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In this work, neural network-based models involved in hyperspectral image spectra separation are con-
sidered. Focus is on how to select the most highly informative samples for effectively training the neural
architecture. This issue is addressed here by several new algorithms for intelligent selection of training
samples: (1) a border-training algorithm (BTA) which selects training samples located in the vicinity of the
hyperplanes that can optimally separate the classes; (2) a mixed-signature algorithm (MSA) which selects
the most spectrally mixed pixels in the hyperspectral data as training samples; and (3) a morphological-
erosion algorithm (MEA) which incorporates spatial information (via mathematical morphology concepts)
to select spectrally mixed training samples located in spatially homogeneous regions. These algorithms,
along with other standard techniques based on orthogonal projections and a simple Maximin-distance
algorithm, are used to train a multi-layer perceptron (MLP), selected in this work as a representative
neural architecture for spectral mixture analysis. Experimental results are provided using both a database
of nonlinear mixed spectra with absolute ground truth and a set of real hyperspectral images, collected at
different altitudes by the digital airborne imaging spectrometer (DAIS 7915) and reflective optics system
imaging spectrometer (ROSIS) operating simultaneously at multiple spatial resolutions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Imaging spectroscopy (i.e., hyperspectral imaging) is a remote
sensing technique capable of identifying materials and objects in the
air, land and water on the basis of the unique reflectance patterns
that result from the interaction of solar energy with the molecular
structure of the material [1]. Advances in sensor technology have led
to the development of hyperspectral instruments [2] capable of col-
lecting tens or even hundreds of images, corresponding to different
wavelength channels, for the same area on the surface of the Earth.
As a result, each pixel (vector) in a hyperspectral image has an asso-
ciated spectral signature or “fingerprint” that uniquely characterizes
the underlying objects, as shown by Fig. 1.

The wealth of spectral information provided by hyperspectral
sensors has opened ground-breaking perspectives in many applica-
tions with high computational requirements [3–5], including envi-
ronmental modeling and assessment, target detection for military
and defense/security deployment, urban planning and management
studies, risk/hazard prevention and response including wild-land fire
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tracking, biological threat detection, monitoring of oil spills.
However, the design of processing algorithms for hyperspectral
data introduces additional challenges. In particular, conventional
supervised classification techniques for hyperspectral imagery were
originally developed under the assumption that the classes to be
separated are discrete and mutually exclusive, i.e., it is assumed that
each pixel vector is “pure” and belongs to a single spectral class. Of-
ten, however, this is not a realistic assumption. In particular, most of
the pixels collected by hyperspectral imaging instruments contain
the resultant mixed spectra from the reflected surface radiation of
various constituent materials at a sub-pixel level. The presence of
mixed pixels is due to several reasons [6]. First, the spatial resolu-
tion of the sensor is generally not high enough to separate different
pure signature classes at a macroscopic level, and the resulting
spectral measurement can be a composite of individual pure spec-
tra (often called endmembers in hyperspectral analysis terminology)
which correspond to materials that jointly occupy a single pixel.
Second, mixed pixels also result when distinct materials are com-
bined into a microscopic (intimate) mixture, independently of the
spatial resolution of the sensor.

Spectral mixturemodeling (also called spectral unmixing) involves
the separation of a pixel spectrum into its pure component end-
member spectra, and the estimation of the abundance value for each
endmember [7]. Several techniques for spectral unmixing have been
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Fig. 1. The concept of hyperspectral imaging.

Fig. 2. Schematical description of scattering in linear (single scattering) (a) and nonlinear (multiple scattering) (b) mixtures.

developed in the literature. For instance, the linear mixture model
assumes that the collected spectra are linearly mixed [8]. As a re-
sult, a linear (macroscopic) mixture is obtained when the endmem-
ber substances are sitting side-by-side within the field of view of
the imaging instrument (see Fig. 2(a)). The linear model assumes
minimal secondary reflections and/or multiple scattering effects in
the data collection procedure [6]. Subsequently, the resultant mixed
spectrum can be simply expressed as a linear combination of end-
member components, weighted by a scalar endmember abundance
fraction as follows:

r = Ea+ n =
p∑

i=1

ei�i + n, (1)

where r is a pixel vector given by a collection of values at differ-
ent wavelengths, E is a matrix containing p endmember signatures
{ei}pi=1, a is a vector containing the fractional abundance values for
each of the p endmembers in r, and n is a noise vector.

Although the linear mixture model has practical advantages
such as the ease of implementation and flexibility in different ap-
plications, there are many naturally occurring situations where
nonlinear models may best characterize the resultant mixed spectra
for certain endmember distributions [9]. In particular, nonlinear
mixtures generally occur in situations where endmember compo-
nents are randomly distributed throughout the field of view of the

instrument [6], as shown by Fig. 2(b). In those cases, the mixed
spectra collected at the imaging instrument are better described
by assuming that part of the source radiation is subject to multiple
scattering effects before being collected by the sensor. A general
expression for the nonlinear mixture model is given by

r = f (E,a) + n, (2)

where f is an unknown nonlinear function that defines the interac-
tion between E and a. Various learning-from-data techniques have
been proposed in the literature to estimate the f in hyperspectral
imaging applications. For instance, independent component analysis
(ICA) has been proposed in the recent literature as a relevant tech-
nique for handling the inversion in Eq. (2) [10,11]. ICA is an unsu-
pervised source separation process [12] that has shown significant
success in blind source separation, feature extraction, and unsuper-
vised recognition. Another approach that has demonstrated great
potential to decompose mixed pixels is the use of artificial neu-
ral networks, which have demonstrated an inherent capacity to
approximate complex nonlinear functions [13,14]. Although many
neural network architectures exist, for decomposition of mixed pix-
els in terms of nonlinear relationships mostly feed-forward networks
of various layers, such as the multi-layer perceptron (MLP), have
been used [15]. The MLP is typically trained using the error back-
propagation algorithm, a supervised technique of training with three
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phases [16]. In the first one, an initial vector is presented to the net-
work, which leads to the activation of the network as a whole. The
second phase computes an error between the output vector and a
vector of desired values for each output unit, and propagates it suc-
cessively back through the network. The last phase computes the
changes for the connection weights, which are randomly generated
in the beginning.

It has been shown in the literature that MLP-based neural mod-
els, when trained accordingly, generally outperform other nonlinear
models such as regression trees or fuzzy classifiers [17]. A variety
of issues have been investigated to evaluate the impact of the train-
ing stage in neural network-based interpretation of mixed pixels,
including the size and location of training sites, and the composition
of training sets. Most of the attention has been devoted to investi-
gate the number of training samples required for the learning stage
[18]. Sometimes the smallness of a training set represents a major
problem. This is especially apparent for hyperspectral imaging ap-
plications, where the requirement of large volumes of training sites
has often been linked to the high-dimensional nature of the data
[19]. Even if the endmembers participating in mixtures in a certain
area are known, proportions of these endmembers on a per-pixel
basis are difficult to be estimated a priori. Therefore, a challenging
aspect in the design of neural network-based techniques for spectral
unmixing is to reduce the need for large training sets. Studies have
investigated a range of issues, including the use of feature selection
and feature extraction methods to reduce the dimensionality of the
input data [20], the use of unlabeled and semi-labeled training sam-
ples [19], the accommodation of spatial dependence in the data to
define an efficient sampling design [21], or the use of statistics de-
rived on other locations [22].

In this paper, we hypothesize that the problem of mixed pixel
characterization demands intelligent training sample selection algo-
rithms able to seek for the most informative training samples, thus
requiring an optimization of the compromise between estimation
accuracy (to be maximized) and ground-truth knowledge (to be min-
imized). In order to address this issue, we develop several unsuper-
vised algorithms for intelligent selection of training samples from
the input data, which are then used to train a simple MLP neural
network. Our main reason to select the MLP architecture for demon-
stration purposes is that this type of network has been claimed to
be particularly sensitive to free parameters, such as the arrangement
and number of neurons in the different layers [9]. However, exper-
imental results in this work show that a simple MLP network con-
figuration can produce very stable results (even in the presence of
complex mixtures) when trained accordingly, using small training
sets containing highly mixed pixels. This fact leads us to believe that
the composition of the training set is a crucial parameter in neural
network-based spectral mixture analysis applications, with a more
significant impact on the final output than the size of the training
set, or the choice of a specific network architecture/configuration.

The remainder of this paper is structured as follows. Section 2
briefly describes the neural network architecture used in this work
for spectral unmixing purposes. Section 3 develops several new un-
supervised training sample selection algorithms, able to seek for the
most informative training samples. Section 4 validates the proposed
approach using a database of nonlinearly mixed spectra with abso-
lute ground truth. Section 5 conducts real hyperspectral image ex-
periments using DAIS 7915 and ROSIS spectrometry images collected
at multiple resolutions. Finally, Section 6 concludes with some re-
marks and hints at plausible future research.

2. Multi-layer perceptron for spectral unmixing

The MLP is a type of multi-layer neural network [16] that can
be depicted as a directed graph. The architecture used in this work

Fig. 3. Architecture of a multi-layer perceptron (MLP) neural network for spectral
unmixing.

is shown in Fig. 3, where each column of nodes is a layer and the
leftmost layer is the input layer. The second layer is the hidden layer,
and the third layer is the output layer. The neuron count at the
input layer, n, equals the number of spectral bands. The input pat-
terns are pixel vectors directly obtained from the input data. The
number of neurons at the output layer, p, equals the number of spec-
tral endmembers. In this work, we estimate the value of p automat-
ically using the concept of virtual dimensionality (VD), coined by
Chang and Du [23]. Specifically, the method used to determine the
VD in this paper is the one developed by Harsanyi-Farrand-Chang
[24], referred to as HFC method. It should be noted that m, the num-
ber of hidden neurons, is generally fine-tuned depending on the
problem under consideration. However, in this work we are mainly
interested in exploring training mechanisms and their implications,
without particular emphasis on careful adjustment of network con-
figuration parameters. Subsequently, finding optimal parameters for
the hidden layer(s) is beyond our scope. Based on previous results
in the literature [15] and our own experimentation, the considered
architecture is based on one hidden layer only, with the number of
neurons empirically set to the square root of the product of the num-
ber of input features and information classes. The sigmoid function
is used as the nonlinear activation function [16]. The configuration
for the proposed architecture and its training were introduced in
Ref. [25]. One of our main goals in this work is to demonstrate that
the architecture shown in Fig. 3 can produce adequate results in dif-
ferent analysis scenarios when trained accordingly, in spite of the
fact that further optimizations in the configuration of the hidden
layer may lead to improved results.

3. Algorithms for automatic selection of training samples

Conventional approaches for identification of training samples
tend to select samples located in exemplar regions of each class only,
while atypical cases are often removed or down-weighted in train-
ing set refinement operations. Such exemplar training patterns are
located near the central “core” of the class in feature space. However,
a key concern in the context of mixed pixel interpretation is how to
identify and characterize the response of sites that lie away from the
class core, and near to the decision boundaries commonly used in
conventional (i.e., pure) pixel classification. Therefore, “border” (or,
equivalently, mixed) training patterns may be required to incorpo-
rate the inherent complexity of mixing systematics into the spectral
mixture analysis [26].

In this section, we describe several techniques for automated se-
lection of training samples designed to assist in the selection of de-
scriptive samples for supervised learning. First, an orthogonal sub-
space projection (OSP) algorithm [2,27] is presented as a method
to automatically extract spectrally distinct training samples from
the input data. Then, we develop several new algorithms to ex-
tract the most representative training samples from the data set ac-
cording to different criteria, such as the “borderness” (convexity) of
those samples or the degree of spectral similarity to other spatially
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adjacent training samples. Here, we must emphasize that the main
idea behind our proposed algorithms is to adapt the concept of
“borderness” to a mixed pixel interpretation scenario, in which a
“border” pattern corresponds to a “mixed” pixel and a “non-border”
pattern corresponds to a “pure” pixel which is often identified us-
ing convex geometry techniques, hence the relationship between
“borderness” and “convexity.” Finally, a simple Maximin-distance al-
gorithm, which has been commonly used in pattern recognition ap-
plications [28], is also adapted to the problem of extracting useful
training samples for supervised learning. Different sets of training
samples will be used in the following section to train the MLP neu-
ral network architecture described in Section 2 and to further inves-
tigate the impact of the training sample generation process on the
characterization of mixed pixels in hyperspectral data.

Before describing the proposed training sample selection algo-
rithms in detail, we emphasize that some of these algorithms make
use of a point-wise spectral distance that will be denoted by Dist in
this work. The choice of Dist is flexible and several distance measures
have been proposed for this purpose in the recent hyperspectral
imaging literature [2], including the Euclidean distance, the spectral
information divergence (SID), or a hidden Markov model-based in-
formation divergence (HMMID). In this work we adopt a widely used
measure in hyperspectral imaging applications, the spectral angle
distance (SAD), which is invariant in the multiplication of the input
vectors by constants and, consequently, is invariant to unknownmul-
tiplicative scalings that may arise due to differences in illumination
and sensor observation angle [6]. Let us consider two N-dimensional
spectral signatures si=(si1, si2, . . . , siN)

T and sj=(sj1, sj2, . . . , sjN)
T , where

the superscript “T” denotes the vector transpose operation. The SAD
between si and sj is given by the following expression [2]:

SAD(si, sj) = cos−1(si · sj/‖si‖ · ‖sj‖)

= cos−1

⎛
⎜⎝ N∑

l=1

silsjl

/ ⎡
⎣ N∑

l=1

s2il

⎤
⎦
1/2⎡

⎣ N∑
l=1

s2jl

⎤
⎦
1/2

⎞
⎟⎠ . (3)

3.1. Orthogonal subspace projection algorithm (OSP)

The automatic target generation process was developed in
Ref. [29] to find potential target pixels that can be used to generate
a set of target signatures using an OSP-based approach. It makes
use of an orthogonal subspace projector [30] given by the following
expression:

P⊥
U = I − U(UTU)−1UT , (4)

where I is the identity matrix and U is a signature matrix that con-
tains a set of spectral signatures. The algorithm can be summarized
as follows. If we assume that t0 is an initial target pixel vector, the
algorithm begins by applying an orthogonal subspace projector P⊥

t0
specified by Eq. (4) with U = t0 to all image pixel vectors. It then
finds a target pixel vector, denoted by t1 with the maximum or-
thogonal projection in the orthogonal complement space, denoted
by 〈t0〉⊥, which is orthogonal to the space 〈t0〉 linearly spanned by
t0. The reason for this selection is that t1 is generally the most dis-
tinct feature t0 in the sense of orthogonal projection because t1 has
the largest magnitude of projection in 〈t0〉⊥ produced by P⊥

t0
. A sec-

ond target pixel vector t2 can be found by applying an orthogonal
subspace projector P⊥

[t0t1]
with U= [t0t1] to the original image and a

target pixel vector that has the maximum orthogonal projection in
〈t0, t1〉⊥ is selected as t2. The above procedure is repeated to find a
third target pixel vector t3, a fourth target pixel vector t4, and so on,
until a certain stopping rule is satisfied. In this paper, the stopping
rule is determined by a maximum number of training samples to

be generated, t. The algorithm can be summarized by the following
steps:

(1) Initial condition: Select an initial target pixel vector of inter-
est denoted by t0. In order to initialize the algorithm without
knowing t0, we select a target pixel vector with the maximum
length as the initial target t0, namely t0 = arg{maxrrTr}, which
has the highest intensity, i.e., the brightest pixel vector in the
image scene. It is worth noting that this selection may not be
necessarily the best selection. However, according to our exper-
iments it was found that the brightest pixel vector was always
extracted later on, if it was not used as an initial target pixel
vector in the initialization. Set k = 1 and U0 = [t0].

(2) At the k-th iteration, apply P⊥
t0

via Eq. (4) to all pixel vectors r in
the image and then find the k-th target tk generated at the k-th
stage which has the maximum orthogonal projection as follows:

tk = arg{maxr[(P⊥
[t0Uk−1]

r)T (P⊥
[t0Uk−1]

r)]}, (5)

where Uk−1 = [t1t2, . . . , tk−1] is the target matrix generated at
the (k − 1)st stage.

(3) Stopping rule: If k< t − 1, let Uk = [Uk−1tk] = [t1t2 · · · tk] be the
k-th target matrix, go to Step 2. Otherwise, go to Step 4.

(4) At this stage, the OSP algorithm is terminated and the final
set of target pixel vectors produced after executing the algo-
rithm comprises t target pixel vectors, {t0, t1, t2, . . . , tt−1}= {t0}∪
{t1t2, . . . , tt−1}, found after repeatedly using Eq. (5).

3.2. Border-training algorithm (BTA)

The algorithm described in the previous subsection searches for
spectrally distinct training samples without accounting for their de-
gree of spectral purity or extremity in the data cloud. The separation
of a training set into “pure” (non-border) and “mixed” (border) pat-
terns was first explored by Foody [31], who expressed “borderness”
as the difference between the two smallest distances measured
for each training pattern. Here, membership was indicated by the
Mahalanobis distance, which provides a measure of the typicality of
a pattern to a certain class. A border-training pattern is expected to
be almost as close to its actual class of membership as it is to any
other class. Therefore, the difference in the Mahalanobis distances
between the two most likely classes of membership would be small
for a border pattern. This focus on the vicinity of the hyperplanes
that can optimally separate the classes is similar to the aspects
of Lee and Landgrebe's decision boundary feature extraction [20].
Here, we develop an automatic algorithm inspired by the concept
proposed by Foody [31], but further adapted to a mixed pixel inter-
pretation scenario. The algorithm consists of a two-stage process,
in which a set of “pure” training samples are first automatically ex-
tracted from the input data, and then a degree of borderness related
to those samples is used to identify highly mixed training samples.

3.2.1. Selection of pure training samples
In order to select pure training samples, the N-FINDR algorithm

developed by Winter [32] has been adapted in this work to the gen-
eration of training samples from pure pixels in the data. The algo-
rithm assumes that, in N spectral dimensions, the N-dimensional
volume formed by a simplex with vertices specified by purest pix-
els is always larger than that formed by any other combination of
pixels. In this work, we use a modified version of N-FINDR, which
assumes that the number of existing endmembers in the data, p, is
known in advance. In this work, this value is estimated using the VD
concept [23].

Once the number of pure signatures in the data, p, has been
estimated, our implementation of N-FINDR is initialized by a
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simplex whose vertices are formed by a random set of pixels
{e(0)1 , e(0)2 , . . . , e(0)p } used as initial endmembers selected from the

data. The algorithm then proceeds by finding V(e(0)1 , e(0)2 , . . . , e(0)p )

the volume of the simplex defined by vertices e(0)1 , e(0)2 , . . . , e(0)p ,

denoted by S(e(0)1 , e(0)2 , . . . , e(0)p ). Then, for each image sample pixel

vector r, it recalculates the volumes of p simplices, S(r, e(0)2 , . . . , e(0)p ),

S(e(0)1 , r, . . . , e(0)p ), . . . , S(e(0)1 , e(0)2 , . . . , r), each of which is formed by

replacing one pixel e(0)j with the sample vector r. If none of these

p recalculated volumes is greater than S(e(0)1 , e(0)2 , . . . , e(0)p ), then no

endmember sample in e(0)1 , e(0)2 , . . . , e(0)p is replaced. Otherwise, the
endmember which is absent in the largest volume among the p
simplices above is replaced by r. Let such an endmember be de-
noted by e(1)j . A new set of endmembers can be produced by letting

e(1)j = r and e(1)i = e(0)i for i� j. The same process is repeated again
for other sample vectors until all pixel vectors in the original data
set are exhausted. In the end, a set of endmember pixels denoted as
{ei}pi=1 is obtained.

3.2.2. Selection of mixed training samples
Based on the set of endmembers {ei}pi=1 obtained by the N-FINDR

algorithm above, a new algorithm has been developed to extract
the set of training samples with the highest degree of borderness or
convexity in the data cloud:

(1) Label the training samples {ei}pi=1 produced by the N-FINDR al-
gorithm as class “core” patterns.

(2) Apply a spectral screening algorithm to identify the sample spec-
tral signatures within a small spectral angle � from any of the p
core classes above, denoted by {rj}qj=1 with q�p. The selection
of the threshold � depends on the similarity between the pixels
in the data, although in our experiments we have found that a
value of �=0.1 provides highly satisfactory results in most cases.

(3) Associate each signature of the set {rj}qj=1 to one of the available

pure classes, {ei}pi=1, by computing r(i)j = argmini{Dist(rj, ei)} for
all j = 1, . . . , q, where Dist is a point-wise spectral distance and
the notation of r(i)j indicates that the Dist between rj and ei is the
minimum, i.e., ei is the most spectrally similar endmember to rj.

Let r(i)j,k ⊆ {rj}qj=1 be the k-th sample associated with class ei, and

let |r(i)j,k| be the cardinality of the set {r(i)j,k}, which contains all the

samples in {rj}qj=1associated with ei.
(2) For each potential training sample tl (pixel vector in the input

data), compute the Mahalanobis distance from pure class ei as
MD(tl, ei) = (tl − �i)

TK−1
i (tl − �i), where Ki is the sample co-

variance matrix of the class given by ei and �i is the mean for

that class, given by �i = (1/|r(i)j,k|)
∑|r(i)j,k|

k=1r
(i)
j,k. Similarly, compute a

“borderness” score for each tl as the difference between the two
smallest values of MD(tl, ei), i = 1, . . . ,p.

(5) Select a final set of {tl}tl=1 training samples according to their
borderness score (in decreasing order).

It should be noted that the Mahalanobis distance computation in
the algorithm above may be affected by matrix singularity problems
in the presence of limited training samples [33,34]. This issue can be
addressed by fine-tuning parameter � to extract a sufficient number
of samples in step (2) of the algorithm.

3.3. Mixed-signature algorithm (MSA)

As an alternative to the algorithm developed in the previous sub-
section, we describe below an automatic algorithm that iteratively
seeks for the most highly mixed training samples. The algorithm

considers all possible combinations of endmembers in order to
search for additional highly mixed training samples, where combi-
nations made up of many participating endmembers are priorized
in the process to account for complex mixtures. The algorithm can
be summarized by the following steps (for illustrative purposes,
Fig. 4 displays a toy example illustrating the behavior of the algo-
rithm in a simple, two-dimensional space which can be described
using three spectral endmembers labeled as e1, e2 and e3):

1. Compute Cp=(1/p)
∑p

i=1ei, i.e., the centroid of the simplex defined
by spectral endmembers S = {ei}pi=1 produced by the N-FINDR
endmember extraction algorithm described above.

2. Select a first training sample that corresponds to the sam-
ple pixel vector which is spectrally closest to cp using t1 =
argminj{Dist(rj,Cp)} (see Fig. 4(a)). As shown by Fig. 4(a), the
centroid may not be a real pixel vector in the scene.

3. Compute the spectral distance from Cp for each of the endmem-
bers ei using Dist(ei,Cp).

4. For each of the endmembers in the endmember set S do:
4.1 Remove (temporally) from S the endmember which is less

spectrally similar to Cp, thus obtaining a new endmember set
{ei}p−1

i=1 .

4.2 Calculate the centroid of the set {ei}p−1
i=1 , i.e., Cp−1(1/p −

1)
∑p−1

i=1 ei.
4.3 Select the pixel vector whose signature is the most spectrally

similar to Cp−1 as the new training sample (see Fig. 4(b)).
4.4 Add the endmember that was removed from the original end-

member set S and repeat from step 4.2 but removing (tempo-
rally) from S the endmember which is less spectrally similar
to Cp and has never been removed from the set,until all end-
members in S have been removed from the original set once
(see Fig. 4(c) and (d)).

The MSA algorithm described above (as it is also the case with
the OSP and BTA algorithms) relies on the spectral properties of
the data alone. Several studies, however, have investigated the
accommodation of spatial dependence in hyperspectral imaging ap-
plications [35,36]. In the following subsection, we describe a novel
training sample selection approach that incorporates the spatial
information in the process.

3.4. Morphological-erosion algorithm (MEA)

Morphological operations [37], when extended to hyperspectral
imagery [38], can be very useful for the interpretation of mixed
pixels, mainly because they take into account both the spatial and
the spectral properties of the image data in simultaneous fashion.
Let us denote by r(x, y) the sample pixel vector at spatial coordinates
(x, y). Similarly, let B be a kernel (i.e., structuring element (SE)) defined
in the spatial domain of the image (the x–y plane). The proposed
morphological algorithm is based on the following sequential steps:

1. Translate the SE over the spatial domain of the multidimen-
sional image, and extract the most highly mixed pixel vector
in the spatial neighborhood of each pixel vector r(x, y) us-
ing a so-called morphological erosion given by �B[r(x, y)] =
argmin(s,t)∈B{

∑
s
∑

tDist(r(x, y), r(x+s, y+t))} and explained below:
1.1. First, a point-wise spectral distance Dist between each pixel

vector r(x, y) and all other pixels in the neighborhood defined
by B is computed by a translation operation in the spatial
domain [38].

1.2. Then, a cumulative distance given by the sum of Dist scores
[36] is obtained for each pixel vector with regard to all other
pixel vectors in the spatial neighborhood defined by B.
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Fig. 4. Toy example illustrating the performance of MSA algorithm in a two-dimensional space. (a) Selection of training sample t1 by MSA, (b) selection of training sample
t2 by MSA, (c) selection of training sample t3 by MSA, and (d) selection of training sample t4 by MSA.

1.3. Finally, the pixel with the lowest cumulative distance score is
considered as the “most highly mixed” in the spatial neigh-
borhood. This is the pixel which is most spectrally similar to
its spatial neighbors, as opposed to the one with highest cu-
mulative score, which is the “most spectrally distinct” pixel.

2. Define a morphological erosion index (MEI) for each pixel r(x, y)
by computing the Dist between the pixel provided by the mor-
phological erosion operation at the local neighborhood and the
data centroid DM = (1/M)

∑
x
∑

yr(x, y), where M= x · y is the total
number of pixel vectors in the input data set.

3. Select the set of t pixel vectors in decreasing order of MEI score
to generate a set of {tl}tl=1 training samples.

It should be noted that the MEA algorithm described above does
not require previous knowledge about the spectral endmembers in
the data as in the case of BTA and MSA algorithms. Instead, MEA
depends on the spatial properties of the input structuring element
B (whose size and shape must be set accordingly). This dependence,
which is also present in classic mathematical morphology, allows for
the tuning of the method for different applications.

3.5. Maximin-distance algorithm (Maximin)

Below we describe a simple Maximin-distance algorithm [9] that
can also be used to generate training samples:

1. Let the first training sample t1 be the pixel vector with the max-
imum vector length, that is,

t1 = arg{maxrrTr}. (6)

2. For each 2� j� t, find the j-th training sample, tj, which has
the largest distance between tj and the set Sj−1 = {t1, t2, . . . , tj−1},
that is,

tj = arg{maxrDist(r, Sj−1)} (7)

with Dist(r, Sj−1) defined by

d(r, Sj−1) = min1� k� j−1Dist(r, tk)

= min{Dist(r, t1), d(r, t2), . . . , d(r, tj−1)}. (8)

It is worth noting that when j = 2, S1 = {t1}. In this case,
Eq. (7) is reduced to t2 = arg{maxrd(r, t1)}. To conclude this section,
it should be noted that the methods discussed in this section were
implemented using various similarity measures [2], such as the SAD,
SID and HMMID. In all cases, the results obtained were very similar.
As a result, this paper only reports experiments based on using SAD
for demonstration purposes.

4. Experimental validation

In this section, we make use of a database consisting of a set of
mineral mixtures with absolute ground truth. The data consisted of
20 spectra collected using RELAB, a bi-directional, high-resolution
spectrometer able to collect 211 spectral bands in the spectral range
from 0.4 to 2.5�m [14]. Spectra of three individual endmembers:
Anorthosite, Enstatite and Olivine are present in the database and
labeled, respectively, as p1, p2, p3. In addition, the database con-
tains several binary and ternary mixtures of these endmembers [14].
For illustrative purposes, Fig. 5 shows the spectral signatures of the
three endmembers. Within the 20 considered signatures, there were
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Fig. 5. Spectral signatures of the considered mineral spectra.

Table 1
Known abundance fractions in percentage of spectral signatures in Mustard's data
set and selection order of training samples by three different algorithms (MSA, OSP
and Maximin).

Signature True abundance fractions Sample selection order

Anorthosite Enstatite Olivine MSA OSP Maximin

p1 100 – – 20th 1st 1st
p2 – 100 – 19th 2nd 5th
p3 – – 100 18th 3rd 8th

b1 90 – 10 17th 19th 4th
b2 75 – 25 13th 8th 7th
b3 50 – 50 9th 5th 10th
b4 25 – 75 12th 12th 6th
b5 10 – 90 16th 9th 13th
b6 – 90 10 15th 18th 9th
b7 – 75 25 11th 13th 2nd
b8 – 50 50 8th 7th 12th
b9 – 25 75 10th 16th 14th
b10 – 10 90 14th 14th 3rd

c1 16.16 16.24 67.60 6th 20th 11th
c2 16.13 67.85 16.02 7th 11th 16th
c3 67.81 15.99 16.20 5th 6th 19th
c4 16.05 41.83 42.12 2nd 4th 18th
c5 41.92 16.11 41.97 4th 10th 17th
c6 41.83 41.77 16.40 3rd 15th 15th
c7 33.61 33.03 33.36 1st 17th 20th

10 binary mixtures, labeled as {bi}10i=1, and 7 ternary mixtures, la-
beled as {ci}7i=1, which are given by the abundance fractions shown in
Table 1. The remainder of this section is organized as follows. First,
we present the results obtained by the standard linearmixturemodel
in the considered problem. Second, we present the results obtained
by the proposed nonlinear methodology, using different training al-
gorithms.

4.1. Linear spectral unmixing

In order to assess the performance of the standard linear mix-
ture model in the considered problem, we first estimated the abun-
dance fractions of pure signatures p1, p2, p3 in the 20 available
spectra using the fully constrained linear mixture model (FCLSU) in
Ref. [39]. The individual results of the estimation are displayed in
Fig. 6, which plots scatterplots of true versus FCLSU-estimated frac-
tional abundances for each mineral. The plots in Fig. 6 seem to in-
dicate that binary mixtures in this experiment are mostly linear in
nature. As a result, they could be modeled relatively well using a

linear model—it can be seen that binary mixtures of Enstatite/Olivine
were very accurately characterized by the standard FCLSU approach
(see Fig. 6(b) and (c)). In contrast, binary mixtures containing the
Anorthosite endmember were consistently under-predicted or over-
predicted by FCLSU (see Fig. 6(a)). This may be explained by the
presence of a higher reflectance endmember as the Anorthosite (see
Fig. 5). In spite of this, the overall trend in the FCLSU-based abun-
dance estimation revealed a rather linear behavior. However, results
in Fig. 6(a) and (b) indicate that nonlinear modeling may be required
to characterize ternary mixtures. It should be noted that the overall
root mean square error (RMSE) scores in abundance estimation were
0.113 (above 10%) for the Anorthosite, and 0.091 and 0.062 for the
Enstatite and Olivine, respectively. For the sake of completeness, we
also tested the performance of unconstrained linear mixture models,
which consistently showed higher RMSE scores than those reported
above.

4.2. Neural network-based nonlinear unmixing

Our next step was to apply our proposed MLP-based model,
trained using the algorithms described in Section 3. The order of
extraction of available samples by these algorithm is reported in
Table 1, which reveals that the MSA algorithm first exhausted all
ternary mixtures and then selected all available binary mixtures. It
should also be noted that the most highly mixed available samples
were always extracted first. For example, binary mixtures made up
of 50% of one material and 50% of another were always extracted be-
fore the 90–10% or 75–25% mixtures. In fact, the last three signatures
extracted by the MSA were the three pure materials. At this point,
we emphasize that the Mustard data sets used in experiments were
only available to us in the form of a spectral library of signatures
with no spatial correlation. As a result, the proposed MEA algorithm
was not applied, mainly because this algorithm is specifically de-
signed to exploit spatial information. Similarly, the limited number
of spectral signatures contained in the Mustard library prevented us
from applying the BTA algorithm for the selection of border train-
ing samples, due to observed singularity problems in the covariance
estimate of each pure class. In order to assess the performance of
the proposed MSA algorithm with other approaches, the OSP and
Maximin were also used for selection of spectrally distinct training
samples. As shown by Table 1, the OSP first exhausted all three pure
signatures, which is consistent with the behavior of the algorithm in
other studies [40], and then extracted binary and ternary mixtures
with no apparent order. On the other hand, the Maximin extracted
both pure and binary mixtures first (the last extracted signatures
were all made up of ternary mixtures).

The training samples extracted by the three algorithms above
were used (in sequential order, using the first training sample pro-
vided by a certain algorithm in first place) to train our MLP-based
model. This means that the samples were incorporated one by one
to the training set, according to their order of selection indicated in
Table 1. Every time a new training sample was incorporated to the
training set, it was also automatically removed from the test set.
Fig. 7(a)–(c) shows the plots of individual RMSE scores in fractional
abundance estimation (in percentage) measured for test signatures,
against the number of training samples used in the learning stage
of the network. A maximum of 10 samples per training selection al-
gorithm was considered in experiments, in order to guarantee that
the test accuracies were measured on a sufficiently representative
test set.

From Fig. 7, it is clear that the training samples selected by the
mixed-signature selection algorithm were the most informative and
useful in terms of decreasing RMSE scores for each endmember
material. It can also be seen that the first three training samples
generated by OSP (pure training samples) could not accurately model
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mixing phenomena. Apparently, the explanatory power of the
first three or four training samples generated by the MSA (which
helped reduced estimation errors to 4% approximately) could not
be achieved by a higher number of samples generated using other
algorithms. Interestingly, very little improvement was observed
when more than three (see Fig. 7(a)) or four (Fig. 7(b)–(c)) sam-
ples were used by the proposed MSA, a fact that reveals that the
very first signatures extracted by the algorithm were indeed the
most useful ones for mixture characterization purposes. Although
this experiment cannot be regarded as conclusive due to the lim-
ited number of signatures available in the Mustard database, it
suggests that the use of intelligent training data selection could
assist in the task of exploiting training samples for spectral mixture
characterization.

The need for mixed training data does, however, require detailed
knowledge on abundance fractions for the considered training sites.
In practice, these data are likely to be derived from imagery ac-
quired at a finer spatial resolution than the imagery to be classified,
e.g., using data sets acquired by sensors operating simultaneously at
multiple spatial resolutions [34]. Such multi-resolution studies may
also incorporate prior knowledge, which can be used to help tar-
get the location of training sites, and to focus training site selection
activities on regions likely to contain the most informative training
samples. In the following section, we describe an application of the
proposed methodology to a real data analysis scenario, based on the
utilization of real hyperspectral images collected at different spatial
resolutions.

5. Real hyperspectral image experiments

This section examines the accuracy of the proposed framework
using real hyperspectral imagery. Scenes collected over a so-called
“Dehesa” semi-arid ecosystem (formed by quercus ilex (cork-oak
trees), soil and pasture) are used as a case study in experiments [41].
In the Iberian Peninsula, Dehesa systems are used for a combination
of livestock, forest and agriculture activity. Determination of frac-
tional land-cover using remote sensing techniques may allow for a
better monitoring of natural resources in Dehesa agro-ecosystems.
Our choice of this type of landscape was made on several accounts.
The first one is the availability of hyperspectral image data sets
with accurate geo-registration for a real Dehesa test site in Caceres,
SW Spain, collected simultaneously by two instruments operating at
multiple spatial resolutions: the digital airborne imaging spectrom-
eter (DAIS 7915) and the reflective optics system imaging spectrom-
eter (ROSIS) of DLR [42]. A second major reason is the simplicity of
the Dehesa landscape, which greatly facilitates the collection of re-
liable field data for model validation purposes.

5.1. Data description

The data used in this study consisted of two main components:
image data and field measurements of land-cover fractions, collected
at the time of image data acquisition. The image data are formed
by a ROSIS scene collected at high spatial resolution, with 1.2-m
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pixels, and its corresponding DAIS scene, collected at low spatial
resolution with 6-m pixels. The spectral range from 504 to 864nm
was selected for experiments. Fig. 8(a) shows the selected test site,
which corresponds to a representative Dehesa test area that contains
several cork-oak trees (appearing as dark spots) and pasture (gray)
areas on a bare soil (white) background. The following procedure
was applied to obtain reliable estimates of the true fractional land-
cover for each DAIS pixel in the considered Dehesa test site:

1. First, the ROSIS image was roughly classified into the three land-
cover components above using a maximum-likelihood supervised
classification approach based on image-derived spectral endmem-
bers, where Fig. 8(b) shows the three endmembers used for map-
ping that were derived using the automated AMEE algorithm.

2. The classified ROSIS image was registered with the DAIS image
using an automated ground control point-basedmethodwith sub-
pixel accuracy. This method is based on two steps. First, a fully

unsupervised morphological approach for automatic extraction of
landmark chips and corresponding windows in the scene is ap-
plied. Then, a (hierarchical) robust feature matching procedure,
based on a multiresolution overcomplete wavelet decomposition
scheme, is used for registration purposes. Additional details about
the sub-pixel registration method used in experiments are avail-
able in Ref. [43].

3. The classification map was associated with the DAIS image to
provide an initial estimation of land-cover classes for each pixel at
the DAIS image scale. For that purpose, a 6×6-m grid was overlaid
on the 1.2×1.2-m classificationmap derived from the ROSIS scene,
where the geographic coordinates of each pixel center point were
used to validate the registration procedure at a sub-pixel level.

4. Fractional abundances were initially calculated within each 6×6-
m grid as the proportion or ROSIS pixels labeled as cork-oak tree,
pasture and soil within that grid. The abundance maps at the
ROSIS level described above were thoroughly refined using field
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Fig. 9. Abundance estimations of soil, pasture and cork-oak by the linear mixture in the DAIS 7915 image. (a) soil. (b) Pasure. (c) Cork-oak.

data before obtaining the final reference proportions. Specifically,
fractional land-cover data were collected on the ground at more
than 30 evenly distributed field sites within the test area. These
sites were delineated during the field visit as polygons, using
high-precision GPS coordinates. At each site, land-cover fractions
were estimated using a combination of various techniques. For
instance, field spectra were collected for several areas using an
ASD FieldSpec Pro spectro-radiometer. Of particular interest were
field measurements collected on top of tree crowns (see Fig. 8(c)),
which allowed us to model different levels of tree crown trans-
parency [44,45]. Ground estimations of pasture abundance were
conducted in selected sites of known dimensions, using pasture
harvest procedures supported by visual inspection and laboratory
analyses [46]. The final reference estimations were the consensus
of a group of experts with experience in similar field data collec-
tion and validation activities [47].

5.2. Experimental results

This subsection describes the accuracy results obtained by dif-
ferent spectral unmixing techniques in the considered problem.
The subsection is organized as follows. First, we present the results
obtained by the standard linear mixture model in the considered
problem. Second, we present the results obtained by the proposed
nonlinear methodology, using different training algorithms. The
subsection concludes with a brief discussion on the non-negativity
and sum-to-one constraints in the proposed nonlinear approach.

5.2.1. Linear spectral unmixing
Fig. 9 shows the scatterplots of measured versus FCLSU-estimated

fractional abundances for the three endmember materials (success-
fully estimated by the VD method) in the DAIS (low spatial resolu-
tion) image data set, where the diagonal represents perfect match
and the two flanking lines represent plus/minus 20% error bound. As
shown by Fig. 9, most linear predictions for the soil endmember fall
within the 20% error bound (see Fig. 9(a)). On the other hand, the
multiple scattering within the pasture and cork-oak tree canopies
(and from the underlying surface in the latter case) complicated the
spectral mixing in nonlinear fashion [45], which resulted in a gener-
ally higher number of estimations lying outside the error bound, as
illustrated in Fig. 9(b) and (c). Also, the RMSE scores in abundance
estimation for the soil (0.119), pasture (0.153) and cork-oak tree
(0.169) were all above 10% estimation error in percentage, which
suggested that linear mixture modeling was not flexible enough to

accommodate the full range of spectral variability throughout the
landscape.

5.2.2. Neural network-based nonlinear unmixing
Training data are used in this experiment to model nonlinear

mixing effects. Fig. 10(a)–(e) shows the training areas automatically
extracted from the DAIS scene by the proposed algorithms, while
Fig. 10(f) plots the spectral signatures of some selected training sam-
ples by different algorithms (specifically, the signature of the first
training sample selected by each algorithm is displayed). In all cases,
the number of training samples was limited to a very low figure
(only six) with the goal of evaluating the possibility of using a very
reduced number of training data for practical purposes. For the BTA
algorithm, we used � = 0.1, which is a reasonable spectral similar-
ity value according to our previous experiments in Ref. [35]. The
structuring element, B, used in the MEA training sample selection
algorithm was an isotropic disk-shaped element of 3-pixel radius,
selected in accordance with the size of patterns of interest in the
scene [38].

Table 2 compares the performance of the proposed MLP-based
model trained with different algorithms and number of samples,
where the VD concept [23] was used in all cases to automatically
estimate the number of endmembers in the considered DAIS scene.
From Table 2, it is clear that using three training samples generated
by the BTA, MSA and MEA algorithms always introduced a signifi-
cant improvement in abundance estimation with regard to the cases
in which less training samples were considered. It is also apparent
from Table 2 that using additional training samples obtained by BTA,
MSA and MEA did not significantly improve the quality of abun-
dance estimations. In this case, the first three samples seemed to
be the most informative ones. Quite opposite, the OSP and Maximin
algorithms produced rather unstable results, with only moderately
acceptable scores (always above 10% estimation error) when all six
training samples were used. Interestingly, we experimentally tested
that the incorporation of additional samples obtained by those algo-
rithms could never reduce estimation errors below the 10% thresh-
old. This is due to the fact thatmany of the samples extracted by these
algorithms in Fig. 10(d) and (e) were highly pure, spectrally, and
could not provide additional information about complex mixtures.
Table 2 also reveals that, for both the pasture and the cork-oak tree
sites, the MLP-based model trained with the MSA resulted in signif-
icantly smaller RMSEs than those found by using the BTA algorithm.
Interestingly, when the MEA was used, the proposed model pro-
duced the best estimation results for soil and cork-oak tree (around
5% estimation error in percentage using only three training samples),
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Fig. 10. (a)–(e) Spatial location of training samples extracted by the considered selection algorithms from the DAIS 7915 image. (a) BTA, (b) MSA, (c) MEA, (d) OSP,
(e) Maximin and (f) Spectral signature of the first training sample selected by each algorithm.

but the pasture estimations were slightly less accurate than those
produced by the MSA perhaps since the pasture component in De-
hesa environments generally follow a very irregular spatial pattern,
as can be observed comparatively with soil and cork-oak tress in
Fig. 10(a). As a result, the introduction of spatial information by the
MEA may not be particularly relevant for this land-cover type.

Fig. 11 shows the scatter plots of measured versus predicted frac-
tional abundances for soil, pasture and cork-oak tree by the proposed
MLP-based model, trained only with the first three training samples
generated by MEA. From Fig. 11, it is clear that the utilization of
intelligently selected training samples resulted in fewer points out-
side the two 20% difference lines, most notably, for both pasture and
cork-oak abundance estimates. The pattern of the scatter plots ob-
tained for the soil predictions was similar to the one in Fig. 10(a),
in particular, when the soil abundance was high. This suggests that
nonlinear effects in Dehesa landscapes mainly result from multiple
scattering effects in vegetation canopies.

Fig. 12 plots a curve for each considered training algorithm in-
dicating how many pixel-level predictions fall within a given error
bound (in percentage) of the actual field measurements. Linear pre-
dictions are also included in the graph. It can be seen that the highest
percentage of pixels with prediction errors below 2% was achieved

by MSA. However, with the increase of error bound, the MEA
outperformed the MSA, in particular, after the error bound was
over 6%. This indicates that the incorporation of spatial information
in the process of finding training samples can minimize the global
error, although this may come at the expense of sacrificing part of
local prediction performance in nonlinear classes.

5.2.3. Non-negativity and sum-to-one constraints in the proposed
approach

Although abundance sum-to-one and non-negativity constraints
were not imposed in our proposed MLP-based learning stage,
negative and/or unrealistic abundance estimations (which usually
indicate a bad fit of the model and reveal inappropriate endmem-
ber/training data selection) were very rarely found, in particular,
when the BTA, MSA or MEA algorithms were used to generate the
training set. With the above issue in mind, experimental results in
this paper illustrate the advantages of adopting intelligent training
mechanisms for the proposed MLP-based model. In particular, the
use of intelligent training sample generation algorithms appears to
play a very significant role, thus showing the potential to direct
training data collection strategies to target the most useful training
sites without prior knowledge about the scene.
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Table 2
RMSE scores in fractional abundance estimation of soil (r1), pasture (r2) and cork-
oak tree (r3) in the DAIS 7915 hyperspectral image using the proposed MLP-based
model trained by different algorithms.

Training algorithm Material Number of training samples

1 2 3 4 5 6

BTA r1 0.116 0.109 0.103 0.102 0.102 0.102
r2 0.146 0.121 0.093 0.093 0.093 0.090
r3 0.159 0.134 0.095 0.094 0.091 0.094

MSA r1 0.108 0.092 0.061 0.059 0.059 0.059
r2 0.116 0.087 0.040 0.039 0.040 0.041
r3 0.144 0.116 0.063 0.060 0.59 0.057

MEA r1 0.103 0.089 0.059 0.057 0.055 0.054
r2 0.125 0.096 0.046 0.044 0.043 0.044
r3 0.136 0.093 0.048 0.047 0.046 0.045

OSP r1 0.112 0.114 0.111 0.109 0.107 0.104
r2 0.147 0.143 0.140 0.136 0.131 0.124
r3 0.165 0.162 0.152 0.143 0.138 0.132

Maximin r1 0.115 0.112 0.108 0.109 0.107 0.105
r2 0.150 0.143 0.142 0.139 0.137 0.127
r3 0.163 0.159 0.156 0.151 0.145 0.139

The numbers marked in bold typeface represent the best compromise values between
the number of training samples used and the RMSE score obtained. The scores
produced by the linear mixture model (FCLSU) for the above three materials were
0.119, 0.153 and 0.169, respectively.

Fig. 11. Abundance estimation results for soil (a), pasture (b) and cork-oak (c) in the DAIS 7915 image using the MLP-based model trained with the first three training
samples produced by MEA.
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6. Conclusions and future lines

This paper has focused on the problem of characterizing mixed
pixels in remotely sensed hyperspectral images. In order to inter-
pret and model complex nonlinear mixtures often observed in those
scenes, we have proposed a simple nonlinear model trained with
highly representative training sets which can accurately explain the
complex nature of the data using only a few training samples. In
order to automate the process of selecting the most useful training
samples from the input data set, we have developed several new
training sample generation algorithms. Our study reveals that there
is a need for nonlinear mixture models coupled with unsupervised
algorithms able to seek for the most informative training samples
(which are shown in this work to be the most highly mixed sig-
natures in the input data set). Critically, if the regions expected to
contain the most highly informative training samples for spectral
mixture modeling can be identified in advance, then it is possible
to direct the training data acquisition procedures to these regions,
and thus reduce the number of required training sites without the
loss of prediction accuracy. This issue is of particular importance in
real applications, in which the acquisition of large training sets is
generally very costly in terms of time and finance.

As with any new approach, there are some unresolved issues
that may present challenges over time. For instance, the selection of
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endmembers for initialization of two of the proposed algorithms
(BTA and MSA) is subjective and, hence, the choice of different end-
member sets may lead to different results. However, we generally
prefer the model abstraction offered by the concept of spectral end-
member to other approaches such as those based on the availability
of spectral libraries, which are not very tractable and require very
detailed ground information (especially for large areas). Also, the
proposed model assumes that the spectral signatures used for the
initialization represent pure land-cover classes. In reality, it may be
difficult to find such “pure” sites in coarse spatial resolution images,
where the spectral response a pixel may be given by several land-
cover types. This problem reflects the inherent nature of land-covers
and mapping processes, and can only be properly addressed by the
utilization of reliable ground data and spectral libraries. In this re-
gard, future analyses should incorporate a denser sampling of sites
for training and testing. Another topic deserving future research is
the interaction between atmospheric effects and model predictions,
which could not be fully addressed in this work due to the limited
effect of atmospheric interferers on our test sites.
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