represents a very challenging classification
problem with due to the presence of mixed pixels. Figure 5(a)
shows the spectral band at 587 nm of the original scene, and
Figure 5(b) shows the ground-truth map. The image is
available, along with ground truth information, from
http://dynamo.ecn.purdue.edu/~biehl/Multispec/.

Using the information provided by ground truth, we have
analyzed the cost-performance accuracy of the proposed
morphological. Our classification scheme consisted of the
following steps: 1) Endmember extraction via morphological
operations, 2) Fully constrained linear unmixing using the
extracted endmembers [1], and 3) Classification of each pixel
as belonging to a class given by the most abundant endmember
in the pixel. The following parameters were considered:

MAXI was set to 1, 3, 5 and 7 iterations, respectively. B is a
3x3-pixel structuring element of fixed size, and p , the
maximum number of endmembers to be detected that was set
to 61=p after removing the image background and
calculating the intrinsic dimensionality of the data using the
Harsanyi-Farrand-Chang (HFC) method in [3]. Table 1
quantitatively shows overall and individual classification
accuracy scores produced by the parallel algorithm with
different values of MAXI . As shown in Table 1, setting

7IMAX = results in an overall accuracy of more than 90
percent and very high classification scores for all the
individual ground-truth classes. We have experimentally
tested that classification accuracies do not significantly
improve when 7IMAX > .
 In order to illustrate the efficiency of the parallel AMEE
algorithm, Table 2 shows execution times in seconds of the
proposed algorithm with the AVIP92 scene for several
combinations of number of iterations and number of
processors, along with speedup factors on the SGI Origin 2000

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) (b)

Figure 5: (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural features at Indian Pines test site,

Indiana. (b) Ground-truth map with 16 mutually-exclusive land-cover classes

IJCA, Vol. 14, No. 1, Mar 2007

31

multicomputer. On the other hand, Table 3 summarizes
similar experiments conducted on the Thunderhead Beowulf
cluster. It should be noted that a maximum number of 8 and
256 processors were respectively utilized in the SGI Origin
2000 and Thunderhead, respectively, due to system availability
at the time of the experiments. From results in Table 2, we can

conclude that the proposed parallel version of the AMEE
algorithm achieves significant speedups when compared to the
serial implementation in the two parallel computers. Also, the
measured speedups tend to be higher for large values of MAXI ,
a fact that reveals that the proposed scheme scales better when

Table 1: Overall and individual classification accuracies of the proposed algorithm using different number of
iterations, MAXI

Class (number of pixels) 1IMAX = 3IMAX = 5IMAX = 7IMAX =
Alfalfa (54) 41.23 55.55 61.11 75.92
Corn-notill (1434) 84.65 79.91 83.82 89.47
Corn-min (834) 66.54 69.06 75.42 84.53
Corn (234) 40.29 64.10 70.51 82.05
Grass/Pasture (497) 65.99 73.64 79.67 85.71
Grass (747) 67.20 94.11 95.58 97.45
Grass/pasture-mowed (26) 45.21 84.61 84.61 96.15
Hay-windrowed (489) 42.32 99.59 99.59 99.79
Oats (20) 40.78 75.00 85.00 80.00
Soybeans-notill (968) 63.43 71.17 77.06 85.95
Soybeans-min (2468) 75.77 77.39 81.56 89.30
Soybean-clean (614) 70.24 72.80 80.13 87.78
Wheat (212) 52.36 99.52 99.52 100.00
Woods (1294) 87.17 88.79 91.19 95.13
Bldg (380) 81.05 82.63 86.05 91.31
Stone-steel towers (95) 70.52 71.57 75.78 90.52
Overall (10366) 66.16 79.92 83.98 90.24

Table 2: Execution times in seconds of the AMEE algorithm at

the SGI Origin 2000 multi-computer for several
combinations of number of iterations, MAXI , and
number of processors, N

N 1IMAX = 3IMAX = 5IMAX = 7IMAX =
1 372 1066 1809 2476
2 182 522 864 1178
4 89 252 429 569
8 64 143 338 293

Table 3: Execution times in seconds of the AMEE algorithm

at the Thunderhead Beowulf cluster for several
combinations of number of iterations, MAXI , and
number of processors, N .

N 1IMAX = 3IMAX = 5IMAX = 7IMAX =
1 311 947 1528 1925
4 124 321 557 685

16 45 95 144 156
36 26 46 61 71
64 19 29 41 43
100 12 20 26 29
144 9 15 20 23
196 6 11 17 20
256 4 10 14 18

the number of morphological operations to be accomplished is
very high. In this case, the proposed algorithm is able to
obtain high classification accuracies in near real-time. In order
to analyze the scalability of the parallel code, Figure 6 plots
the speedup factors as a function of the number of available
processors N at the SGI Origin 2000 computer.
 It should be noted that the speedup factors in Figure 6 were
calculated as follows: if we approximate the real time required
to complete a task on N parallel processors, ()NT , by

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8

Number of processors (N)

Sp
ee

d
u

p
 (

S N
)

IMAX = 1
IMAX = 3
IMAX = 5
IMAX = 7
Ideal

Figure 6: Parallel performance of the parallel AMEE

algorithm in the SGI Origin 2000 computer

 IJCA, Vol. 14, No. 1, Mar 2007

32

()
K

B
ANT N

N += , where NA is the sequential (non-

parallelizable) portion of the computation and NB is the
parallel portion. In the parallel code, NA corresponds to the
sequence of operations implemented by the partitioning
module in the case of the AMEE algorithm (in the case of the
parallel SOM, the sequential time corresponds to the
generation of random weight values). On the other hand, NB
corresponds to the selection of endmembers (AMEE) and the
training process (SOM). Then, we can define the speedup for

N processors, NS , as follows: ()
() ()NBA

BA
NT

TS
NN

NN
N /

1
+
+

≈= ,

where ()1T denotes single processor time. The relationship
above is generally known as Amdahl’s Law. It is obvious
from this expression that the speedup of a parallel algorithm
does not continue to increase with increasing the number of
processors. The reason is that the sequential portion NA is
proportionally more important as the number of processors
increase and, thus, the performance of the parallelization is
degraded for a large number of processors. Since only the
parallel portion NB scales with the time required to complete
the calculation and the serial component remains constant,

there is a theoretical limit for the maximum parallel speedup
achievable for N processors, which is given by:

N

N

N

NN
N

N
N

A
B

A
BA

SS +=
+

==
∞→

∞ 1lim . Once the speedup

values are obtained, we may also calculate the parallel
efficiency as ()

F
T NE

N
= .

With the above performance metrics in mind, Figure 7
shows the speedups and parallel efficiencies obtained by the
parallel implementations of both AMEE and SOM algorithms
in Thunderhead cluster (reported in separate fashion to better
evaluate the specific aspects of each parallel algorithm). As
shown by Figure 7(a), the morphological algorithm scales
reasonably well on Thunderhead. This is because it takes
andvantage of some of the intrinsic characteristics of window-
moving image processing algorithms, such as spatial and
temporal data locality that result in cache reuse. The best
speedup compromise for 7I = algorithm iterations was
achieved for 16=N processors, with 33.1216 =S and

77.016 =E . The degradation in parallel efficiency as the
number of processors is increased [see Figure 7(b)] is likely
due to the effect of redundant computations. On the other
hand, Figure 7(c) reveals that, although parallelization of the

(a) Speedup for the morphological algorithm

0

32

64

96

128

0 32 64 96 128 160 192 224 256

Number of CPUs

Sp
ee

d
u

p

1 iteration

3 iterations

5 iterations

7 iterations

(b) Parallel efficiency for morphological algorithm

0

0,25

0,5

0,75

1

0 32 64 96 128 160 192 224 256

Number of CPUs

Sp
ee

d
u

p

1 iteration 3 iterations 5 iterations 7 iterations

(c) Speedup for the neural algorithm

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4

Number of CPUs

Sp
ee

d
u

p

103 iterations

104 iterations

105 iterations

(d) Parallel efficiency for the neural algorithm

0

0,25

0,5

0,75

1

1,25

2 3 4

Number of CPUs

P
ar

al
le

l p
ro

ce
ss

in
g

ef
fi

ci
en

cy

103 iterations

104 iterations

105 iterations

Figure 7: Speedup/parallel efficiency achieved by morphological/neural algorithms on Thunderhead

IJCA, Vol. 14, No. 1, Mar 2007

33

neural algorithm is more complicated a priori due the expected
impact of communications, the parallel neural code also scales
relatively well (for a reduced number of processors). It should
be noted that the cost of communications in the parallel neural
algorithm cannot be reduced by introducing redundant
computations, as it was the case in the morphological
algorithm. Even though the amount of data to be exchanged is
minimized by the proposed parallel neural strategy, we still
had to deal with the size of the minimum transfer unit (MTU)
of the communication network, a parameter that is not easily
adjustable in the Thunderhead system. In future
developments, we are planning on incorporating techniques
able to automatically adjust the size of the MTU according to
the properties of the input data. For instance, the domain of a
single batch-mode iteration could be expanded to several
network epochs (with all training patterns involved at each
one) instead of just one epoch as in the current
implementation. This could lead to much better data
compaction inside the considered MTU. Also, results in
Figure 7(d) reveal that the parallel efficiency achieved for
large training sets is significantly higher than that found for
smaller training sets. This is because computations clearly
dominate communications in this case, thus greatly enhancing
the granularity of the parallel computation. As one would
expect, the use of large training sets also results in much
higher classification accuracies by the SOM neural network.
Although only results with 4 processors are reported in this
work for the combined morphological/neural method, we also
observed that increasing the number of processors introduced
fluctuations in the achieved speedups with significant drops in
parallel efficiency. This is due in part to the scheduling
policies implemented in the Thunderhead cluster, which tend
to assign high priority to jobs that require a very large number
of processors. Even in spite of the above limitations, our
measured speedups reveal slight superlinear scaling effects in
some cases, probably due to cache reuse (e.g., when 510
training iterations were considered, values of 135.12 =E and

01.14 =E were measured). This reveals that cache spatial and
temporal locality could be partially used to overcome the
limitations imposed by excessive communications. The above
results also lead us to believe that the best configuration for the
parallel SOM algorithm is likely to be achieved when most
neural network partitions fit completely in the local processor
caches. Further experimentation, however, is highly desirable
in order to adapt the parallel properties of the neural algorithm
to those observed in the morphological algorithm. In
particular, there is a need to balance the combined computing
power achieved by the pool of processors employed by the
morphological algorithm and those used by the neural
algorithm in the same algorithm run. This feature brings out
new exciting future perspectives, such as the possibility to
launch multiple neural-based classifiers in parallel. Such
multiple classifier-based processing framework represents a
completely novel data analysis paradigm in hyperspectral
imaging, which previously looked too computationally
complex to be developed in practical applications.

5 Conclusions and Future Work

 The aim of this paper has been the parallel implementation
on high performance computers of an innovative
morphological/neural technique for unsupervised classification
of high-dimensional remotely sensed data sets, with the
purpose of obtaining processing results in valid response times
and with adequate reliability for the remote sensing
environment where it is intended to be applied. It has been
shown and proven that parallel computing at the massively
parallelism level, supported by message passing, provides a
unique framework to accomplish the above goals. For this
purpose, computing systems made up of arrays of commercial
off-the-shelf computing hardware are a cost-effective way of
exploiting this sort of parallelism in remote sensing
applications. Specifically, the proposed MPI-based parallel
implementation minimizes inter-processor communication
overhead. and can be ported to any type of distributed memory
system. In particular, it can be easily ported to a Beowulf
cluster of PCs, an architecture that has gained popularity in the
last few years due to the chance of building a “high
performance system” at a reasonable cost. Experimental results
in this paper suggest that our parallel algorithm provides
adequate results in both the quality of the solutions and the
time to obtain them, in particular, when it is implemented on
low-cost Beowulf clusters. Further, the proposed parallel
framework offers an unprecedented opportunity to explore
methodologies in other fields that previously looked to be too
computationally intensive for practical applications due to the
inmense files common to remote sensing problems.
Combining this readily available computational power with the
new sensor instruments may introduce major changes in the
systems currently used by NASA and other agencies for
exploiting Earth and planetary remotely sensed data.

References

[1] T. Achalakul and S. Taylor, “A Distributed Spectral-

Screening PCT Algorithm,” Journal of Parallel and
Distributed Computing, 63:373-384, 2003.

[2] G. Aloisio and M. Cafaro, “A Dynamic Earth
Observation System,” Parallel Computing, 29:1357-
1362, 2003.

[3] C.-I Chang, Hyperspectral Imaging: Spectral Detection
and Classification, Kluwer Academic/Plenum Publishers,
New York, 2003.

[4] M. K. Dhodhi, J. A. Saghri, I. Ahmad, and R. Ul-
Mustafa, “D-ISODATA: A Distributed Algorithm for
Unsupervised Classification of Remotely Sensed Data on
Network of Workstations,” Journal of Parallel and
Distributed Computing, 59:280-301, 1999.

[5] R. O. Green M. L. Eastwood, C. M. Sarture, T. G.
Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B.
E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O.
Wiliams, “Imaging Spectroscopy and the Airborne
Vsible/Infrared Imaging Spectrometer (AVIRIS),”
Remote Sensing of Environment, 65:227–248, 1998.

 IJCA, Vol. 14, No. 1, Mar 2007

34

[6] K. A. Hawick, P. D. Coddington, and H. A. James,
“Distributed Frameworks and Parallel Algorithms for
Processing Large-Scale Geographic Data,” Parallel
Computing, 29:1297-1333, 2003.

[7] K. Itoh, “Massively-Parallel Fourier-Transform Spectral
Imaging and Hyperspectral Image Processing,” Optics &
Laser Technology, 25:202, 1993.

[8] T. Kohonen, Self-Organizing Map, 2nd Ed, Springer-
Verlag, Berlin, Heidelberg, 1997.

[9] P. Martinez, P. L. Aguilar, R. Perez and A. Plaza,
“Systolic SOM Neural Network for Hyperspectral Image
Classification,” D. Zhang and S. K. Pal. (Eds.), Neural
Networks and Systolic Array Design, World Scientific:
Singapore, pp. 26-43, 2002.

[10] J. Le Moigne, W. J. Campbell, and R. F. Cromp,
“Automated Parallel Image Registration Based on
Correlation of Wavelet Features,” IEEE Trans. Geosci.
Remote Sensing, 40:1849–1864, 2002.

[11] A. Plaza, P. Martínez, R. Pérez, and J. Plaza, “A New
Approach for Mixed Pixel Classification in
Hyperspectral Imagery Based on Extended
Morphological Profiles,” Pattern Recognition, 37:1097-
1116, 2004.

David Valencia (photo not available) is a Research Associate
at the University of Extremadura, Spain, where he is currently
pursuing his M.Sc. degree in Computer Science. His research
interests are in the development of parallel implementations of
algorithms for high-dimensional data analysis, with particular
emphasis on commodity cluster-based (homogeneous and
heterogeneous) systems and hardware-based architectures,
including systolic arrays, field programmable gate arrays and
graphic processing units. He is also involved in the design,
testing and implementation of large-scale distributed
heterogeneous computing platforms.

Antonio Plaza (photo not available) received his Ph.D. degree
in Computer Science from the University of Extremadura,
Spain, in 2002, where he is currently an Associate Professor
with the Computer Science Department. He has also been
Visiting Researcher with the University of Maryland, NASA
Goddard Space Flight Center and Jet Propulsion Laboratory.
His main research interests include the development and
efficient implementation of high-dimensional data algorithms
on parallel homogeneous and heterogeneous computing
systems and hardware-based computer architectures. He has
authored or co-authored more than one hundred publications
including journal papers, book chapters and peer-reviewed
conference proceedings, and currently serves as regular
manuscript reviewer for more than 15 highly cited journals in
the areas of parallel and distributed computing, computer
architectures, pattern recognition, image processing and remote
sensing. He is editing a book on “High- Performance
Computing in Remote Sensing” (with Prof. Chein-I Chang) for
Chapman & Hall/CRC Press.

[13] A. Plaza, P. Martinez, R. Pérez and J. Plaza,
“Spatial/Spectral Endmember Extraction by
Multidimensional Morphological Operations,” IEEE
Transactions on Geoscience and Remote Sensing,
40:2025-2041, 2002.

[12] A. Plaza, P. Martínez, R. Pérez, and J. Plaza, “A
Quantitative and Comparative Analysis of Endmember
Extraction Algorithms from Hyperspectral Data,” IEEE
Transactions on Geoscience and Remote Sensing,
42:650-663, 2004.

[14] F. J. Seinstra, D. Koelma, and J. M. Geusebroek, “A
Software Architecture for Transparent Parallel Image
Processing,” Parallel computing, 28:967-923, 2002.

[15] D. Valencia, A. Plaza, P. Martinez and J. Plaza, “On the
use of Cluster Computing Architectures for Implementa-
tion of Hyperspectral Analysis Algorithms,” Proceedings
of the 10th IEEE Symposium on Computers and Commu-
ications (ISCC), Cartagena, Spain, pp. 995-1000, 2005.

[16] P. Wang, K. Y. Liu, T. Cwik, and R.O. Green,
“MODTRAN on Supercomputers and Parallel
Computers,” Parallel Computing, 28:53–64, 2002.

Pablo Martínez (photo not available) is a Professor of
Computer Science at the University of Extremadura, Spain,
since 1985. He is the Head Scientist of the Neural Networks
and Signal Processing Group (GRNPS). He has held Visiting
Researcher positions at the NASA Goddard Space Flight
Center and the Department of Electrical Engineering,
University of Maryland, College Park, MD. His research
interests are in remote sensing, digital image analysis, parallel
and distributed computing, hardware-based architectures,
operating systems management and configuration, and neural
network-based pattern recognition.

Javier Plaza (photo not available) received his M.Sc. degree
in Computer Science from the University of Extremadura,
Spain, in 2002, where he is currently an Assistant Professor.
His current research work is focused on the development of
efficient implementations of neural network-based algorithms
for analysis and classification of hyperspectral scenes. He is
also involved in the design and configuration of homogeneous
and fully heterogeneous parallel computing architectures for
high-performance scientific applications. Other major research
interests include telecommunications, networking and
configuration and training of neural network architectures for
specific applications.

