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Abstract The main objective of this paper is to describe a realistic framework to
understand parallel performance of high-dimensional image processing algorithms
in the context of heterogeneous networks of workstations (NOWs). As a case study,
this paper explores techniques for mapping hyperspectral image analysis techniques
onto fully heterogeneous NOWs. Hyperspectral imaging is a new technique in re-
mote sensing that has gained tremendous popularity in many research areas, includ-
ing satellite imaging and aerial reconnaissance. The automation of techniques able
to transform massive amounts of hyperspectral data into scientific understanding
in valid response times is critical for space-based Earth science and planetary ex-
ploration. Using an evaluation strategy which is based on comparing the efficiency
achieved by an heterogeneous algorithm on a fully heterogeneous NOW with that
evidenced by its homogeneous version on a homogeneous NOW with the same ag-
gregate performance as the heterogeneous one, we develop a detailed analysis of
parallel algorithms that integrate the spatial and spectral information in the image
data through mathematical morphology concepts. For comparative purposes, perfor-
mance data for the tested algorithms on Thunderhead (a large-scale Beowulf cluster at
NASA’s Goddard Space Flight Center) are also provided. Our detailed investigation
of the parallel properties of the proposed morphological algorithms provides several
intriguing findings that may help image analysts in selection of parallel techniques
and strategies for specific applications.
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1 Introduction

Heterogeneous networks of workstations (NOWs) are a very promising type of
distributed-memory parallel architecture [1]. Unlike traditional homogeneous paral-
lel platforms, heterogeneous NOWs are composed of processors running at different
speeds. This heterogeneity is seldom planned, arising as a result of technology evolu-
tion over time, or computer market sales and trends. Traditional parallel algorithms,
which distribute computations evenly across the different processors, cannot balance
the load of different-speed processors in heterogeneous NOWs, as faster processors
will quickly perform their portions of computation and will have to wait for slower
ones at points of synchronization. In heterogeneous computing, it is generally as-
sumed that the processors are non-decomposable, i.e., multiple algorithms cannot
be executed on the same processor simultaneously. This assumption is based on the
fact that, in general terms, heterogeneous systems are operated as capacity comput-
ing resources in which a scheduler assigns different jobs to processors according to
prescribed rules, which try to balance resource allocation while maximizing resource
utilization. As a result, a natural solution to the load balancing problem in hetero-
geneous computing environments is to distribute data across processors unevenly so
that each processor performs an amount of computation which is proportional to its
speed. In particular, heterogeneous computing research has shown that, with care-
ful job scheduling, heterogeneous collections of computing resources can usually
outperform comparable homogeneous resource sets when the application set places
varied demands on the computing nodes and the interconnection networks (see, for
example, [2–5]). However, the problem of optimal heterogeneous data distribution
has been proven to be NP-complete for fully heterogeneous NOWs, i.e., for systems
where both the processing units and the communication links are heterogeneous in
nature. As a result, most practical heterogeneous algorithms are sub-optimal [6].

Heterogeneous computing has recently started to play a major role in remotely
sensed image processing applications [7, 8]. The large dimensionality and volume
of image data sets collected in such applications have soon introduced the need for
highly scalable processing platforms, coupled with efficient algorithms able to pro-
duce analysis results quickly enough for practical use [9]. For instance, data sets
available for some areas such as satellite imaging and aerial reconnaissance continue
to increase in size, in their spatial resolution, in the number of spectral channels, and
in the ever growing sequence of images collected over time [10]. Latest-generation
hyperspectral imagers, such as the Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) operated by NASA’s Jet Propulsion Laboratory [11], are now able to mea-
sure reflected radiation in hundreds of spectral channels (see Fig. 1). It is estimated
that NASA collects and sends to Earth more than 950 Gb of hyperspectral data on
a daily basis.

With the aim of creating a cost-effective parallel computing system from com-
modity components to satisfy specific computational requirements for the Earth and
space sciences community, the Center of Excellence in Space and Data Information
Sciences (CESDIS), located at the NASA’s Goddard Space Flight Center in Mary-
land, developed the concept of Beowulf cluster [12, 13]. Although most parallel im-
age processing systems employed by NASA and other institutions during the last
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Fig. 1 The concept of hyperspectral imaging using Jet Propulsion Laboratory’s AVIRIS system

decade have chiefly been homogeneous in nature, many available and planned paral-
lel systems for space-based Earth science and planetary exploration are characterized
by their heterogeneity. Considering the fact that commercial off-the-shelf heteroge-
neous clusters can realize a very high level of aggregate performance, it is expected
that these clusters will soon represent a tool of choice for the scientific community
devoted to high-dimensional image analysis in remote sensing and other fields (e.g.,
magnetic resonance imaging for medical applications). Due to the recent incorpora-
tion of heterogeneous computing to remote sensing-based research, significant oppor-
tunities to exploit such techniques are available in the field of hyperspectral imaging.

The main objective in this paper is to describe a general framework for the un-
derstanding of parallel efficiency in heterogeneous systems which run very high-
dimensional image processing applications. The remainder of the paper is structured
as follows. Section 2 formulates the optimization problem. Section 3 describes a mor-
phological algorithm that integrates the spatial and spectral information in hyperspec-
tral image data, and further develops a heterogeneous parallel processing framework
which is designed to maximize load balance in heterogeneous environments. Sec-
tion 4 assesses the performance of the proposed heterogeneous algorithms by com-
paring their efficiency on a fully heterogeneous NOW with the efficiency of their
equivalent homogeneous versions on a homogeneous NOW with the same aggre-
gate performance as the heterogeneous one, following a recent study by Lastovet-
sky and Reddy [6]. For comparative purposes, results achieved by heterogeneous
algorithms running on Thunderhead, a large-scale homogeneous cluster at NASA’s
Goddard Space Flight Center, are also provided. Finally, Sect. 5 presents the main
conclusions of this paper.
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2 Optimization problem

Our target architecture in this study is assumed to be a fully heterogeneous cluster
composed of different-speed processors that communicate through links of different
capacities. This computing platform can be modeled as a complete graph G = (P,E),
where each node in the graph models a computing resource Pi weighted by its rel-
ative cycle-time wi . Each edge in the graph models a communication link weighted
by its relative capacity, where ci,j denotes the maximum capacity of the slowest link
in the path of physical communication links from Pi to Pj . We also assume that
the system has symmetric costs: ci,j = cj,i [14]. Given the above assumptions, an
abstract view of our problem is stated as follows. A sequential algorithm repeatedly
operates on a large volume data set, for example, a hyperspectral where each pixel
is given by an N -dimensional (N -D) vector of values or “pixel vector” (see Fig. 1).
Let W be the total amount of work to be performed at each step of the algorithm.
This workload is split into slices that are allocated to the available number of proces-
sors, p. At each step of the algorithm, the slices are updated locally, and boundary
information of size S is exchanged between slices, as it is common practice in most
low-level parallel image processing operations [15]. A major question arising at this
point is how to slice the available data into chunks so that the parallel execution
time is minimized. For that purpose, there is a need to load-balance the workloads of
the participating resources. Another important issue is whether resource selection is
required or not. In other words, there is no reason a priori that all available proces-
sors need to be involved in the best possible configuration. However, our considered
hyperspectral data analysis application involves very large computations. And when
W is large enough, it is reasonable to assume that all processors available will be
involved, because the impact of the communications becomes smaller in light of the
cost of the computations, and these computations should be distributed to all available
computing resources.

With the above assumptions in mind, a simple and successful solution for stan-
dard parallel image processing techniques in the literature has been arranging the
processors in a virtual ring. In such an arrangement, each processor will only com-
municate twice, once with its predecessor in the ring and once with the successor.
Using a standard notation, let us denote as Ppred(i) and Psucc(i) the predecessor and
successor of Pi . Then, Pi requires S · ci,succ(i) time-units to send a message of size S

to its successor, plus S ·cpred(i),i time-units to receive a message of the same size from
its predecessor. Processor Pi will accomplish a share of αi · W of the total workload,
where αi ≥ 0 for 1 ≤ i ≤ p and

∑p

i=1 αi = 1. The total cost of a single step in the
image processing algorithm is the maximum, over all processors, of the time spent
on computations and communications, given by:

TSTEP = max
1≤i≤p

{
αi · W · wi + S · (cpred(i),i + ci,succ(i)

)}
. (1)

In the following section, we shall investigate a task-replication-based alternative
solution to the optimization problem above. Task replication is a scheduling method
that replicates selected tasks to run on more than one processor in order to reduce the
inter-processor communication [16]. Specifically, our goal is to minimize communi-
cation time by selectively introducing redundant computations so that a processor Pi
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will now accomplish a share of αi · (V +R), where V is the original data volume and
R is the total amount of redundant information introduced in the system. As will be
shown in the following section, redundant information in our application corresponds
to the boundary information that needs to be exchanged between processors during
the course of morphological processing.

3 Heterogeneous parallel processing framework

This section presents a heterogeneous parallel processing framework for high-
dimensional image processing applications. The framework described here was im-
plemented as an effective alternative for heterogeneous environments since it auto-
matically adjusts the workload to be processed on each processor depending on the
speed at which the information is expected to be processed at the nodes. First, we
briefly describe a morphological processing algorithm that will serve as our case
study throughout the paper. Then, we develop two parallel versions specifically de-
signed for heterogeneous platforms. Important issues in algorithm design, such as
volume partitioning and task scheduling are also discussed. This section ends with
several notes to facilitate implementation and reproduction of our results.

3.1 Morphological image processing algorithm

Mathematical morphology [17] is a standard image processing technique that pro-
vides an appropriate framework to integrate the spatial and spectral information in
hyperspectral imaging applications [18]. Let us consider a multi-dimensional image
f defined in an N -D space, where N is the number of components or bands. To de-
fine morphological operations in a multi-dimensional space, we first need to impose
an ordering relation in terms of spectral purity in the set of pixel vectors lying within
a search window (structuring element), designed by B . This is done by defining a cu-
mulative distance between one particular pixel f (x, y), where f (x, y) denotes an
N -D vector at discrete spatial coordinates (x, y) ∈ Z2, and all the pixel vectors in the
spatial neighborhood given by B (B-neighborhood) as follows:

DB [f (x, y)] =
∑

s

∑

t

dist[f (x, y),f (x + s, y + t)] ∀(s, t) ∈ Z2(B), (2)

where dist is a point-wise distance measure between two N -D vectors. As a result,
DB [f (x, y)] is given by the sum of dist scores between f (x, y) and every other pixel
vector in the B-neighborhood. Based on the cumulative metric above, the erosion [18]
of f by B is based on the selection of the B-neighborhood pixel vector that produces
the minimum value for DB :

(f �B)(x, y) = {
f

(
x + s′, y + t ′

)
,
(
s′, t ′

)

= argmin(s,t)∈Z2(B)

{
DB [f (x + s, y + t)]}}, (x, y) ∈ Z2. (3)



86 A. Plaza et al.

Table 1 Pseudo-code of the sequential morphological processing algorithm

Inputs: N -D image f , Structuring element B

Output: 2-D image MPS containing a morphological purity score for each pixel.

Begin

1. For each pixel vector f (x, y) do

2. DB [f (x, y)] = 0

3. For each f (x′, y′) in the B-neighborhood of f (x, y) do:

4. DB [f (x, y)] = DB [f (x, y)] + SAD(f (x, y),f (x′, y′))
5. Endfor

6. Endfor

7. For each pixel vector f (x, y) do

8. (f �B)(x, y) = {
f

(
x + s′, y + t ′

)
,
(
s′, t ′

) = argmin
(s,t)∈Z2(B)

{
DB

[
f (x + s, y + t)

]}}

9. (f ⊕ B)(x, y) = {
f

(
x − s′, y − t ′

)
,
(
s′, t ′

) = argmax
(s,t)∈Z2(B)

{
DB

[
f (x − s, y − t)

]}}

10. MPS(x, y) = SAD
[
(f �B)(x, y), (f ⊕ B)(x, y)

]

11. Endfor

End

On other hand, the dilation [18] of f by B selects the B-neighborhood pixel vector
that produces the maximum value for DB as follows:

(f ⊕ B)(x, y) = {
f

(
x − s′, y − t ′

)
,
(
s′, t ′

)

= argmax(s,t)∈Z2(B)

{
DB [f (x − s, y − t)]}}, (x, y) ∈ Z2. (4)

Our choice for dist in Eq. (2) is a widely used distance metric in applications involv-
ing spectral data analysis: the spectral angle distance (SAD), which can be defined
for two N -D pixels f (x′, y′) and f (x′′, y′′) as follows [10]:

SAD
[
f

(
x′, y′),f

(
x′′, y′′)] = cos−1

(
f (x′, y′) · f (x′′, y′′)

‖f (x′, y′)‖‖f (x′′, y′′)‖
)

, (5)

where f i (x
′, y′) and f i (x

′′, y′′) refer to the i-th component of pixel vectors f (x′, y′)
and f (x′′, y′′), respectively. With the above definitions in mind, a sequential mor-
phological processing algorithm is summarized in Table 1. This algorithm has been
described before and we will not expand on its detailed implementation here; in par-
ticular, it has been demonstrated to outperform other available approaches for hyper-
spectral data analysis [18, 19]. The computational complexity is O(νf × νB × N),
where νf is the number of pixel vectors in the original image f , νB is the number of
pixels in the structuring element B , and N is the number of spectral bands. This re-
sults in very high computational processing cost in many applications [20]. However,
an appropriate parallelization strategy can greatly enhance the computational perfor-
mance of the algorithm. In the following sub-sections, we explore volume partition-
ing and scheduling strategies for implementing the above algorithm in heterogeneous
computing environments.
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3.2 Volume partitioning

A major requirement for efficient parallel algorithms on distributed memory sys-
tems is finding a decomposition that minimizes the communication between the
processors. Domain decomposition techniques [21] provide the greatest flexibility
and scalability in parallel image processing [15]. Two types of partitioning can be ex-
ploited in multi-dimensional image analysis algorithms: spectral-domain partitioning
and spatial-domain partitioning. Spectral-domain partitioning subdivides the volume
into small cells or sub-volumes made up of contiguous spectral bands, and assigns
one or more sub-volumes to each processor. With this model, each pixel vector is
split amongst several processors and the communication cost for the proposed image
processing algorithm is enormous, thus preventing efficient and scalable implementa-
tions [20]. In order to achieve load balance and to exploit parallelism as much as pos-
sible, a spatial-domain partitioning approach was adopted in our application. There
are several reasons that justify our decision to use spatial-domain decomposition tech-
niques. First, spatial-domain partitioning is a natural approach for low-level image
processing, as many operations require the same function to be applied to a small
set of elements around each entire pixel vector in the image volume [15]. A second
reason has to do with the cost of inter-processor communication. In spectral-domain
partitioning, the calculations made for each pixel vector need to originate from sev-
eral processors, and thus require intensive inter-processor communication [22]. The
overhead introduced by inter-processor communication will increase linearly with
the increase in the number of processors. A final major reason is that spatial-domain
partitioning greatly simplifies a processor arrangement in which every processor has
a maximum of two neighbors, thus allowing a virtual ring implementation such as the
one addressed in Sect. 2.

3.3 Task scheduling

Before describing our adopted approach for task scheduling, we should point out
that an important issue in neighborhood-based image processing applications such
as convolution or mathematical morphology is that additional inter-processor com-
munications are required when the structuring element computation needs to be split
amongst several different processing nodes due to boundary effects, as illustrated
in Fig. 2a for a 3 × 3-pixel structuring element. In the example, the computations
for a certain pixel need to originate from two heterogeneous processors, and a com-
munication overhead involving three high-dimensional pixel vectors is introduced.
Therefore, we need to revisit the general optimization problem stated in Sect. 2 in the
context of our particular application. Each processor Pi needs to send some boundary
data with size S to its neighbors Ppred(i) and Psucc(i). In a heterogeneous environment,
it is clear that S does not represent a fixed volume of communication due to the fact
that the size of the partitions depends on the cycle-time wi of each processor. How-
ever, if an overlap border is added to one the adjacent partitions to avoid accesses
outside image domain, as illustrated in Fig. 2b, then boundary data no longer need
to be exchanged between neighboring processors. It is clear that such an overlap
border would introduce redundant computations since the intersection between the
two involved partitions would be non-empty. The amount of redundant information
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(a)

(b)

Fig. 2 (a) 3 × 3-pixel structuring element computation split among two heterogeneous processing nodes.
(b) Introduction of redundant computations to minimize inter-processor communication in a 3 × 3-pixel
structuring element computation

would be given by S, the size of the boundary data. It should also be noted that the
solution above may be prohibitive for large structuring element sizes. Subsequently,
for a given platform, there is an application-dependent threshold to decide whether
a redundant-information-based or data-exchange-based strategy should be adopted.
Taking into account the particularities of our application, we can formally state our
optimization problem as follows: given p processors of cycle-times wi and p(p − 1)

communication links of capacity ci,j ; given a total workload W and a communication
overhead S at each step, the goal is to minimize:

TSTEP = min
{

max
1≤i≤p

[
αi · (W +S) ·wi

]
, max

1≤i≤p

[
αi ·W ·wi +S ·(cpred(i),i +ci,succ(i)

)]}
,

(6)
where the first term refers to the total cost of a single step of the algorithm when
additional boundary data is replicated, and the second term refers to the cost of a sin-
gle step when boundary data is exchanged between consecutive processors. Solving
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the optimization problem in expression (6) is easy when all communication times
are equal, i.e., when the target platform is given by a homogeneous communication
network where each processor pair can communicate at the same speed: ci,j = c for
all i, j . In that case, the load will be most balanced if the execution time is the same
for all processors. This leads to αi · wi ≈ const for all processors, with

∑p

i=1 αi = 1.
As a result, we can rewrite expression (6) for networks with homogeneous commu-
nication links as follows:

TSTEP = min
{
(W +S) ·wcumul,W ·wcumul +2S ·c}, where wcumul = 1

∑p

i=1(1/wi)
,

(7)
with wi = w for all i. In the case of networks with fully heterogeneous communica-
tion links, the solution to the optimization problem in (6) would be similar to the one
given in (7) for homogeneous communication networks if redundant computations
are used, in which case we have TSTEP = min{(W + S) · wcumul}. In this case, the
workload assigned to each processor will only depend on the ratio between the total
amount of information W + R to be processed and the relative cycle-time, wi . How-
ever, it has been demonstrated in the literature that the optimization problem in (6)
is NP-complete if communication costs cpred(i),i and ci,succ(i) need to be taken into
account [23]. In this case, all processors require the same amount of time to com-
pute and communicate, with TSTEP = αi · W · wi + S · (cpred(i),i + ci,succ(i)). Since
∑p

i=1 αi = 1, we have
∑p

i=1
TSTEP−S·(cpred(i),i+ci,succ(i))

W ·wi
= 1, which leads to:

TSTEP = W · wcumul ·
[

1 + S

W

p∑

i=1

(cpred(i),i + ci,succ(i))/wi

]

. (8)

Therefore, the goal in expression (8) is to minimize
∑p

i=1(cpred(i),i +ci,succ(i))/wi ,
which can be done by calculating the ring that corresponds to the shortest Hamil-
tonian cycle in the graph G = (P,E), an NP-complete problem as pointed out above.
In order to derive a polynomial-time heuristic for solving the optimization problem
above, we resort to a greedy algorithm that is explained in the following subsection.

3.4 Implementation details

To provide an experimental validation of our approach and determine the best
scheduling strategy in our particular case study, we have implemented two differ-
ent heterogeneous algorithms using the MPI library. The first algorithm is called
redundant-computation-based heterogeneous algorithm (RCHA), while the second is
called data-exchange-based heterogeneous algorithm (DEHA). Both algorithms were
programmed using MPICH for the intercommunication between processors. They use
a server-client architecture [24, 25], in which the server node is responsible for the
distribution of workload, while the client nodes carry out the morphological process
and return their values to the server. The partitioner module has been implemented so
that it scatters data structures without creating partial structures at the root. For that
purpose, we made use of MPI derived datatypes to directly scatter hyperspectral data
structures, which may be stored non-contiguously in memory, in a single communi-
cation step [26]. The parallel algorithms are divided into two units, the client program
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Table 2 Pseudo-code of the server program for the RCHA algorithm

Inputs: N -D image f , Structuring element B.

Output: 2-D image MPS containing a morphological purity score for each pixel.

Begin

1. Generate necessary system information, including the number of available processors p, each
processor’s {Pi }pi=1 identification number, and processor cycle-times {wi }pi=1.

2. Using B and the information above, determine the total volume of information R that needs to
be replicated from the original data volume V .

3. Set αi =
⌊

(p/wi )∑p
i=1(1/wi )

⌋
for all i ∈ {1, . . . , p}.

4. For m = ∑p
i=1 αi to (V + R) do begin

5. Find k ∈ {1, . . . , p} such that wk · (αk + 1) = min{wi · (αi + 1)}p
i=1.

6. αk = αk + 1.

7. Use {αi }pi=1 to obtain a set of p spatial-domain heterogeneous partitions of (V + R), and send
its corresponding partition to each processor Pi along with B.

8. Collect all the individual results {MPSi }pi=1 provided by each processor Pi , and merge them

together to form a final image MPS = ⋃p
i=1{MPSi }.

End

and the server program. In both cases, the client program is given by the sequential
algorithm in Table 1. On the other hand, Table 2 shows the server program for RCHA
algorithm. In step 1, the server program obtains the processor cycle-times {wi}pi=1. In
step 2, it determines the total volume of computation (V +R) by using structuring el-
ement B , which is input as a parameter. Note that this calculation can be done a priori
due to the regularity of morphological operations. Steps 3–6 calculate the load dis-
tribution, where load balance is achieved based on the assumption that the load of
each processor Pi must be inversely proportional to its cycle-time wi . Specifically,
step 3 first approximates the {αi}pi=1 so that αi · wi ≈ const and

∑p

i=1 αi ≤ (V + R).
Then, steps 4-6 iteratively increment some αi until

∑p

i=1 αi = (V + R). Step 7 uses
the previously calculated distribution to partition the data set f using the approach
described in Sect. 3.2, and provides each processor with its share of (V + R) along
with structuring element B so that the morphological processing algorithm in Table 1
can be applied locally at each partition. Finally, step 8 collects the individual outputs
provided by the clients and merges them together to form the final result. The homo-
geneous version of RCHA algorithm is identical to the heterogeneous one described
above, but replacing step 3 in Table 2 with αi = p/wi for all i ∈ {1, . . . , p}, where
wi is a constant cycle-time for all processors in the network.

It should be noted that our implementation of the server program in DEHA algo-
rithm simply replaces steps 2–7 in Table 2 by a greedy heuristic [27], which naturally
arranges the processors in a virtual ring. The heuristic starts by selecting the fastest
processor, i.e., j ∈ {1, . . . , p} is found such that wj = max{wi}pi=1. Then, we iter-
atively include a new processor in the current solution ring. Let us assume that we
have already selected a ring of r processors. For each remaining processor Pk , we
need to search where to insert this processor in the current ring. Specifically, for each
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pair (Pi,Psucc(i)), we compute

TSTEP = W · wcumul ·
[

1 + S

W

p∑

i=1

(ci,k + ck,succ(i))/wi

]

,

which gives the cost of inserting Pk between Pi and Psucc(i) in the ring. Both the
processor Pk and the pair that minimize the insertion cost are tallied, and the value
of their associated TSTEP is stored. This step of the heuristic has a complexity pro-
portional to r(p − r). Finally, the ring is grown until all the processors are included,
i.e., r = p. The total complexity of the heuristic above is

∑p

r=1 r(p − r) = O(p3).
It should be noted that the homogeneous prototype of DEHA can be simply ob-
tained by replacing the insertion cost used in the greedy algorithm above by TSTEP =
W · wcumul + 2S · c, where c is the constant speed of all the communication links in
the homogeneous network. As a final comment, we note that the proposed heteroge-
neous techniques can be applied on the fly at runtime. In other words, the selection
between a redundant-computation-based or a data-exchange-based scheduling strat-
egy can be deferred to the actual moment of intended execution by comparing the
values of TSTEP estimated by RCHA and DEHA in the server program, and adap-
tively selecting an optimal allocation on the fly before sending the partitions to the
clients. In the following section, we provide a quantitative and comparative assess-
ment of the parallel algorithms described above.

4 Performance evaluation

In this section, heterogeneous algorithms are compared with their homogeneous ver-
sions in the context of a realistic hyperspectral imaging application. The section is
organized as follows. First, a framework introduced by Lastovetsky and Reddy for
assessment of heterogeneous algorithms is presented and discussed in the context of
our application. Next, we provide an overview of the parallel computing architectures
used for evaluation purposes. Performance data are given in the last sub-section.

4.1 Framework for assessment of heterogeneous algorithms

We propose to assess heterogeneous algorithms using the principles and concepts
introduced in a recent research study [6]. This work assumes that, typically, a hetero-
geneous algorithm is a modification of some homogeneous one. Therefore, a basic
postulate is that the heterogeneous algorithm cannot be more efficient than its ho-
mogeneous prototype, which means that the heterogeneous algorithm cannot be exe-
cuted on a heterogeneous NOW faster than its homogeneous prototype on the equiv-
alent homogeneous NOW. Let us first explore the viability of using the evaluation
framework above in our particular application. As shown in Sect. 3, RCHA algorithm
solves the optimization problem in (6) by reducing inter-processor communications.
On other hand, the communication cost of DEHA algorithm comes mainly from rel-
atively rare point-to-point communications in a virtual ring distribution. Since we
are dealing with high-dimensional pixel vectors, each communication consists of
passing a relatively long message. The number of time-units to send a message of
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size S from processor Pi to its successor Psucc(i) in the virtual ring is S · ci,succ(i),
where ci,succ(i) is the constant speed of communications between Pi and Psucc(i), and
ci,succ(i) = csucc(i),i . Under the above assumptions, the only aggregate characteristic
of the communication network that may have an impact on the execution time of the
proposed heterogeneous algorithm is the average speed of point-to-point communica-
tions. Let us now assume that a heterogeneous NOW consists of {Pi}pi=1 workstations
with different cycle-times, which span m communication segments {sj }mj=1, and let

c(j) be the communication speed of segment sj . Similarly, let p(j) be the number of

processors that belong to sj , and let w
(j)
t be the speed of the t-th processor connected

to sj , where t = 1, . . . , p(j). Finally, let c(j,k) be the speed of the communication link
between segments sj and sk , with j, k = 1, . . . ,m. According to [6], the heteroge-
neous NOW above can be considered equivalent to a homogeneous NOW with the
same number of workstations, {Qi}pi=1, and constant cycle-time w, interconnected
through a homogeneous network with communication speed c, if the following ex-
pressions are satisfied:

c =
∑m

j=1 c(j) · [p(j)(p(j) − 1)/2] + ∑m
j=1

∑m
k=j+1 p(j) · p(j) · c(j,k)

p(p − 1)/2
, (9)

w =
∑m

j=1
∑p(j)

t=1 w
(j)
t

p
, (10)

where Eq. (9) states that the average speed of point-to-point communications be-
tween processors {Pi}pi=1 in the heterogeneous cluster should be equal to the speed
of point-to-point communications between processors {Qi}pi=1 in the homogeneous
cluster. On the other hand, Eq. (10) states that the aggregate performance of proces-
sors {Pi}pi=1 should be equal to the aggregate performance of processors {Qi}pi=1.
In the following subsection, we describe the specifications and configuration of the
NOWs used for experiments in this work.

4.2 Platform description

We have experimented with three NOWs. The first one is a small-scale network
of 16 different SGI, Solaris and Linux workstations, and four communication seg-
ments at University of Maryland. Table 3 shows the cycle-times of the heteroge-
neous processors in seconds per megaflop, where processors {Pi}4

i=1 are attached
to communication segment s1, processors {Pi}8

i=5 communicate through s2, proces-
sors {Pi}10

i=9 are interconnected via s3, and processors {Pi}16
i=11 share communication

segment s4. It should be noted that the values in Table 3 result from actual measure-
ments and do not refer to theoretical peak values. The communication links between
the different segments {sj }4

j=1 only support serial communication. For illustrative
purposes, Table 4 shows the capacity of all point-to-point communications in mil-
liseconds to transfer a one-megabit message between each processor pair (Pi,Pj ) in
the heterogeneous NOW. As it can be seen in Table 4, the communication network
of the heterogeneous NOW consists of four relatively fast homogeneous communi-
cation segments interconnected by three slower communication links with capacities
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c(1,2) = 29.05, c(2,3) = 48.31, c(3,4) = 58.14 milliseconds, respectively. Although the
configuration described above is a quite typical and realistic one, we must point out
that it represents a specific subtype of heterogeneous platforms, which generally dis-
favors communication-based algorithms (as compared to more generic heterogeneous
setups) due to the fact that the segments communicate through serial channels.

The second parallel computing architecture used in experiments is a homogeneous
NOW of 16 identical Linux workstations. The processor cycle-time of the {Qi}16

i=1
processors is w = 0.0131 seconds per megaflop, and they are interconnected via
a homogeneous network with a capacity of c = 26.64 milliseconds. It should also
be noted that the same processors {Pi}16

i=11 used in the heterogeneous NOW were
also used to construct the homogeneous one, which allowed us to better control the
accuracy of experiments by ensuring that these processors had the same speed in
the heterogeneous NOW running an heterogeneous algorithm, and in the equivalent
homogeneous NOW running its corresponding homogeneous algorithm. It is also im-
portant to emphasize that the configuration of the two platforms above was custom-
designed to satisfy equations (9) and (10).

Finally, in order to test the heterogeneous algorithms on a larger-scale parallel plat-
form, we also experimented with Thunderhead, a Beowulf cluster located at NASA’s
Goddard Space Flight Center. It is composed of 512 Linux workstations at 2.4 GHz,
interconnected via 1.2 Gbps Myrinet homogeneous communication network. Thun-
derhead has been widely used in the past for analyzing high-dimensional, remotely
sensed images. Analyzing the performance of the proposed heterogeneous algorithms
on this platform is of great interest in order to calibrate their performance, scalability
and portability to existing massively parallel computers, and also to relate to previous
studies in this area.

4.3 Experimental results

The parallel algorithms were applied to a hyperspectral scene collected by the
AVIRIS instrument. The data set was gathered over the Indian Pines test site in North-
western Indiana, a mixed agricultural/forested area, and is characterized by very high
spectral resolution (224 narrow spectral bands in the range 0.4–2.5 µm) and moder-
ate spatial resolution of 20-meter pixels. It represents a very challenging classification
problem, as illustrated in Fig. 3a. Extensive ground-truth information is available for
the area [see Fig. 3b], a fact that has made this scene a standard data set for evalu-
ating hyperspectral analysis algorithms. The full scene consists of 2048 × 512 pixel
vectors, where each vector value is codified using 2 bytes. As a result, the total size
of the image exceeds 470 Mbytes. Part of these data, including ground-truth, are
available online (from http://dynamo.ecn.purdue.edu/~biehl/MultiSpec). As a result,
people interested in the proposed algorithms can reproduce our results and conduct
their experiments to exploit various scenarios.

The two proposed heterogeneous algorithms, RCHA and DEHA, were applied to
the AVIRIS image shown in Fig. 3a using structuring element sizes: B3×3, B5×5,
B7×7, B9×9, B11×11, B13×13 and B15×15. Table 5 shows the percentages of correctly
classified pixels obtained by a classification technique based on the proposed mor-
phological processing algorithm [19]. For illustrative purposes, single-processor ex-
ecution times of RCHA and DEHA algorithms on Thunderhead are also reported. In
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Fig. 3 (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and forest
features at Indian Pines test site, Indiana. (b) Ground-truth map with 30 mutually-exclusive land-cover
classes

Table 5 Percentages of correctly classified pixels in the AVIRIS scene by a classification algorithm
based on the proposed morphological processing, and single-processor running times (in minutes) on
Thunderhead for RCHA and DEHA algorithms

B3×3 B5×5 B7×7 B9×9 B11×11 B13×13 B15×15

Classification accuracy 65.34 73.48 80.29 84.05 90.13 90.55 90.96

Single-processor time (RCHA) 200 239 284 321 368 426 515

Single-processor time (DEHA) 234 275 328 372 432 534 637

both cases, several hours of computation were required to produce the final classifi-
cation results.

Figure 4a plots the execution times of RCHA, DEHA and their homogeneous pro-
totypes (in seconds) on the heterogeneous NOW, as a function of the ratio R/W . It
is worth noting that the execution times above include the data transfer time from the
server, and that the R/W ratio is different for each considered structuring element
size, where R denotes the amount of redundant information introduced in the system
due to the spatial properties of the structuring element and W represents the con-
stant volume of information contained in the original image. As expected, results in
Fig. 4a show that heterogeneous algorithms were able to adapt much better to the het-
erogeneous NOW. It should be noted that DEHA slightly outperformed RCHA when
B3×3 was used. For B7×7 and higher, RCHA outperformed DEHA due to a substan-
tial increase in communication overhead. In other words, a very simple and natural
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(a)

(b)

Fig. 4 (a) Execution times (in minutes) of the heterogeneous and homogeneous algorithms on the het-
erogeneous NOW. (b) Speedup of the heterogeneous algorithms over their corresponding homogeneous
versions on the heterogeneous NOW

load balancing strategy based on: (1) replacing most communication costs by redun-
dant computations, and (2) distributing the total workload W + R proportionally to
the speed of heterogeneous processors, proved to be more effective, computationally,
than exchanging boundary data by taking into account the properties of the hetero-
geneous communication network in a virtual ring arrangement. This fact reveals that
redundant computations can provide a cost-effective solution to increase parallel ef-
ficiency of heterogeneous algorithms dealing with very large data volumes.

For the sake of comparison, Fig. 4b plots the speedup of the heterogeneous algo-
rithms over their corresponding homogeneous versions on the heterogeneous NOW,
as a function of R/W . It can be seen that both RHCA and DEHA were approximately
ten times faster than their homogeneous versions. The speedup was simply calculated
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(a)

(b)

Fig. 5 (a) Execution times (in seconds) of the heterogeneous and homogeneous algorithms on the ho-
mogeneous NOW. (b) Speedup of the homogeneous algorithms over their corresponding heterogeneous
algorithms on the homogeneous NOW

as the execution time of the homogeneous algorithm divided by the execution time
of the heterogeneous algorithm for the same R/W ratio. As shown by Fig. 4b, the
speedups achieved by RHCA were almost constant, while one can appreciate slight
fluctuations in the speedup factors achieved by DEHA. This might be explained by
the fact that the greedy heuristic used to solve the optimization problem may not be
optimal for the considered problem. In particular, the optimization algorithm was de-
veloped from a general-purpose point of view, and hence it does not take into account
the role of serial connectors between the segments when placing the processors in the
virtual ring in the considered heterogeneous architecture.

Similarly, Fig. 5a shows a comparison of the execution times of RCHA and DEHA
and their homogeneous versions on the homogeneous NOW, while Fig. 5b shows the
speedup of the homogeneous algorithms over the heterogeneous ones on the homo-
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(a)

(b)

Fig. 6 (a) Execution times (in seconds) of the heterogeneous algorithms on the heterogeneous NOW,
and execution times of the homogeneous algorithms on the equivalent homogeneous NOW. (b) Speedup
achieved by redundant-computation-based algorithms over data-exchange-based algorithms on the hetero-
geneous and homogeneous NOWs

geneous NOW, as a function of R/W . Figure 5a reveals that the homogeneous al-
gorithms slightly outperformed the heterogeneous ones for small structuring element
sizes. However, as the volume of computation was increased, the heterogeneous algo-
rithms achieved very similar performance to their respective homogeneous counter-
parts. One can see in Fig. 5b that the performance of heterogeneous algorithms is al-
most the same as that of homogeneous algorithms for large structuring element sizes.
This demonstrates the flexibility of the proposed heterogeneous algorithms, which
seemed to be able to adapt efficiently to homogeneous computing environments, in
particular, when the volume of computations involved was extremely large.

Figure 6a shows a comparison of the execution times of RCHA and DEHA per-
formed on the heterogeneous NOW, and of their homogeneous prototypes performed
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on the homogeneous NOW. As Fig. 6a shows, both RCHA and its homogeneous ver-
sion achieved almost the same speed, but each on its network. The same observation
can be made for DEHA and its homogeneous version. This indicated that, in both
cases, the proposed heterogeneous algorithm was very close to the optimal heteroge-
neous modification of the basic homogeneous algorithm [6]. It is also important to
emphasize that the algorithms produced very close results for all considered struc-
turing element sizes. In particular, the sub-optimal practical heuristic implemented
by DEHA proved to be both fast and efficient. Other heuristics, however, may be
more effective for small structuring elements in the context of our application. In this
regard, further experimentation with additional heuristics is a topic deserving future
research. Most importantly, results in Fig. 6a indicated that redundant-computation-
based scheduling implemented by RCHA was more appropriate than data-exchange-
based scheduling implemented by DEHA in our considered application, in particu-
lar, when relatively large structuring element sizes were considered. For illustrative
purposes, Fig. 6b plots the speedup achieved by RCHA over DEHA in the same
heterogeneous environment. It also plots the speedup achieved by the homogeneous
version of RCHA over the homogeneous version of DEHA in the same homogeneous
environment.

At this point, a more detailed discussion on the use of subtask duplication in the
RCHA algorithm to enhance overall system performance is noteworthy. In particular,
we focus on how overlap (redundant) computations are handled on the initial data
scattering operation performed by the algorithm. To analyze this relevant issue in
more detail, we have conducted an experimental comparison between the standard
RCHA implementation (described in Table 2), and two alternative implementation
strategies:

1. Standard non-overlapping scatter. In this alternative implementation of RCHA,
the data is first divided into chunks without overlapping, and then an overlap com-
munication follows for every structuring element-based computation (as shown in
Fig. 2b), thus sending very small sets of pixels very often.

2. Modified non-overlapping scatter. In a second alternative version of RCHA, a stan-
dard non-overlapping scatter is followed by an overlap communication, to have all
data available in the overlap border areas before the morphological computations
(thus sending all redundant border data beforehand, but only once).

It should be noted that a major difference between the two alternative strategies
discussed above and the standard RCHA implementation used throughout the paper
is that, in the standard RCHA, a combined overlapping scatter operation is imple-
mented, one that also sends out the overlap border data as part of the initial scatter
operation itself. For illustrative purposes, Fig. 7a compares the execution times re-
ported by the two alternative versions of RCHA on the heterogeneous NOW, and the
execution times of their homogeneous versions on the homogeneous NOW, where the
two alternative implementation strategies were respectively labeled as RCHA-1, i.e.,
overlap communication for every single pixel; and RCHA-2, i.e., overlap commu-
nication to have all data available before the morphological filtering. A comparison
between Fig. 7a and Fig. 6a reveals that the execution times measured for RCHA-1
were much higher than those measured for RCHA, while the performance of RCHA-2
was much closer to that evidenced by the standard algorithm.
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(a)

(b)

Fig. 7 (a) Execution times (in seconds) of two alternative versions of RCHA (called RCHA-1 and
RCHA-2) on the heterogeneous NOW, and execution times of the corresponding homogeneous versions
on the equivalent homogeneous NOW. (b) Speedup of the two alternative versions of RCHA over their
corresponding homogeneous versions on the heterogeneous NOW

On the other hand, Fig. 7b plots the speedup of the heterogeneous versions of
RCHA-1 and RCHA-2 over their corresponding homogeneous prototypes, as a func-
tion of R/W and executed on the heterogeneous platform. The main reason why
RCHA-1 performed less effectively (in particular, as the amount of redundant com-
putations increases) is due to its very expensive communication strategy. On the other
hand, results in Fig. 7b show that RCHA-2 implemented a better overlap communica-
tion strategy, which produces better speedups as the ratio R/W is increased. Overall,
experimental results in Fig. 7 reveal the importance of the initial data scattering on
RCHA, and further demonstrate that the adopted implementation is significantly bet-
ter than RCHA-1 and slightly better than RCHA-2. With the above results in mind,
the rest of our argumentation will be based on the standard RCHA implementation.
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(a)

(b)

Fig. 8 Scalability of the heterogeneous and homogeneous algorithms on Thunderhead using structuring
elements: (a) B3×3 with R/W = 0.031; (b) B7×7 with R/W = 0.093; (c) B11×11 with R/W = 0.156;
(d) B15×15 with R/W = 0.218

In order to measure load balance [28] of RCHA and DEHA, Table 6 shows the im-
balance scores achieved by the two algorithms on the heterogeneous NOW, defined
as D = TMAX/TMIN. Therefore, perfect balance was achieved when D = 1. In the
table, we display the imbalance considering all processors, DALL, and also consid-
ering all processors but the root, DMINUS. It is clear from Table 6 that load balance
was achieved in most cases, with both algorithms resulting in almost the same re-
sults for DALL and DMINUS. Taking in mind the results presented above, and with the
ultimate goal of exploring issues of scalability and portability of the proposed het-
erogeneous algorithms to existing massively parallel computing platforms, we have
also compared the performance of RCHA, DEHA and their homogeneous versions
on NASA’s Thunderhead system. In particular, Fig. 8 shows the speedups achieved
by multi-processor runs of RCHA, DEHA and their homogeneous versions over the
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(c)

(d)

Fig. 8 (Continued)

single-processor execution times in Table 5. Four different structuring element sizes,
i.e., B3×3 (see Fig. 8a), B7×7 (Fig. 8b), B11×11 (Fig. 8c), and B15×15 (Fig. 8d) were
considered in experiments, with their corresponding R/W ratios given by 0.031,
0.093, 0.156 and 0.218, respectively. As Fig. 8 shows, the scalability of heteroge-
neous algorithms approached that of their homogeneous prototypes as the ratio R/W

was increased, but one can see that the RCHA algorithm scaled slightly better than
DEHA. On the other hand, Table 7 shows the execution times achieved by RCHA and
DEHA algorithms on Thunderhead, using different numbers of processors. Results in
Table 7 reveal that the tested algorithms were able to obtain highly accurate classi-
fication scores (see Table 5) but also quickly enough for practical use. For instance,
using 256 processors the RCHA algorithm provided a 90%-accurate classification of
the AVIRIS scene in about 2 minutes, while the DEHA algorithm was able to provide
the same output in 2.5 minutes. The above results indicate significant improvements
over the single-processor execution times reported on Table 5.
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Table 6 Load balancing rates for RCHA and DEHA algorithms on the 16-processor heterogeneous net-
work

Structuring element RCHA DEHA

DALL DMINUS DALL DMINUS

B3×3 1.098 1.046 1.103 1.062

B5×5 1.076 1.027 1.095 1.055

B7×7 1.073 1.024 1.078 1.051

B9×9 1.070 1.023 1.075 1.049

B11×11 1.065 1.022 1.071 1.046

B13×13 1.063 1.021 1.062 1.040

B15×15 1.047 1.018 1.059 1.035

Table 7 Execution times (in seconds) by RCHA and DEHA algorithms in Fig. 7, obtained on Thunder-
head using different structuring elements and numbers of processors

Structuring

element

RCHA DEHA

16 36 64 100 144 196 256 16 36 64 100 144 196 256

B3×3 896 382 234 166 127 106 93 989 464 268 181 141 121 113

B7×7 1121 527 309 212 159 130 114 1235 610 356 251 194 162 145

B11×11 1473 675 395 267 198 157 134 1779 856 487 347 275 235 210

B15×15 2087 933 545 362 266 207 171 2889 1348 746 536 437 386 364

Summarizing, experimental results in our study reveal that heterogeneous parallel
algorithms offer a surprisingly simple, platform-independent, and scalable solution in
the context of realistic image processing applications. We feel that the applicability
of the proposed techniques extends beyond the domain of high-dimensional image
processing. This is particularly true for the domains of signal processing and linear
algebra applications, which include similar patterns of communication and calcula-
tion.

5 Conclusions

This paper provided a detailed discussion on the effects that platform heterogene-
ity has on degrading parallel performance in the context of applications dealing with
large volumes of image data. Two representative parallel image processing algorithms
were thoroughly analyzed. The first one minimizes inter-processor communication
via task replication. The second one develops a polynomial-time heuristic for finding
the best distribution of available processors along a fully heterogeneous ring. An in-
teresting finding by experiments is that heterogeneous algorithms offer a surprisingly
simple, yet effective and scalable solution in the context of very high-dimensional im-
age processing applications. The use of redundant computations allowed us to inject
knowledge in scheduling and mapping decisions about the computation and commu-
nication costs associated to each data chunk so that excellent performance can be
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achieved via simple static load balancing strategies. Although the problem of distrib-
uting independent chunks of work to a fully heterogeneous one-dimensional array of
processors can be addressed by the development of fast and effective practical heuris-
tics, the best results in our case study of high-dimensional imaging on a realistic
NOW were obtained by task replication strategies aimed at minimizing communica-
tion overhead. Our experimental results revealed important algorithmic aspects that
may be of great importance for designing and adapting existing high-performance hy-
perspectral imaging applications (developed in the context of homogeneous comput-
ing platforms) to highly heterogeneous environments, which are currently the tool of
choice in many remote sensing and Earth exploration missions. Combining this read-
ily available computational power with last-generation sensor and parallel process-
ing technology may introduce substantial changes in the systems currently used by
NASA and other agencies for exploiting Earth and planetary remotely sensed data.
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