
Available online at www.sciencedirect.com
Parallel Computing 34 (2008) 92–114

www.elsevier.com/locate/parco
An experimental comparison of parallel algorithms
for hyperspectral analysis using heterogeneous and

homogeneous networks of workstations

Antonio Plaza *, David Valencia, Javier Plaza

Department of Computer Science, Computer Architecture and Technology Section, University of Extremadura,

Avda. de la Universidad s/n, E-10071 Caceres, Spain

Received 5 November 2005; received in revised form 10 May 2007; accepted 20 December 2007
Available online 18 January 2008
Abstract

Imaging spectroscopy, also known as hyperspectral imaging, is a new technique that has gained tremendous popularity in
many research areas, including satellite imaging and aerial reconnaissance. In particular, NASA is continuously gathering
high-dimensional image data from the surface of the earth with hyperspectral sensors such as the Jet Propulsion Laboratory’s
Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) or the Hyperion hyperspectral imager aboard NASA’s Earth
Observing-1 (EO-1) spacecraft. Despite the massive volume of scientific data commonly involved in hyperspectral imaging
applications, very few parallel strategies for hyperspectral analysis are currently available, and most of them have been
designed in the context of homogeneous computing platforms. However, heterogeneous networks of workstations represent
a very promising cost-effective solution that is expected to play a major role in the design of high-performance computing
platforms for many on-going and planned remote sensing missions. Our main goal in this paper is to understand parallel
performance of hyperspectral imaging algorithms comprising the standard hyperspectral data processing chain (which
includes pre-processing, selection of pure spectral components and linear spectral unmixing) in the context of fully hetero-
geneous computing platforms. For that purpose, we develop an exhaustive quantitative and comparative analysis of several
available and new parallel hyperspectral imaging algorithms by comparing their efficiency on both a fully heterogeneous net-
work of workstations and a massively parallel homogeneous cluster at NASA’s Goddard Space Flight Center in Maryland.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Parallel algorithm design; Heterogeneous computing; Hyperspectral image analysis; Hyperspectral data processing chain;
Load balance
1. Introduction

Recent advances in sensor technology have led to the development of so-called hyperspectral imagers, capa-
ble of collecting hundreds of images, corresponding to different wavelength channels, for the same area on the
0167-8191/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2007.12.005

* Corresponding author. Tel.: +34 927 257195; fax: +34 927 257203.
E-mail address: aplaza@unex.es (A. Plaza).

mailto:aplaza@unex.es

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 93
surface of the earth [1]. The concept of hyperspectral imaging (also known as imaging spectroscopy) has been
historically linked to one of NASA’s premier instruments for earth exploration, the Jet Propulsion Labora-
tory’s Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) system [2]. As illustrated by Fig. 1, hyper-
spectral imagers such as AVIRIS are able to measure reflected radiation in the wavelength region from 0.4 to
2.5 lm using 224 spectral channels, at a nominal spectral resolution of 10 nm. On the other hand, the Hype-
rion hyperspectral imager aboard NASA’s Earth Observing-1 (EO-1) spacecraft has been NASA’s first hyper-
spectral imager to become operational on-orbit. It routinely collects images hundreds of kilometers long with
220 spectral bands in the same spectral range described above. The incorporation of latest-generation sensors
such as AVIRIS or Hyperion to airborne and satellite platforms is currently producing a nearly continual
stream of high-dimensional data, and this explosion in the amount of collected information has rapidly intro-
duced new processing challenges (it is estimated that NASA collects and sends to earth more than 950 GB of
hyperspectral data every day). In particular, the price paid for the wealth of spatial and spectral information
available from hyperspectral sensors is the enormous amounts of data that they generate. As a result, the auto-
mation of techniques able to transform massive amounts of hyperspectral data into scientific understanding in
valid response times is critical for space-based earth science and planetary exploration.

To address the computational requirements introduced by hyperspectral imaging applications, several
efforts have been directed towards the incorporation of high performance computing models in remote sensing
missions [3–5]. With the aim of creating a cost-effective parallel computing system from commodity compo-
nents to satisfy specific computational requirements for the earth and space sciences community, the Center of
Excellence in Space and Data Information Sciences (CESDIS), located at the NASA’s Goddard Space Flight
Center in Maryland, developed the concept of Beowulf cluster [6,7]. The processing power offered by such
commodity systems has been traditionally employed in data mining applications from very large data archives.
Although most parallel techniques and systems for image information processing and mining employed by
NASA and other institutions during the last decade have been chiefly homogeneous in nature, a current trend
in the design of systems for the analysis and interpretation of massive volumes of data, resulting from space-
based earth science and planetary exploration missions, relies on the utilization of highly heterogeneous com-
puting platforms [8]. Unlike traditional homogeneous systems, heterogeneous networks are composed of pro-
cessors running at different speeds. As a result, traditional parallel hyperspectral imaging algorithms, which
Fig. 1. Concept of hyperspectral imaging using NASA Jet Propulsion Laboratory’s AVIRIS sensor.

94 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
distribute computations evenly across the different processors, cannot balance the load of different-speed pro-
cessors in heterogeneous networks as faster processors will quickly perform their portions of computation and
will have to wait for slower ones at points of synchronization. Therefore, a natural solution to the problem of
heterogeneous computing is to distribute data across processors unevenly, so that each processor performs the
volume of computation proportional to its speed. Heterogeneous computing research [9–11] has shown that,
with careful job scheduling, off-the-shelf heterogeneous clusters can realize a very high level of aggregate per-
formance. Subsequently, it is expected that these clusters will represent a tool of choice for the scientific com-
munity devoted to high-dimensional data analysis in remote sensing and other fields. Due to the recent
incorporation of heterogeneous computing to remote sensing-based research [8], significant opportunities to
exploit such techniques are available in the analysis of hyperspectral data sets.

The main objective of this paper is to perform an exhaustive comparison, in terms of both parallel efficiency
and data interpretation accuracy, of parallel hyperspectral analysis algorithms implemented in both heteroge-
neous and homogeneous platforms. The remainder of the paper is structured as follows. Section 2 introduces
the standard data processing chain used for the interpretation of hyperspectral image data, and describes the
impact of data partitioning strategies on the design of parallel techniques utilized by the considered chain. Sec-
tion 3 describes several parallel hyperspectral algorithms specifically designed to be run in heterogeneous net-
works of computers. Section 4 assesses the performance of heterogeneous algorithms by evaluating their
efficiency on both a fully heterogeneous cluster of workstations at University College Dublin, and a large-scale
homogeneous cluster at NASA’s Goddard Space Flight Center. Section 5 provides a summary of contribu-
tions and hints at plausible future research.

2. Hyperspectral imaging techniques and data partitioning

The underlying assumption governing techniques for the analysis of hyperspectral data is that each spectral
signature measures the response of multiple underlying materials at each site [1]. For instance, the pixel vector
labeled as ‘‘vegetation + soil” in Fig. 1 is actually a mixed pixel which comprises a mixture of vegetation and
soil, or different types of soil and vegetation canopies. This situation, often referred to as the ‘‘mixture prob-
lem” in hyperspectral analysis terminology, is one of the most crucial and distinguishing properties of imaging
spectroscopy analysis. Mixed pixels exist for one of two reasons. Firstly, if the spatial resolution of the sensor
is not high enough to separate different materials, these can jointly occupy a single pixel, and the resulting
spectral measurement will be a composite of the individual spectra. Secondly, mixed pixels can also result
when distinct materials are combined into a homogeneous mixture. This circumstance occurs independent
of the spatial resolution of the sensor. A hyperspectral image (also referred to as ‘‘image cube”) is often a com-
bination of the two situations, where a few sites in a scene are pure materials, but many other are mixtures of
materials.

To deal with the mixture problem in hyperspectral imaging, spectral unmixing [12] has been proposed as a
consolidated analysis procedure in which the measured spectrum of a mixed pixel is decomposed into a col-
lection of spectrally pure constituent spectra, called endmembers in the literature, and a set of correspondent
fractions or abundances that indicate the proportion of each endmember present in the mixed pixel [13]. The
procedure for spectral unmixing is given by a well-established hyperspectral data processing chain (schemat-
ically described by a diagram in Fig. 2), in which the dimensionality of the input hyperspectral image is first
(optionally) reduced and then pure spectral endmembers are automatically extracted from the scene. The last
step of the data processing chain is the decomposition of mixed pixels into fractional abundance maps through
a linear inversion procedure [1].

During the last decade, several algorithms have been proposed for the purpose of automatically extracting
spectral endmembers from hyperspectral image data. One of the most successful algorithms has been the pixel
purity index (PPI), originally developed by Boardman et al. [14] and available from Kodak’s Research Systems
ENVI, one of the most widely used commercial software packages by remote sensing scientists around the
world. This algorithm first reduces the dimensionality of the input data and then proceeds by generating a
large number of random, N-dimensional (N-D) unit vectors called ‘‘skewers” through the dataset. Every data
point is projected onto each skewer, and the data points that correspond to extrema in the direction of a
skewer are identified and placed on a list. Fig. 3 shows a toy example (shown in a 2-D space for simplicity)

Fig. 2. Diagram representing the standard hyperspectral data processing chain.

Fig. 3. Toy example illustrating the performance of the PPI algorithm in a 2-D space.

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 95
illustrating how skewer projections allow finding extreme pixels in the data cloud. As more skewers are gen-
erated the list grows, and the number of times a given pixel is placed on this list is also tallied. The pixels with
the highest tallies are considered the purest ones.

Another standard technique is the N-FINDR algorithm [15], which aims at identifying the set of pixels
which define the simplex with the maximum volume, potentially inscribed within the dataset. After a previous

e1

e3

e2

e1

e3

e2

(a) Initial volume estimation using random pixels (b) Final volume estimation and endmembers

Fig. 4. Toy example illustrating the concept of the N-FINDR endmember algorithm in a 2-D space.

96 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
dimensionality reduction step, a set of pixel vectors is first randomly selected, and their corresponding volume
is calculated. For illustrative purposes, Fig. 4a shows an example of the above situation, in which 3 randomly
selected endmembers (represented as black circles) define a volume which can be used to expressed mixed pix-
els included in the volume (represented as gray circles) in terms of linear combinations of endmembers. As
shown by Fig. 4a, many hyperspectral pixel vectors (represented as white circles) may remain unexplained
after the initial random selection. In order to refine the initial estimate and improve the endmember selection
procedure, a trial volume is then calculated for every pixel in each endmember position by replacing that end-
member and recalculating the volume. If the replacement results in a volume increase, the pixel replaces the
endmember. This procedure is repeated until there are no replacements of endmembers left. As shown by
Fig. 4b, the endmembers obtained at the end of this process will likely define a simplex which encloses most
of the pixels in the input hyperspectral data set.

The iterative error analysis (IEA) algorithm [16] can be considered a variation of the N-FINDR algorithm
which aims at obtaining the final estimate through an iterative procedure. Here, a single pixel vector (usually
the mean spectrum of the data) is chosen to start the process. A linear spectral unmixing in terms of this vector
is then performed as described in the standard data processing chain shown in Fig. 2, and an error image,
formed by the errors remaining at each pixel after a linear spectral unmixing operation, is then calculated.
The spectral vector corresponding to the pixel with the single largest error after the abundance estimation pro-
cess is labeled as the first endmember. A new linear spectral unmixing operation in terms of this vector is used
to find a second endmember, a third endmember, and so on, until a predefined number of endmembers is
obtained.

Finally, the automated morphological endmember extraction (AMEE) [17] is the only available technique
that integrates the spatial and the spectral information in the search for spectral endmembers. The method is
based on the utilization of a kernel or structuring element [18] that is moved through all the pixels of the image,
defining a spatial search area around each pixel vector. The spectrally purest and the spectrally most highly
mixed spectral signatures are respectively obtained at the neighborhood of each pixel by calculating the spec-
tral angle between the purest and most highly mixed pixels. Fig. 5 shows a toy example illustrating the per-
formance of the two morphological operations considered for the selection of pure/mixed pixels. As shown
by Fig. 5, morphological dilation expands the purest areas in the scene by selecting the most highly pure pixels
(represented as white and dark pixels in Fig. 5) in the structuring element neighborhood. Quite opposite, mor-
phological erosion expands the most highly pure areas in the hyperspectral image by selecting the most highly
mixed pixels (represented as gray pixels in Fig. 5) in the same neighborhood. These operations are repeated for
all the pixels in the scene until a morphological eccentricity index (MEI) score is generated for each pixel vector.
The pixels with highest associated MEI scores are assumed to be the final endmembers.

It should be noted that both the identification of image endmembers and the subsequent unmixing process
are computationally demanding problems. However, very few research efforts devoted to the design of parallel

Fig. 5. Performance of morphological dilation and erosion operations used by the AMEE morphological endmember extraction
algorithm.

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 97
implementations currently exist in the open literature. In particular, some existing parallel hyperspectral
imaging techniques are subject to non-disclosure restrictions, mainly due to their use in military and defense
applications. Nevertheless, with the recent explosion in the amount and dimensionality of hyperspectral imag-
ery, parallel processing is expected to become a requirement in virtually every remote sensing application. To
address this issue, this paper takes a necessary first step toward the comparison of different techniques and
strategies for parallel hyperspectral image analysis on heterogeneous platforms.

It is important to reiterate that spectral mixture analysis techniques for hyperspectral imaging focus on ana-
lyzing the data based on the properties of spectral signatures, i.e., they utilize the information provided by
each pixel vector as a whole. This consideration has a significant impact on the design of data partitioning
strategies for parallelization. In particular, it has been shown in the literature that domain decomposition tech-
niques provide flexibility and scalability in parallel image processing [19–21]. In hyperspectral imaging, two
types of partitioning can be exploited: spectral-domain partitioning and spatial-domain partitioning. Spec-
tral-domain partitioning subdivides the volume into sub-volumes made up of contiguous spectral bands
Fig. 6. The two main approaches to volume data partitioning in hyperspectral imaging applications.

98 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
(see Fig. 6a), and assigns one or more sub-volumes to each processor. With this model, each pixel vector may
be split among several processors and the communication cost associated to the computations based on spec-
tral signatures would be increased [22]. In order to exploit parallelism as much as possible, we have adopted a
spatial-domain partitioning approach (see Fig. 6b), in which the data is partitioned in slabs which retain the
full spectral information. There are several reasons that justify our decision to incorporate spatial-domain par-
titioning techniques in our application:

1. First and foremost, spatial-domain partitioning is a natural approach for low-level image processing as
many image processing operations require the same function to be applied to a small set of elements around
each entire pixel vector in the image volume.

2. A second reason is that, in spectral-domain partitioning, the calculations made for each pixel vector need to
originate from several processors and thus require intensive inter-processor communication. This is gener-
ally perceived as a shortcoming for parallel design, because the overhead introduced by inter-processor
communication would increase linearly with the increase in the number of processing elements, thus com-
plicating the design of parallel algorithms (in particular, in heterogeneous environments [23]).

3. A final major issue is code reusability; to reduce code redundancy and enhance portability, it is desirable to
reuse much of the code for the sequential algorithm in the design of its correspondent parallel version and
the spatial-domain approach greatly enhances code reuse [22].

As will be shown in the following section, all the parallel algorithms developed in this paper are designed
under the assumption that each pixel vector is uniquely represented by its associated spectral signature. There-
fore, the introduction of a spectral-domain-based decomposition approach would require additional strategies
to combine the partial results from several processing elements.

3. Parallel hyperspectral imaging algorithms

This section describes the parallel algorithms that will be compared in this study. Before introducing the
algorithm descriptions, we first formulate a general optimization problem in the context of fully heterogeneous
systems. We assume that processing elements in the system can be modeled as a set of computing resources
P ¼ fpig

jP j
i¼1, where jPj denotes the total number of processors in the system, and each processor is weighted

by its relative speed wi [23]. In order to estimate processor relative speeds, we use a representative benchmark
function which makes use of a core computation directly linked to the considered application domain. We also
denote by W the total workload to be performed by a certain hyperspectral imaging algorithm. Such workload
depends on the considered algorithm. Since most processing algorithms in hyperspectral imaging applications
involve repeated vector product operations, we can measure the workload involved by each considered algo-
rithm in terms of elementary multiplication/accumulation (MAC) operations. With the above assumptions in
mind, processor pi will accomplish a share of ai �W of the total workload executed by a certain algorithm,
where ai P 0 for 1 6 i 6 jPj and

PjP j
i¼1ai ¼ 1. An abstract view of the problem can be simply stated in the form

of a client–server architecture [24,25], in which a server node is responsible for the distribution of work among
the jPj nodes, and the client nodes operate with the spectral signatures contained in a local partition. The local
partitions are updated locally and, depending on the algorithm under consideration, the resulting calculations
may also be exchanged between the client processors, or between the server and the clients. The general
sequence of operations executed by our server program is summarized below:

Algorithm 1. General server program (GSP)

Input: N-D data cube F.
Output: Set of jPj spatial-domain heterogeneous partitions of F.
1. Generate necessary system information, including the number of available processors in the system, jPj,
each processor’s fpig

jP j
i¼1 identification number, processor relative speeds fwigjP ji¼1, and other data.

2. Set ai ¼ wi=
PjP j

i¼1wi

� �
for all i 2 {1, � � � ,jPj}.

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 99
3. Use faigjP ji¼1 to obtain a set of jPj spatial-domain heterogeneous partitions of F, so that the spectral channels
corresponding to the same pixel vector are never stored in different partitions. In order to perform the spa-
tial-domain data partitioning described above, we have adopted a simple methodology which consists of
two main steps:
(a) The hyperspectral data set is partitioned, using spatial-domain decomposition, into a set of vertical

slabs which retain the full spectral information at the same partition (see Fig. 6b). The number of
rows in each slab is considered to be proportional to the estimated values of faigjP ji¼1, and assuming
that no upper bound exist on the number of pixel vectors that can be stored by the local memory
at the considered processor.

(b) For each processor, check if the number of pixel vectors assigned to it is greater than the upper
bound. For all the processors whose upper bounds are exceeded, assign them a number of pixels equal
to their upper bounds. Now, we solve the partitioning problem of a set with remaining pixel vectors
over the remaining processors. We recursively apply this procedure until all the pixel vectors in the
input data have been assigned.

It should be noted that, with the proposed algorithm description, it is possible that all processors exceed
their upper bounds. This situation was never observed in our previous experiments on parallel processing of
standard hyperspectral data sets using different platforms [22]. However, if the considered network includes
processing units with low memory capacity, this situation could be handled by allocating an amount of data
equal to the upper bound to those processors, and then processing the remaining data as an offset in a second
algorithm iteration.

In the following, we particularize the client–server architecture described above for each specific parallel
method by considering three algorithm sub-categories: dimensionality reduction, endmember extraction and
spectral unmixing, where dimensionality reduction is employed by some endmember extraction algorithms
(PPI, N-FINDR) to reduce the hyperspectral data volume prior to processing.
3.1. Parallel dimensionality reduction algorithm

In this section, we describe a dimensionality reduction method which is based on the principal component
transform (PCT), often used in hyperspectral analysis to summarize and decorrelate the images by reducing
redundancy and packing the residual information into a small set of images, termed principal components.
PCT is a highly compute-intensive algorithm amenable to parallel implementation. Here, we describe an algo-
rithm which is a variant of singular value decomposition of principal components [26].

Algorithm 2. Parallel PCT-based dimensionality reduction (P-PCT)

Input: N-D data cube F, Number of spectral bands to be retained, E.
Output: E-D data cube G.

1. Divide the original data cube F into jPj heterogeneous partitions using the GSP algorithm, where P is the
number of workers.

2. Calculate the N-D mean vector �f concurrently, where each component is the average of the pixel values of
each spectral band of the input data. This vector is formed at the master once all the workers have finished
their parts respective. The total workload involved by this step is M � N, where M is the number of pixels
in the hyperspectral image and N is the number of spectral bands.

3. Broadcast vector �f to all workers so that each worker pi computes the local covariance component using
1

M�1

� �P
ðx;yÞ2Fi

ðfðx; yÞ � �fÞ � ðfðx; yÞ � �fÞT, where the superscript ‘‘T” denotes the matrix transpose operation
and Fi denotes the spatial-domain partition of F allocated to by the GSP algorithm.

4. The master calculates the covariance matrix using the local matrices calculated in Step 3. It should be noted
that Steps 4 and 5 involve M matrix multiplications and a total workload of M � N2.

5. Obtain a transformation matrix T by calculating and sorting the eigenvectors of the covariance matrix
according to their eigenvalues, which provide a measure of their variances. As a result, the spectral content

100 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
is forced into the front components. Since the degree of data dependency of the calculation is high and its
complexity is related to the number of spectral bands rather than the image size, this step is done sequen-
tially at the master (eigenvectors calculation involves a workload of N3 [27]).

6. Transform each N-D pixel vector in the original image by using gðx; yÞ ¼ T � ½fðx; yÞ � �f�. This step is done
in parallel, i.e., all workers transform their respective data portions. The linear transformation process is
performed over all the pixels in F and each computation on a pixel involves a matrix multiplication. Thus,
the workload of this step is M2 � N2. The results are sent to the master, which retains the first E compo-
nents of the resulting data cube G for subsequent processing.
3.2. Parallel endmember extraction algorithms

Three main classes of endmember extraction algorithms are considered in this section [13]: convex geom-
etry, constrained error minimization, and integrated spatial/spectral developments. Two parallel algorithms
have been developed to represent the first category: PPI and N-FINDR. Both of them incorporate a previous
PCT-based dimensionality reduction step. The second class of algorithms is represented by a parallel version
of the IEA algorithm. Finally, a parallel version of the AMEE algorithm is also presented and discussed. This
algorithm integrates the spatial and spectral information as opposed to the other discussed algorithms, a fea-
ture that introduces additional considerations for its parallelization.

3.2.1. Parallel implementation of pixel purity index algorithm (P-PPI)

The P-PPI algorithm consists of two parallel stages applied sequentially, i.e., PCT-based dimensionality
reduction and pixel purity index-based pre-processing. The latter stage is described below:

Algorithm 3. Parallel pixel purity index pre-processing (P-PPI)

Input: E-D cube G, Number of skewers J, Threshold value T.
Output: Set of E final endmembers feegE

e¼1.

1. Divide the original data cube G into jPj heterogeneous partitions using the GSP algorithm, where jPj is the
number of workers.

2. Generate a set of J random unit N-D vectors called ‘‘skewers,” denoted by fskewerjgJ
j¼1, and broadcast the

entire set to all the workers.
3. For each skewerj, project all the data sample vectors at each local partition Gi, with i = 1, � � � ,jPj, onto ske-

werj using the expression jskewerj � gðx; yÞj ¼
PE

k¼1skewerðx; yÞðkÞ � gðx; yÞðkÞ, where the superscript ‘‘(k)”
denotes the k-th spectral component. This allows us to find pixel vectors at extreme positions and form
an extreme set for skewerj, denoted S(i)(skewerj). Then, we define an indicator function of a set S by

ISðxÞ ¼
1; ifx 2 S
0; ifx 62 S

�
, and use it to calculate N ðiÞPPI½gðx; yÞ� ¼

P
jISðiÞðskewerjÞ½gðx; yÞ� for each pixel vector

g(x, y) at Gi. Pixels with N ðiÞPPI½gðx; yÞ� > T are selected and sent to the master.

4. The master collects all the partial results and merges them to form a set of final endmembers feegE
e¼1.

The total workload involved in the PPI algorithm can be approximated by M � J � E, where M is the
number of pixel vectors in the input scene, J is the number of skewers, and E is the number of spectral bands
after PCT-based dimensionality reduction.
3.2.2. Parallel implementation of N-FINDR algorithm (P-FINDR)

The P-FINDR algorithm consists of three main steps: random endmember selection, simplex vol-
ume calculation and volume replacement. It should be noted that, due to the lack of detailed imple-
mentations of the N-FINDR algorithm in the literature, our parallel version incorporates our own
understanding of the algorithm in accordance with high-level algorithmic descriptions provided in
[15,28].

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 101
Algorithm 4. Parallel N-FINDR-based endmember selection (P-FINDR)

Input: E-D cube G.
Output: Set of E final endmembers feegE

e¼1.

1. The master selects a random set of E initial pixel vectors feð0Þe g
E
e¼1, and then finds V ðeð0Þ1 ; e

ð0Þ
2 ; � � � ; eð0ÞE Þ, i.e.,

the volume of the simplex defined by feð0Þe g
E
e¼1, denoted by Sðeð0Þ1 ; e

ð0Þ
2 ; � � � ; eð0ÞE Þ, as follows:
V ðeð0Þ1 ; e
ð0Þ
2 ; � � � ; eð0ÞE Þ ¼

det
1 1 . . . 1

e
ð0Þ
1 e

ð0Þ
2 . . . e

ð0Þ
E

� �				
				

ðE � 1Þ!

2. The workers calculate the volume of E simplexes, V ðgðx; yÞ; eð0Þ2 ; � � � ; eð0ÞE Þ; . . . ; V ðeð0Þ1 ; e

ð0Þ
2 ; � � � ; gðx; yÞÞ in par-

allel, each of which is formed by replacing one endmember eð0Þe with the sample vector g(x, y). Each
worker performs replacements using pixels in its local partition, obtained using the GSP algorithm.

3. If none of these E recalculated volumes is greater than V ðeð0Þ1 ; e
ð0Þ
2 ; � � � ; eð0ÞE Þ, then no endmember in feð0Þe g

E
e¼1

is replaced. Otherwise, the master replaces the endmember which is absent in the largest volume among the
E simplexes with the vector g(x,y). Let such endmember be denoted by e

ð0Þ
l . A new set of endmembers is

produced sequentially at the master by letting e
ð1Þ
l ¼ gðx; yÞ and eð1Þe ¼ eð0Þe for e 6¼ l.

4. Repeat from step 2 until no replacements occur.

As described in [29], the total workload involved by the N-FINDR algorithm can be approximated by taking
into account that the algorithm has to compute the determinant of a E � E matrix E � N times. The naive
method of implementing an algorithm to compute the determinant is to use Laplace’s formula for development
by minors [28]. However, this approach is inefficient as it is of order E! for a E � E matrix. In this work, an
improvement to E3 is achieved by using the LU decomposition for the computation of determinants [30].
3.2.3. Parallel implementation of IEA algorithm (P-IEA)
The IEA algorithm produces a set of endmembers sequentially as opposed to PPI and N-FINDR, which

generate the final endmember set in single-shot mode. As shown below, parallelization of IEA requires several
master–worker communications during the execution.

Algorithm 5. Parallel iterative error analysis (P-IEA)

Input: N-D data cube F, Number of endmembers E.
Output: Set of E final endmembers feegE

e¼1.

1. Divide the original data cube F into jPj heterogeneous partitions using the GSP algorithm, where jPj is the
number of workers.

2. Calculate the N-D mean vector �f concurrently, where each component is the average of the pixel values of
each spectral band of the input data. This vector is formed at the master once all the processors have fin-
ished their respective parts. The workload involved by this step is M � N, where M is the total number of
pixels in the hyperspectral image and N is the number of spectral bands.

3. Broadcast �f to all workers so that each worker can form an error image by assuming that all pixels in the
local partition are made up of �f with 100% abundance.

4. Each worker finds the pixel f(x, y) in the local partition (obtained using GSP algorithm) with the largest
abundance estimation error, i.e., the pixel that has largest error (in least squares sense [12]) if it is repre-
sented in terms of a linear mixture of the pixels found by previous iterations. As shown in [1], this is done
by multiplying each pixel f(x, y) by (MT M)�1MT, where M ¼ feegE

e¼1 and the superscript ‘‘T” denotes the
matrix transpose operation. The pixel with largest abundance estimation error, denoted by pi, and its asso-
ciated error score, denoted by si, are sent to the master.

5. The master selects a first endmember e1 as the pixel pi with the maximum associated error score sk, for
i = 1, � � � ,jPj and broadcasts E = [e1] to all the workers.

102 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
6. Repeat from step 4 using E instead of �f, and repeatedly incorporate a new endmember e2, e3, . . ., eE to E

until E ¼ feegE
e¼1, in which case the algorithm is terminated.

It should be noted that the IEA is a computationally demanding algorithm, in particular, when the number
of endmembers to be detected is very large [16]. In particular, Steps 4 to 6 involve a vector-matrix
multiplication with workload of N2 � E, and three matrix multiplications, each with workload E3. As the
value of E grows, the complexity of the algorithm increases in exponential fashion.

We must also note that there are a number of salient differences between the P-IEA (algorithm 5 above) and
the P-PPI (which consists of parallel algorithms 2 and 3) and the P-FINDR (which consists of algorithms 2
and 4). First, the P-IEA does not require a dimensionality reduction step. Further, both the P-PPI and the P-
FINDR must research all the endmembers when parameter E is changed, which is a usual practice in
hyperspectral studies. In other words, a set of E-1 endmembers is not necessarily a subset of E endmembers
generated by the same algorithm. Quite opposite, the P-IEA produces endmembers in order, so a set of E

generated endmembers always includes the set of previously generated E-1 endmembers.
3.2.4. Parallel implementation of AMEE algorithm (P-AMEE)

To conclude this section, we outline a parallel morphological technique (P-AMEE) that also works with the
entire input data cube with no need for previous dimensionality reduction [22]. First, a cumulative distance
between each pixel vector f(x, y) and all pixel vectors in the spatial neighborhood given by a spatial kernel
or structuring element B is defined as
DB½fðx; yÞ� ¼
X

s

X
t

SAM½fðx; yÞ; fðs; tÞ�;whereðs; tÞ 2 Z2ðBÞ;
where SAM is the spectral angle mapper, given by
SAM½fðx; yÞ; fðs; tÞ� ¼ cos�1½fðx; yÞ � fðs; tÞ=kfðx; yÞk � kfðs; tÞk�:

Based on the above metric, extended morphological erosion and dilation can be used, respectively, to extract
the most highly pure and the most highly mixed pixel in the B-neighborhood as follows [17]:
ðfHBÞðx; yÞ ¼ arg min
ðs;tÞ2Z2ðBÞ

fDB½fðxþ s; y þ tÞ�gandðf � BÞðx; yÞ ¼ arg max
ðs;tÞ2Z2ðBÞ

fDB½fðxþ s; y þ tÞ�g:
The extended morphological operations defined above (called morphological erosion and dilation, respec-
tively, and illustrated in Fig. 5) are used to design a heterogeneous algorithm as follows [31]:

Algorithm 6. Parallel morphological endmember extraction (P-AMEE)

Input: N-D cube F, Number of iterations Imax, 3 � 3-pixel structuring element B, Number endmembers E.
Output: Set of final endmembers feegE

e¼1.

1. Divide the original data cube F into jPj heterogeneous partitions, denoted by fPSSPigjP ji¼1 (called parallel-
izable spatial/spectral partitions) using the GSP algorithm in combination with a data-replication function
to avoid accesses outside the local domain of each partition [22]. Then, scatter the partial data structures to
each of the jPj workers.

2. Using parameters Imax, B and E, each worker executes the sequential AMEE algorithm locally at each pro-
cessor pi for the corresponding PSSPi. The sequential algorithm has been described before [13,17], and con-
sists of the following steps:
2.1. Set j = 1 and initialize a morphological eccentricity index score MEI(x, y) = 0 for each local pixel.
2.2. Move B(a fixed 3 � 3-pixel structuring element) through all the pixels of the local PSSPi and calculate

the maximum and the minimum pixels using erosion and dilation operations, respectively. Update the
MEI score at each pixel by calculating the SAM between the maximum and the minimum.

2.3. Set j = j + 1. If j = Imax then go to step 2.4. Otherwise, replace PSSPi by its dilation using B and go to
2.2.

2.4. Select the set of E pixel vectors in the local partition with the highest MEI scores.

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 103
3. The master gathers all the individual endmember sets provided by the workers and forms a unique set
feegE

e¼1 by calculating the SAM for all possible pairs.

The workload involved by the first two steps of the AMEE algorithm can be approximated by
M � B � Imax � N, where M is the number of pixel vectors in the input image, B is the size in pixels of the
structuring element (set to a constant B = 3 � 3 in this work), Imax is the number of iterations, and N is the
number of spectral bands. In order to form a unique set of endmembers feegE

e¼1, an additional number of
E2 � N operations is required.

We emphasize that Step 1 of P-AMEE algorithm uses a function that replicates border data such that the
intersection between two adjacent partitions is non-empty. This allows processing of local border pixels via the
considered 3 � 3-pixel structuring element without additional communications (otherwise, pixel vectors in a
different partition should be communicated to complete the calculations for border pixel vectors at the local
partition). Such replication-based strategy has been demonstrated in previous work to be more efficient than
allowing data communication for such pixels [22], mainly due to the large volume of information to be
communicated in hyperspectral imagery as a result of the high-dimensional nature of pixel vectors. A similar
strategy is provided in the user transparent software architecture in [32].

It is also worth noting that our implementation of P-AMEE makes use of a constant 3 � 3-pixel structuring
element through iterations. As a result, instead of increasing the size of the structuring element, we replace the
original cube F (or, equivalently, a local partition in parallel processing) by the resulting cube after a dilation
operation using B. This allows us to perform multi-scale analysis without increasing the overlap border size
between iterations, thus minimizing the amount of redundant computations.
3.3. Parallel spectral unmixing algorithm

Once a set of spectral endmembers has been identified, an inversion model is required to estimate the frac-
tional abundances of each of the endmembers at the mixed pixels. Here, we use a commonly adopted technique
in the hyperspectral analysis literature [1], i.e., the linear spectral unmixing (LSU) technique that can be briefly
described as follows. Suppose that there are E endmembers e1, e2, . . ., eE in a hyperspectral image scene, and let m

be a mixed pixel vector. LSU assumes that the spectral signature of m can be represented by a linear mixture of
e1, e2, . . ., eE with appropriate abundance fractions specified by a1, a2,. . ., aE. Then, we can model the spectral
signature of an image pixel m by a linear regression form m = e1 � a1 + e2 � a2 + � � � + eE � aE. Two constraints
should be imposed on this model to produce adequate solutions. These are the abundance sum-to-one con-
straint, that is,

PE
e¼1ae ¼ 1, and the abundance non-negativity constraint, that is, ae P 0 for 1 6 e 6 E, where

the two constraints above can be imposed as described in [12]. The process of LSU works on a pixel-by-pixel
basis with no data dependencies involved, so the parallel implementation is simply given by the algorithm below.

Algorithm 7. Parallel linear spectral unmixing (P-LSU)

Input: N-D data cube F, Set of final endmembers feegE
e¼1.

Output: Set of fractional abundances faeðx; yÞgE
e¼1 for each pixel f(x, y).

1. Divide the original data cube F into jPj heterogeneous partitions using the GSP algorithm, where jPj is the
number of workers.

2. Broadcast the set feegE
e¼1 to all the workers.

3. For each pixel f(x, y) in a local partition, obtain a set of abundance fractions specified by a1(x,y), a2(x,y),. . .,
aE (x, y) using feegE

e¼1, so that f(x,y) = e1 � a1(x,y) + e2 � a2(x,y) + � � � + eE � aE (x, y), and taking into
account the abundance sum-to-one and abundance non-negativity constraints [12]. This is done by multi-
plying each pixel f(x, y) by (MT M)�1MT [1], where M ¼ feegE

e¼1. As mentioned above, this step involves a
vector-matrix multiplication with workload of N2 � E, and three matrix multiplications, each with E3.

4. The master collects all the individual sets of fractional abundances faðiÞe ðx; yÞg
E
e¼1 calculated for the pixels at

every individual partition i, with i = 1, � � � ,P, and forms a final set of fractional abundances designated by
faeðx; yÞgE

e¼1 ¼ [P
i¼1faðiÞe ðx; yÞg

E
e¼1.

104 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
As a final note, we reiterate that the proposed hyperspectral data processing chain consists of a sequence of
three steps, i.e., dimensionality reduction (optional), endmember extraction, and spectral unmixing (see
Fig. 2), each of which has been implemented in parallel in this work. Although implementations for parallel
dimensionality reduction [26,27] and endmember extraction algorithms [22,33] are available in the literature
(in homogeneous form), the heterogeneous implementations described in this section represent highly
innovative contributions. Performance data for all considered parallel algorithms are given in the following
section.
4. Experimental results

This section provides an assessment of the effectiveness of the parallel algorithms described in Section 3.
Before describing our study on performance analysis, we first describe the parallel computing architectures
used for evaluation purposes.

4.1. Parallel computing architectures

Two different parallel computing platforms have been used in this work for experimental assessment. Table
1 shows the specifications of processors in a fully heterogeneous cluster of computers available at Heteroge-
neous Computing Laboratory, University College Dublin.1 It is made up of 16 nodes from Dell, IBM, and
HP, with Celeron, Pentium 4, Xeon, and AMD processors ranging in speed from 1.8 to 3.6 Ghz. Accordingly,
architectures and parameters such as cache and main memory all vary. Two machines have SCSI hard drives
while the rest have SATA. Operating Systems used are Fedora Core 4 (11 nodes) and Debian (5). The network
hardware consists of two Cisco 24 + 4 port Gigabit switches. Each node has two Gigabit ethernet ports.

For illustrative purposes, Table 1 also reports the relative speed of each processor in the heterogeneous
cluster, estimated using a benchmark function representative of hyperspectral imaging algorithms. At this
point, we reiterate that the nature of the benchmark function used as a baseline for estimating the relative
speed of processors is crucial for the success of the general optimization problem described in Section 3.
On the one hand, this function should be truly representative of the underlying application. On the other
hand, the computations involved in such function should be small enough to give an accurate approximation
of the processing power in a short time.

In this work, we have adopted as representative benchmark computation for all described hyperspectral
image processing algorithms the dot product between two spectrally distinct N-dimensional vectors (spectral
signatures). A dot product calculation between two different pixel vectors, say, f(x, y) and f(s, t), is given byPN

k¼1fðx; yÞðkÞ � fðs; tÞðkÞ, where the superscript ‘‘(k)” denotes the k-th spectral component of the pixel vector.
There are several reasons that justify our selection of the dot product as representative benchmark function in
the context of our application:

1. First and foremost, the projection of an N-dimensional vector to another one is a baseline computation
included in all the hyperspectral image processing algorithms described in Section 3. Therefore, the use
of this regular core computation is truly representative of every algorithm, as indicated by the fact that
the workload performed by each algorithm can be expressed in terms of elementary MAC operations.

2. Secondly, the proposed benchmark function allows for simple modelling of memory parameters relative to
processing nodes in the considered heterogeneous architecture. In order to model the impact of local mem-
ory on the proposed benchmark function, we simply assume that the amount of data allocated to a single
processor in the heterogeneous cluster is a full AVIRIS hyperspectral cube with 614 � 512 pixels and 224
spectral bands (each stored using 2 bytes). This is the standard image size produced by AVIRIS in each
pass. Since AVIRIS is the most advanced hyperspectral instrument currently available, it provides a highly
relevant case study for the definition of the benchmark function. In particular, our benchmark function
assumes a realistic scenario in which each processor may be forced to make use of reallocation/paging
1 See http://hcl.ucd.ie/Hardware for additional details.

http://hcl.ucd.ie/

Table 1
Specifications of processors in a heterogeneous cluster at University College Dublin, and relative speed of each processor, estimated using
a benchmark function tuned for hyperspectral imaging applications

Model Processor O/S CPU
(Ghz)

Mem.
(MB)

Cache
(KB)

HDD1 HDD2 Relative
speed

0, 1 Dell Poweredge SC1425 Intel Xeon Fedora Core 4 3.6 256 2048 240 GB SCSI 80 GB SCSI 7.91
2, 3, 4,
5, 6, 7

Dell Poweredge 750 Intel Xeon Fedora Core 4 3.4 1024 1024 80 GB SATA N/A 7.22

8 IBM E-server 326 AMD Opteron Debian 1.8 1024 1024 80 GB SATA N/A 2.76
9 IBM E-server 326 AMD Opteron Fedora Core 4 1.8 1024 1024 80 GB SATA N/A 2.61

10 IBM X-Series 306 Intel Pentium 4 Debian 3.2 512 1024 80 GB SATA N/A 6.15
11 HP Proliant DL 320 G3 Intel Pentium 4 Fedora Core 4 3.4 512 1024 80 GB SATA N/A 6.84
12 HP Proliant DL 320 G3 Intel Celeron Fedora Core 4 2.9 1024 256 80 GB SATA N/A 3.55
13 HP Proliant DL 140 G2 Intel Xeon Debian 3.4 1024 1024 80 GB SATA N/A 7.61
14 HP Proliant DL 140 G2 Intel Xeon Debian 2.8 1024 1024 80 GB SATA N/A 3.39
15 HP Proliant DL 140 G2 Intel Xeon Debian 3.6 1024 2048 80 GB SATA N/A 8.72

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 105
mechanisms due to cache misses. This approach allows us to realistically model the relative speed of each
heterogeneous processor by simply running a standardized core computation for hyperspectral image pro-
cessing algorithms, assuming that the processor running the algorithm stores a full hyperspectral data cube
in its local memory.

3. Finally, we must note that the considered core computation is very small compared to the other computa-
tions performed by any hyperspectral algorithm (execution of the benchmark function used to produce the
relative speeds reported in Table 1 took less than 0.015 seconds in all cases).

In order to analyze issues of algorithm scalability on larger-scale parallel platform, we have also experi-
mented with Thunderhead, a 568-processor Beowulf cluster located at NASA’s Goddard Space Flight Center
in Maryland. Thunderhead can be seen as an evolution of the HIVE (Highly Parallel Virtual Environment)
project [6], started in 1997 to build a homogeneous commodity cluster to be used in a wide range of scientific
applications. The Thunderhead consists of 268 Xeons which results in a total peak performance of 2.5728
Tflops (http://thunderhead.gsfc.nasa.gov). Each of the nodes has 1 GB of main memory and 80 GB of local
disk space. Despite the computational power offered by Thunderhead, a current design trend at Goddard and
other NASA centers is to exploit heterogeneous, massively parallel computing platforms able to operate in
large-scale distributed environments. To explore the scalability of the proposed algorithms in available mas-
sively parallel platforms, performance data on Thunderhead will also be given in this section.

4.2. Performance analysis

The parallel algorithms were applied to a hyperspectral scene collected by an AVIRIS flight over the Cupr-
ite mining district in Nevada, which consists of 614 � 512 pixels and 224 bands (137 MB in size). The site is
well understood mineralogically, and has several exposed minerals of interest. Fig. 7a shows a spectral band of
the image, and Fig. 7b plots the spectra of five minerals measured in the field by US Geological Survey
(USGS). These signatures will be used to substantiate endmember extraction accuracy. Fractional abundance
maps derived by the USGS Tetracorder method2 will also be used to evaluate abundance estimation accuracy.
Since the AVIRIS data are available online,3 people interested in the proposed parallel algorithms can repro-
duce our results and conduct their own experiments.

An experiment-based cross-examination of endmember extraction and abundance estimation accuracy is
first presented in Table 2, which tabulates the SAM scores obtained after comparing five USGS library spectra
with the corresponding endmembers extracted by the parallel algorithms. The smaller the SAM values across
2 http://speclab.cr.usgs.gov/spectral-lib.html.
3 http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

http://thunderhead.gsfc.nasa.gov
http://speclab.cr.usgs.gov/spectral-lib.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html

Fig. 7. (a) Spectral band at 587 nm wavelength of the AVIRIS scene comprising mineral features at the Cuprite mining district, Nevada.
(b) USGS ground-truth mineral spectra.

Table 2
SAM-based similarity scores and RMSE-based abundance estimation errors (in bold typeface) between USGS signatures and algorithm-
derived endmembers

Algorithm Alunite Buddingtonite Calcite Kaolinite Muscovite

P-PPI 0.084 0.106 0.105 0.136 0.108
0.164 0.193 0.186 0.217 0.195

P-FINDR 0.094 0.052 0.065 0.105 0.098
0.194 0.163 0.178 0.205 0.186

P-IEA 0.091 0.103 0.093 0.078 0.081
0.123 0.134 0.119 0.116 0.131

P-AMEE 0.073 0.071 0.084 0.064 0.077
0.114 0.105 0.116 0.103 0.112

106 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
the five minerals considered in Table 2, the better the results. It should be noted that Table 1 only displays the
smallest SAM scores of all endmembers with respect to each USGS signature for each algorithm. In previous
work, we have experimentally tested that spectral similarity scores below 0.1 can be considered as widely
acceptable [13]. As a result, Table 2 reveals that most endmember extraction algorithms tested can provide
signatures which are very similar, in spectral terms to ground-truth references. Table 2 also reports (in bold
typeface) the root mean square error (RMSE) between the abundances estimated by using the P-LSU algo-
rithm in combination with the endmembers provided by the different methods, using the following expression
RMSEðeeÞ ¼ ð1=MÞ
XX

x¼1

XY

y¼1

½aeðx; yÞ � âeðx; yÞ�2
 !1=2

;

where âeðx; yÞ denotes the abundance estimated by P-LSU for endmember ee at the pixel f(x, y), ae(x, y) de-
notes the abundance measured by USGS for that endmember at the same pixel, and M = X � Y is the total
number of pixels in the input hyperspectral image. Overall, abundance estimation results in Table 2 reveal er-
rors of about 10% for most considered algorithms. This figure is considered to be widely acceptable in the con-
text of remote sensing applications [13].

We must also note that the number of endmembers to be extracted, E, was set to 16 for all parallel methods
tested after using the virtual dimensionality (VD) concept, which is used to automatically calculate the number
of components that should be retained after applying a PCT transform for explaining most of the variance of

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 107
the data using a limited number of components [1]. However, only five endmembers were used for evaluation
due to limited ground-truth data availability. Prior to a full examination and discussion of results, it is impor-
tant to outline parameter values used for the P-PPI and P-AMEE methods, bearing in mind that the other
tested parallel methods only require as input the number of endmembers to be found, E. For the P-PPI,
parameter T was set to the mean of NPPI scores after J = 103 skewer iterations. Previous studies on our P-
AMEE algorithm revealed that high quality endmembers were found by setting Imax = 7 iterations [22]. We
emphasize that the parameter settings above are in agreement with those used in previous studies [13]. The
output provided by the parallel algorithms was verified using not only our sequential implementations, but
also the original versions of the algorithms (using the same parameter settings) as well. In all cases, we exper-
imentally tested that our versions provided exactly the same results as those found by the original algorithms.

4.2.1. Performance analysis on the heterogeneous cluster
To investigate the parallel properties of the tested algorithms using the AVIRIS scene in Fig. 7a, their per-

formance was first tested by timing the programs on the heterogeneous cluster of workstations described in
Table 1. For that purpose, Table 3 reports the execution times (in seconds) measured for the parallel algo-
rithms in each of the processors of the heterogeneous cluster. For comparative purposes, Table 4 reports
the processing times measured for real sequential versions of the tested algorithms, executed in only one pro-
cessor of the same heterogeneous cluster. We selected processor #10 in Table 1 for testing the sequential imple-
mentations because its relative speed (6.15) was the closest one to the average of all relative speeds reported in
Table 2.

As shown by Table 3, the heterogeneous algorithms seemed to be able to adapt efficiently to the heteroge-
neous computing environment where they were run. In particular, after comparing the times reported on
Table 3 to those reported on Table 4, one can see that the heterogeneous algorithms, executed on the heter-
ogeneous cluster, were always several times faster than the equivalent sequential algorithms executed on pro-
cessor #10 of the heterogeneous cluster. It is also worth noting that the fastest algorithm on the heterogeneous
Table 3
Execution times (in seconds) of the parallel algorithms in each of the processors of the heterogeneous cluster (processor #10 is used as the
master)

Processor # P-PCT P-PPI P-FINDR P-IEA P-AMEE P-LSU

0 136.67 304.21 47.02 278.45 145.63 152.23
1 136.91 304.69 47.19 278.60 145.64 152.49
2 136.75 304.05 47.06 278.52 145.65 152.40
3 136.73 304.02 47.02 278.47 145.64 152.35
4 136.42 303.78 46.94 278.12 145.56 152.16
5 136.48 303.89 46.97 278.22 145.58 152.19
6 136.12 303.79 46.81 278.03 144.39 151.94
7 136.29 303.99 46.64 278.09 145.56 152.03
8 136.39 304.04 46.90 278.12 145.60 151.82
9 136.92 304.78 47.27 278.34 145.72 152.58

10 150.27 332.04 52.19 302.21 147.63 155.37
11 136.55 304.53 47.00 278.39 145.61 152.20
12 136.52 304.48 46.97 278.33 145.59 152.19
13 136.53 304.51 46.99 278.35 145.59 152.21
14 136.50 304.50 46.90 278.30 145.58 152.18
15 136.45 304.47 46.92 278.28 145.58 152.15

Table 4
Execution times (in seconds) of real sequential versions of the considered algorithms measured in processor #10 of the heterogeneous
cluster

P-PCT P-PPI P-FINDR P-IEA P-AMEE P-LSU

1540 3669 539 3393 2149 2296

108 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
cluster was the P-FINDR, which was the only one able to provide a response below 1 min, while both P-PPI
and P-IEA resulted in the highest processing times (above 5 min).

In order to further compare the performance gain of heterogeneous algorithms as compared to their respec-
tive sequential versions in more detail, we have conducted a thorough study of scalability on the heteroge-
neous cluster [34]. For that purpose, Fig. 8 shows the performance gain of heterogeneous algorithms with
regards to their respective sequential versions as the number of processors was increased on the heterogeneous
cluster. Here, we assumed that processor #10 was always the master and varied the number of slaves. The
construction of speedup plots in heterogeneous environments is not straightforward [35], mainly because
the workers do not have the same relative speed, and therefore the order in which they are added to plot
the speedup curve needs to be further analyzed. In order to evaluate the impact of the order of selection of
slaves, we have tested three different ordering strategies:

1. First, we used an ordering strategy based on increasing the number of processors according to their pro-
cessor numbers in Table 2, i.e., the first case study tested (labeled as ‘‘2 CPUs” in Fig. 8) consisted of using
processor #10 as the master and processor #0 as the slave; the second case tested (labeled as ‘‘3 CPUs” in
Fig. 8) consisted of using processor #10 as the master and processors #0 and #1 as slaves, and so on, until a
final case (labeled as ‘‘15 CPUs” in Fig. 8) was tested, based on using processor #10 as the master and all
remaining 15 processors as slaves.

2. Second, we used an ordering strategy based on the relative speed of processors in Table 2, i.e., the first case
study tested consisted of using processor #10 as the master and processor #9 (i.e., the one with lowest rel-
ative speed) as the slave; the second case tested consisted of using processor #10 as the master and proces-
sors #9 and #8 (i.e., the two processors with lowest relative speed) as slaves, and so on, until a final case was
tested, based on using processor #10 as the master and all remaining 15 processors as slaves.

3. Finally, we also used a random ordering strategy, i.e., the first case study tested consisted of using processor
#10 as the master and a different processor, selected randomly among the remaining processors (say, pro-
cessor pi) as the slave; the second case consisted of using processor #10 as the master, processor pi as the
first slave, and a different processor, selected randomly among the remaining processors, as the second
slave, and so on, a final case was tested, based on using processor #10 as the master and all remaining
15 processors as slaves.

Since the three tested scenarios resulted in almost identical speedups, Fig. 8 only reports the results
obtained for the first ordering strategy tested. As shown by Fig. 8, the workers provided a linear performance
increase (regardless of their relative speed) when incorporated as additional processing nodes in every consid-
ered algorithm. The above results indicate that the proposed heterogeneous algorithms were able to distribute
1

3

5

7

9

11

13

15

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of CPUs

Sp
ee

du
p

P-PCT
P-PPI
P-FINDR
P-IEA

P-AMEE
P-LSU

Fig. 8. Speedup achieved by the proposed parallel algorithms on the heterogeneous cluster (processor #10 is used as the master).

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 109
the workload effectively between the slaves, regardless of the order in which new heterogeneous processors
were added.

For the sake of completeness, we also conducted additional experiments based on selecting other processors
(instead of processor #10) to assume the role of master. In all cases, the results obtained were very similar to
those reported in Table 3 (i.e., a very slight increase was observed in the processing times measured for the
master, while the processing times measured for the slaves were almost identical). One can also see that,
although P-FINDR was the algorithm that resulted in the lowest execution times in Table 3, it was also
one of the algorithms with lowest speedup factors in Fig. 8. Quite opposite, both P-LSU and P-AMEE per-
formed satisfactorily in terms of scalability and closely approached linear speedup.

In order to explore the parallel properties of the considered algorithms in more detail, an in-depth analysis
of computation and communication times achieved by the different methods is also highly desirable. For that
purpose, Table 5 shows the total time spent by the tested algorithms in communications and computations in
the test case reported on Table 3, i.e., using processor #10 as the master and all 15 remaining processors as
slaves. Here, two types of computation times were analyzed, namely, sequential (those performed by the mas-
ter node with no other parallel tasks active in the system) and parallel (the rest of computations, i.e., those per-
formed by the master node and/or the workers in parallel). The latter includes the times in which the workers
remain idle.

It can be seen from Table 5 that sequential computations were particularly significant (when compared to
parallel computations) for the P-PCT algorithm. They were also relevant for the P-PPI and P-FINDR. This is
mainly due to the fact that these algorithms involve operations that need to be completed sequentially at the
master before distributing the results to the workers (e.g., covariance matrix calculations in the P-PCT or ini-
tial volume estimation in the P-FINDR), or after all the workers have completed their parts (e.g., final end-
member selection in the P-PPI). Quite opposite, although the P-AMEE is the only technique that introduces
redundant information (expected to slow down computations a priori), Table 5 reveals that the amount of
sequential computations introduced by this algorithm is very low when compared to that introduced by the
other endmember extraction algorithms. As a result, the ratio of computations to communications for this
method is much higher. This comes at no surprise, since P-AMEE is a windowing type algorithm as opposed
to the other methods and, therefore, it is expected to scale better. This property allowed P-AMEE to process
the full AVIRIS scene (137 MB in size) in only 156 s on the heterogeneous cluster, while other methods such as
P-IEA and P-PPI required twice as much computing time to complete their calculations in the same environ-
ment. Finally, it can also be seen from Table 5 that the cost of parallel computations clearly dominated that of
communications in all the considered algorithms.

For completeness, Table 6 shows the load imbalance scores [36] achieved by the considered algorithms on
the heterogeneous cluster. The imbalance is defined as D = Rmax/Rmin, where Rmax and Rmin are the maxima
Table 5
Computation/communication times (in seconds) achieved by the parallel algorithms on the heterogeneous cluster

Algorithm Communications Sequential computations Parallel computations

P-PCT 11.05 16.11 123.11
P-PPI 7.85 21.12 303.07
P-FINDR 7.08 6.54 38.57
P-IEA 10.21 9.96 282.04
P-AMEE 6.73 5.69 135.21
P-LSU 5.21 6.07 144.09

Table 6
Maxima and minima execution times and load balancing rates for the parallel algorithms executed on the heterogeneous cluster

Algorithm P-PCT P-PPI P-FINDR P-IEA P-AMEE P-LSU

Rmax 150.27 332.04 52.19 302.21 147.63 155.37
Rmin 136.12 303.79 46.64 278.03 144.39 151.82
DAll 1.104 1.093 1.119 1.087 1.022 1.023
DMinus 1.005 1.003 1.013 1.002 1.009 1.005

110 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
and minima processor run times, respectively. Therefore, perfect balance is achieved when D = 1. In the table,
we display the imbalance considering all processors, DAll, and also considering all processors but the root,
DMinus. As we can see from Table 6, the P-LSU and P-AMEE were able to provide values of DAll very close
to 1 in the considered platform. It is also clear from Table 6 that the two algorithms above provided almost the
same results for both DAll and DMinus while, for the other tested methods, load balance was slightly better
when the root processor was not included. Despite the fact that conventional hyperspectral imaging algo-
rithms generally do not take into account the spatial information explicitly into the computations (which
has traditionally been perceived as an advantage for the development of parallel implementations), and taking
into account that P-AMEE introduces redundant information expected to slow down the computation a pri-

ori, experimental results in Table 6 seem to indicate that the P-AMEE is more effective in terms of workload
distribution than other parallel endmember extraction methods which appeared to be more ‘‘pleasingly par-
allel” a priori. In particular, the combination of P-AMEE followed by P-LSU provided a well-balanced anal-
ysis result in about 300 s, while slightly higher imbalance scores were obtained for the P-PPI and P-FINDR
(which are combined with P-PCT prior to data processing).

Before concluding this subsection, we would like to emphasize the importance of incorporating memory
considerations in the benchmark function used to estimate processor relative speeds in the heterogeneous clus-
ter. For perspective, Fig. 9 shows the values of Rmax, Rmin and D obtained for the considered parallel algo-
rithms using a benchmark function which only modeled the processing power of heterogeneous processors
(i.e., using the vector dot product as the core computation) but without assuming that each processor stores
a full hyperspectral data cube. In this case, reallocation and paging mechanisms due to cache misses are not
included in the computation of the benchmark function. As shown by Fig. 9, disregarding virtual memory
paging and cache effects in the definition of the benchmark function often leads to higher imbalance scores.

4.2.2. Performance analysis on the Beowulf cluster

To analyze scalability issues in a larger computing platform, this subsection provides parallel performance
results using the Thunderhead Beowulf cluster as the baseline computing architecture [2]. It should be noted
that results in this subsection should not be regarded as indicative of the efficiency of the proposed heteroge-
neous parallel implementations since, in this parallel platform, our GSP algorithm assigns an equal amount of
workload to each processor. As a result, the experimental evaluation conduced in this subsection is only
intended to provide a preliminary assessment of the scalability of the proposed algorithms in a parallel plat-
form with a much higher number of processors. For that purpose, Fig. 10 plots the speedups achieved by a
multi-processor run of each of the proposed parallel algorithms over the execution of a real sequential version
of each algorithm on a single Thunderhead node (a maximum of 400 processors were available to us at the
time of experiments).

Results in Fig. 10 reveal that the performance drop from linear speedup in the considered parallel algo-
rithms was more relevant as the number of processors was increased. In particular, the P-AMEE scaled sig-
nificantly better than the other endmember extraction methods tested, specifically, when the number of
0

50

100

150

200

250

300

350

400

450

P-PCT P-PPI P-FINDER P-IEA P-AMEE P-LSU

Ti
m

e

Rmin

Rmax

D=1.58

D=1.48

D=1.53

D=1.54

D=1.43
D=1.44

Fig. 9. Maxima/minima execution times (seconds) and load balancing rates for a case study in which memory considerations are not
included in the definition of the benchmark function used to estimate processor relative speeds in the heterogeneous cluster.

2

46

90

134

178

222

266

310

354

398

4 40 76 112 148 184 220 256 292 328 364 400

Number of CPUs

Sp
ee

du
p

P-PCT
P-PPI
P-FINDR
P-IEA
P-AMEE
P-LSU
Linear

Fig. 10. Scalability of the proposed parallel algorithms on NASA’s Thunderhead Beowulf cluster.

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 111
processors was very large. It is also clear that P-LSU is the algorithm that scaled better on Thunderhead, a fact
that is not surprising given the straightforward parallelization of the LSU technique. On the other hand, the
performance decrease experienced by all parallel algorithms as the number of processors was increased can be
explained by the nature of our MPI implementation, in which a master processor sends the partitions of the
original image, using the MPI_Scatter operation, to a group of processors, each of which processes one par-
tition. The partitions are processed in parallel and then returned to the master processor with the MPI_-
Gather operation. This framework requires an optimization of collective communications, which in our
application mostly take place by aggregating global values on the server and then communicating them to
the slaves.

Although fine-tuning of the proposed MPI-based parallel algorithms for efficient performance in large-scale
commodity clusters is out of the scope of this paper, this problem can be approached by resorting to a recently
proposed model for many-to-one operations such as those involved in our MPI_Gather [37]. This model dif-
ferentiates between small, medium and large messages by introducing two threshold parameters, T1 and T2.
For small messages (of size below T1), the execution time is shown to respond linearly to the increase of mes-
sage size. For medium-sized messages (of size between T1 and T2), a very significant degradation in perfor-
mance due to non-linear effects is found empirically. Finally, it is shown that for large messages (of size
larger than T2), the execution time resumes linear predictability for increasing message sizes. In our applica-
tion we have experimentally tested that, when a small number of processors is used, the message size fits into
the area of large messages. Quite opposite, as the number of processors is increased, the message size fits the
area of medium-sized messages, which ultimately results in a significant increase in execution times of the sin-
gle MPI_Gather operation.

In order to address this relevant issue, we can redesign our parallel algorithms as follows. If we replace the
single MPI_Gather operation used to gather medium-sized messages by an equivalent sequence of MPI_-
Gather operations, each gathering messages with a size that fits the range of small messages, then each med-
ium-sized partition can be communicated as a sequence of small-sized sub-partitions. To achieve this goal, one
option is to calculate the number of sub-partitions s of a partition of medium size, S, so that S

s 6 T 1 and
S

s�1
> T 1. An alternative option to avoid the congestion region relies on the fact that the system settings for

MPI and the TCP/IP flags can be modified to allow a reservation mode to begin for smaller messages. If larger
messages are required, then the non-buffered mode can be selected for MPI by setting the system buffer size to
a smaller value. In this case, sporadic non-linear behavior may still be observed, but it is likely to occur at
negligible probability [37]. Although we are planning on carefully exploring the above-mentioned issues in
future work, our current access restrictions to configuration parameters and settings for the Thunderhead sys-
tem, a US Government facility, prevented us from properly implementing the two above-mentioned optimi-
zations at this point.

Table 7
Execution times for parallel algorithms using different numbers of processors on Thunderhead (column ‘‘1” reports the times obtained by
real sequential versions of the algorithms run on a single node)

Algorithm 1 4 16 36 64 100 144 196 256 324 400

P-PCT 1246 366 111 51 26 18 14 11 10 9 8
P-PPI 2745 1013 251 99 52 34 24 18 15 13 12
P-FINDR 695 199 46 24 13 9 6 5 4 3 3
P-IEA 2865 952 234 88 49 33 23 18 14 13 11
P-AMEE 1874 580 132 53 30 20 14 11 8 7 6
P-LSU 2163 577 142 61 34 22 16 12 9 7 6

112 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
To conclude this subsection, Table 5 reports the measured execution times for the considered parallel algo-
rithms, using different numbers of processors on Thunderhead. Results in Table 5 reveal that some of the
tested algorithms were able to obtain highly accurate hyperspectral analysis results (in light of Table 2),
but also quickly enough for practical use. For instance, using 400 processors the P-AMEE algorithm (followed
by P-LSU) provided highly accurate abundance estimations in only 12 s, while the combination of P-PCT for
dimensionality reduction, P-FINDR for endmember extraction, and P-LSU for spectral unmixing was able to
provide a result in 20 s. The P-IEA was able to produce a response in 11 s, with the slight advantage over
P-AMEE that this parallel approach does not need to re-calculate all the endmembers again in case the num-
ber of desired endmembers to be extracted by the algorithm is changed by the user. The above results indicate
significant improvements over commonly used processing strategies for this kind of high-dimensional data
sets, which can take up to more than one hour of computation for the considered problem size, as indicated
by the column labeled as ‘‘1” in Table 7, which reports the execution times measured for real sequential ver-
sions of the considered parallel algorithms, executed in a single Thunderhead node.

Summarizing, experimental results in this study reveal that parallel algorithms able to efficiently distribute
the workload among a set of heterogeneous processors offer a simple, platform-independent and moderately
scalable solution in the context of realistic hyperspectral imaging applications. Although scalability issues have
been identified (in particular, for a very large number of processors) and should be addressed in future work,
our quantitative and comparative assessment of different parallel strategies for efficiently implementing a well-
consolidated hyperspectral data processing chain provides several interesting findings. For instance, our study
reveals that joint spatial/spectral techniques are indeed effective for parallel implementation, not only due to
the window-based nature of such algorithms, but also because they can reduce sequential computations at the
master node and involve only minimal communication between the parallel tasks, namely, at the beginning
and ending of such tasks. We also feel that the applicability of the proposed parallel methods may extend
beyond the domain of hyperspectral data processing. This is particularly true for the domains of signal pro-
cessing and linear algebra applications, which include similar patterns of communication and calculation.

5. Conclusions and future work

The aim of this paper has been the examination of different parallel strategies for hyperspectral analysis on
heterogeneous and homogeneous computing platforms, with the purpose of evaluating the possibility of
obtaining results in valid response times and with adequate reliability in heterogeneous computing environ-
ments where these techniques are intended to be applied. In particular, this paper provided a detailed discus-
sion on the effects that platform heterogeneity has on degrading parallel performance of hyperspectral analysis
algorithms. An interesting finding by experiments is that spatial/spectral heterogeneous approaches with
redundant computations offer a surprisingly simple, yet effective and scalable solution for solving the endmem-
ber extraction problem, which is the most computationally demanding task in the entire hyperspectral data
analysis chain. Our experimental results revealed important algorithmic aspects that may be of great impor-
tance for designing and adapting existing high-performance hyperspectral imaging applications (often devel-
oped in the context of homogeneous computing platforms) to fully heterogeneous computing environments,
which are currently the tool of choice in many remote sensing and earth exploration missions. Combining this
readily available computational power with last-generation sensor and parallel processing technology may

A. Plaza et al. / Parallel Computing 34 (2008) 92–114 113
introduce substantial changes in the systems currently used by NASA and other agencies for exploiting earth
and planetary remotely sensed data. As future work, we plan to incorporate optimizations to enhance scala-
bility of the proposed algorithms when implemented in massively parallel systems. We also aim at implement-
ing the parallel algorithms on other massively parallel computing architectures, such as NASA’s Project
Columbia or CEPBA’s Mare Nostrum supercomputer. Finally, we are also working towards field program-
mable gate array (FPGA)-based and graphic processing unit (GPU)-based implementations, which may allow
us to fully accomplish the goal of near real-time processing of hyperspectral image data, with potential appli-
cations in exploitation-based on-board hyperspectral data compression and analysis.

Acknowledgements

This research was supported by the European Commission through the Marie Curie project entitled
‘‘Hyperspectral Imaging Network,” (MRTN–CT–2006–035927). The authors would like to thank Drs. John
E. Dorband, James C. Tilton and J. Anthony Gualtieri for many helpful discussions. They would also like to
state their appreciation for Profs. Mateo Valero and Francisco Tirado. The first author acknowledges support
received from the Spanish Ministry of Education and Science (Fellowship PR2003–0360), which allowed him
to conduct postdoctoral research at NASA’s Goddard Space Flight Center and University of Maryland in
2004.

References

[1] C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Kluwer Academic Publishers, New York,
2003.

[2] R.O. Green et al., Imaging spectroscopy and the airborne visible/infrared imaging spectrometer AVIRIS, Remote Sensing of
Environment 65 (1998) 227–248.

[3] A. Plaza, C.-I. Chang, High Performance Computing in Remote Sensing, Chapman & Hall/CRC Press, Boca Raton, FL, 2007.
[4] G. Aloisio, M. Cafaro, A dynamic earth observation system, Parallel Computing 29 (2003) 1357–1362.
[5] P. Wang, K.Y. Liu, T. Cwik, R.O. Green, MODTRAN on supercomputers and parallel computers, Parallel Computing 28 (2002) 53–

64.
[6] J. Dorband, J. Palencia, U. Ranawake, Commodity computing clusters at Goddard Space Flight Center, Journal of Space

Communication 1 (2003) (available online: <http://satjournal.tcom.ohio.edu/pdf/Dorband.pdf>).
[7] R. Brightwell, L.A. Fisk, D.S. Greenberg, T. Hudson, M. Levenhagen, A.B. Maccabe, R. Riesen, Massively parallel computing using

commodity components, Parallel Computing 26 (2000) 243–266.
[8] K.A. Hawick, P.D. Coddington, H.A. James, Distributed frameworks and parallel algorithms for processing large-scale geographic

data, Parallel Computing 29 (2003) 1297–1333.
[9] A. Lastovetsky, Parallel Computing on Heterogeneous Networks, Wiley-Interscience, Hoboken, NJ, 2003.

[10] A. Kalinov, A. Lastovetsky, Y. Robert, Heterogeneous computing, Parallel computing 31 (2005) 649–652.
[11] A. Lastovetsky, R. Reddy, On performance analysis of heterogeneous algorithms, Parallel Computing 30 (2004) 1195–1216.
[12] D. Heinz, C.-I. Chang, Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery,

IEEE Transactions on Geoscience and Remote Sensing 39 (2001) 529–545.
[13] A. Plaza, P. Martı́nez, R. Pérez, J. Plaza, A quantitative and comparative analysis of endmember extraction algorithms from

hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing 42 (2004) 650–663.
[14] J.W. Boardman, F.A. Kruse, R.O. Green, Mapping target signatures via partial unmixing of AVIRIS data, in: Summaries of JPL

Airborne Earth Science Workshop, Pasadena, CA, 1995.
[15] M.E. Winter, N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data, in: Proceedings

of SPIE Imaging Spectrometry Conference, vol. 3753, pp. 266–277, 1999.
[16] R.A. Neville, K. Staenz, T. Szeredi, J. Lefebvre, P. Hauff, Automatic endmember extraction from hyperspectral data for mineral

exploration, in: Proceedings 21st Canadian Symposium on Remote Sensing, Ontario, Canada, pp. 21–24, 1999.
[17] A. Plaza, P. Martinez, R.M. Perez, J. Plaza, Spatial/spectral endmember extraction by multidimensional morphological operations,

IEEE Transactions on Geoscience and Remote Sensing 40 (2002) 2025–2041.
[18] P. Soille, Morphological Image Analysis: Principles and Applications, second ed., Springer, Berlin, 2003.
[19] C. Nicolescu, P. Jonker, Data and task parallel image processing environment, Parallel Computing 28 (2002) 945–965.
[20] K. Sano, Y. Kobayashi, T. Nakamura, Differential coding scheme for efficient parallel image composition on a PC cluster system,

Parallel Computing 30 (2004) 285–299.
[21] B. Veeravalli, S. Ranganath, Theoretical and experimental study on large size image processing applications using divisible load

paradigm on distributed bus networks, Image and Vision Computing 20 (2003) 917–935.
[22] A. Plaza, D. Valencia, J. Plaza, P. Martinez, Commodity cluster-based parallel processing of hyperspectral imagery, Journal of

Parallel and Distributed Computing 66 (2006) 345–358.

http://satjournal.tcom.ohio.edu/pdf/Dorband.pdf

114 A. Plaza et al. / Parallel Computing 34 (2008) 92–114
[23] T.D. Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, D.A. Hensgen,
R.F. Freund, A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems, Journal of Parallel and Distributed Computing 61 (2001) 810–837.

[24] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, Scheduling strategies for master–slave tasking on
heterogeneous processor platforms, IEEE Transactions on Parallel and Distributed Systems 15 (2004) 319–330.

[25] V.E. Bazterra, M. Cuma, M.B. Ferraro, J.C. Facelli, A general framework to understand parallel performance in heterogeneous
clusters: analysis of a new adaptive parallel genetic algorithm, Journal of Parallel and Distributed Computing 65 (2005) 48–57.

[26] T. Achalakul, S. Taylor, A distributed spectral-screening PCT algorithm, Journal of Parallel and Distributed Computing 63 (2003)
373–384.

[27] T. El-Ghazawi, S. Kaewpijit, J. Le Moigne, Parallel and adaptive reduction of hyperspectral data to intrinsic dimensionality, in:
Proceedings of the 2001 IEEE International Conference on Cluster Computing (Cluster’01), IEEE Computer Society, 2001.

[28] M.E. Winter, A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image, in:
Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, vol. 5425, pp. 31–
41, 2004.

[29] C.I. Chang, C.-C. Wu, W.-M. Liu, Y.-C. Ouyang, A new growing method for simplex-based endmember extraction algorithm, IEEE
Transactions on Geoscience and Remote Sensing 44 (2006) 2804–2819.

[30] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., Baltimore, Johns Hopkins, 1996.
[31] A. Plaza, J. Plaza, D. Valencia, Impact of platform heterogeneity on the design of parallel algorithms for morphological processing of

high-dimensional image data, Journal of Supercomputing 40 (2007) 81–107.
[32] F.J. Seinstra, D. Koelma, J.M. Geusebroek, A software architecture for user transparent parallel image processing, Parallel

Computing 28 (2002) 967–993.
[33] A. Plaza, D. Valencia, J. Plaza, C.-I. Chang, Parallel implementation of endmember extraction algorithms from hyperspectral data,

IEEE Geoscience and Remote Sensing Letters 3 (2006) 334–338.
[34] X.-H. Sun, Scalability versus execution time in scalable systems, Journal of Parallel and Distributed Computing 62 (2002) 173–192.
[35] A. Kalinov, Scalability analysis of matrix–matrix multiplication on heterogeneous clusters, in: Proceedings of ISPDC’2004/

HeteroPar’04, IEEE Computer Society, 2004.
[36] M.J. Martı́n, D.E. Singh, J.C. Mouriño, F.F. Rivera, R. Doallo, J.D. Bruguera, High performance air pollution modeling for a power

plan environment, Parallel Computing 29 (2003) 1763–1790.
[37] A. Lastovetsky, M. O’Flynn, A performance model of many-to-one collective communications for parallel computing, in:

Proceedings of the 21st International Parallel and Distributed Processing Symposium (IPDPS 2007), Long Beach, California, IEEE
Computer Society, 2007.

	An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations
	Introduction
	Hyperspectral imaging techniques and data partitioning
	Parallel hyperspectral imaging algorithms
	Parallel dimensionality reduction algorithm
	Parallel endmember extraction algorithms
	Parallel implementation of pixel purity index algorithm (P-PPI)
	Parallel implementation of N-FINDR algorithm (P-FINDR)
	Parallel implementation of IEA algorithm (P-IEA)
	Parallel implementation of AMEE algorithm (P-AMEE)

	Parallel spectral unmixing algorithm

	Experimental results
	Parallel computing architectures
	Performance analysis
	Performance analysis on the heterogeneous cluster
	Performance analysis on the Beowulf cluster

	Conclusions and future work
	Acknowledgements
	References

