
Computers & Geosciences 36 (2010) 1283–1291
Contents lists available at ScienceDirect
Computers & Geosciences
0098-30

doi:10.1

� Corr

E-m

URL
journal homepage: www.elsevier.com/locate/cageo
Improving the scalability of hyperspectral imaging applications on
heterogeneous platforms using adaptive run-time data compression
Antonio Plaza �, Javier Plaza, Abel Paz

Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications, University of Extremadura, Avda. de la Universdad s/n, E-10071 Cáceres, Spain
a r t i c l e i n f o

Article history:

Received 16 August 2009

Received in revised form

7 December 2009

Accepted 24 February 2010

Keywords:

Heterogeneous parallel computing

Adaptive run-time data compression

Wavelet transform

Hyperspectral imaging

Remote sensing
04/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cageo.2010.02.009

esponding author. Tel.: +34 927 257195; fax

ail address: aplaza@unex.es (A. Plaza).

: http://www.umbc.edu/rssipl/people/aplaza.
a b s t r a c t

Latest generation remote sensing instruments (called hyperspectral imagers) are now able to generate

hundreds of images, corresponding to different wavelength channels, for the same area on the surface

of the Earth. In previous work, we have reported that the scalability of parallel processing algorithms

dealing with these high-dimensional data volumes is affected by the amount of data to be exchanged

through the communication network of the system. However, large messages are common in

hyperspectral imaging applications since processing algorithms are pixel-based, and each pixel vector

to be exchanged through the communication network is made up of hundreds of spectral values. Thus,

decreasing the amount of data to be exchanged could improve the scalability and parallel performance.

In this paper, we propose a new framework based on intelligent utilization of wavelet-based data

compression techniques for improving the scalability of a standard hyperspectral image processing

chain on heterogeneous networks of workstations. This type of parallel platform is quickly becoming a

standard in hyperspectral image processing due to the distributed nature of collected hyperspectral

data as well as its flexibility and low cost. Our experimental results indicate that adaptive lossy

compression can lead to improvements in the scalability of the hyperspectral processing chain without

sacrificing analysis accuracy, even at sub-pixel precision levels.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

High performance computing has become a standard solution
in order to deal with high response times in large-scale remote
sensing applications (Plaza and Chang, 2007). Although parallel
processing in clusters of computers has been an active research
area in the geosciences community (Dai, 2005; Tian et al., 2008;
Sourbier et al., 2009), a recent trend in Earth-Observation (EO)
data processing and other applications is to utilize highly
heterogeneous and distributed parallel platforms (Lastovetsky,
2003; Zeng and McMechan, 2002). These systems can benefit
from local (user) computing resources in order to efficiently store
and handle high-dimensional data archives resulting from the EO
campaigns of latest-generation imaging instruments, such as the
NASA Jet Propulsion Laboratory’s Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) (Green et al., 1998). This instru-
ment can now record the visible and near-infrared spectrum
(wavelength region from 0.4 to 2:5mm) of the reflected light of an
area 2–12 km wide and several km long using 224 narrow spectral
bands. The resulting data volume is commonly referred to as
ll rights reserved.

: +34 927 257203.
hyperspectral image cube (Goetz et al., 1985) (see Fig. 1). The
increased spectral resolution of hyperspectral imagers with
regards to multispectral instruments (Biehl and Landgrebe,
2002) (hundreds versus tens of spectral channels) has introduced
new processing requirements (Chang, 2003).

In previous work, we have reported that the scalability of
parallel hyperspectral imaging algorithms is directly related to
the amount of information to be exchanged through the
communication network of the system when the parallel algo-
rithm is run (Plaza, 2008a), i.e. large message sizes (typical in
hyperspectral imaging applications, since each pixel vector is
made up of hundreds of spectral values) can be harmful for the
scalability of the parallel code (Plaza, 2008b; Plaza et al., 2007).
Our speculation in this work is that decreasing the amount of
information to be exchanged can improve the scalability of
hyperspectral imaging algorithms on heterogeneous networks.
This dependence on the interconnect is even more critical in
clusters of computers, where the interconnect is a typically an
off-the-shelf hardware such as a Gigabit Ethernet, which suffers
from high latency and relatively low-bandwidth (Kumar et al.,
2008). The bottleneck becomes more severe when the
interconnection network is saturated with a large number of
processors sending large messages.

In this paper we investigate a new framework, based on
the utilization of wavelet-based data compression techniques

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2010.02.009
mailto:aplaza@unex.es
mailto:http://www.umbc.edu/rssipl/people/aplaza.3d
dx.doi.org/10.1016/j.cageo.2010.02.009


Fig. 1. Concept of hyperspectral imaging.

1 http://www.ittvis.com

A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–12911284
(Kaewpijit et al., 2003), for reducing the amount of communica-
tions required by a parallel hyperspectral image processing chain
on heterogeneous platforms. Two types of data compression can
be performed, lossless and lossy (Motta et al., 2006), in
accordance with redundancy removal. Lossless compression
involves no loss of information and enables perfect reconstruction
of the pixel vector after reception. On the other hand, lossy
compression involves some acceptable loss of information, where
the term acceptable needs to be substantiated by analyzing the
trade-off between the increase in parallel performance and the
potential decrease in analysis accuracy of the algorithm. Which
type of compression should be used depends heavily upon the
application domain (Ramakhrishna et al., 2006). For example, in
medical imaging applications, lossless compression is preferred to
lossy compression in order to avoid potential lawsuits against
doctors. However, since the best compression ratios achieved by
lossless methods are in the order of 3:1, lossy compression is
generally preferred in hyperspectral imaging applications, in
which higher compression ratios are generally required (Motta
et al., 2006). Parallel compression is also of great interest in
hyperspectral data exploitation (Du et al., 2009).

In previous work, it has been demonstrated that spectral
mixture analysis (Adams et al., 1986) represents an adequate
alternative to achieve lossy compression of hyperspectral data
while retaining the information that is most relevant for
analyzing the data with sub-pixel precision (Du and Chang,
2004). Specifically, in this work we propose a lossy compression
approach combined with a spectral unmixing-based (Keshava and
Mustard, 2002) processing chain (available, among others, in the
Environment for Visualizing Images (ENVI),1 a very popular
remote sensing software package) to achieve lossy but controlled
compression at different ratios. This strategy is shown to increase
the parallel performance of a heterogeneous implementation of
the processing chain on a fully heterogeneous network of
workstations, which is a standardized type of distributed parallel
platform currently used by several agencies and organizations for
storing and managing hyperspectral data sets distributed among
different locations.

The remainder of the paper is organized as follows: In Section
2, we describe the standard hyperspectral image processing chain
used in this work as a case study. In Section 3, we present the
parallel heterogeneous implementation. Section 4 discusses the
proposed wavelet-based compression scheme. Section 5 presents
an experimental validation of the proposed approach, with and
without data compression. Section 6 concludes and provides hints
at future research directions.
2. Hyperspectral image processing chain

2.1. Problem formulation

Let us assume that a hyperspectral scene with N bands is
denoted by F, in which a pixel of the scene is represented by a
vector f i ¼ ½fi1,fi2, . . . ,fin�ARN , where R denotes the set of real

http://www.ittvis.com


A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–1291 1285
numbers in which the pixel’s spectral response fik at sensor
wavelengths k¼1,y,N is included. Under the linear mixture
model assumption (Plaza et al., 2004), each pixel vector in the
scene can be modeled using:

f i ¼
XE

e ¼ 1

ee � aeeþn, ð1Þ

where ee denotes the spectral response of a pure spectral signature
(endmember (Plaza et al., 2002) in hyperspectral imaging terminol-
ogy), aee is a scalar value designating the fractional abundance of the
endmember ee, E is the total number of endmembers, and n is a
noise vector. The use of spectral endmembers allows one to deal
with the problem of mixed pixels (Penn, 2002), which arise when
the spatial resolution of the sensor is not high enough to separate
different materials. For instance, it is likely that the pixel labeled as
‘vegetation’ in Fig. 1 actually comprises a mixture of vegetation and
soil. In this case, the measured spectrum can be decomposed into a
linear combination of pure spectral endmembers of soil and
vegetation, weighted by abundance fractions that indicate the
proportion of each endmember in the mixed pixel (Keshava and
Mustard, 2002). The solution of the linear spectral mixture problem
in (1) relies on the correct determination of a set {ee}e¼1

E of
endmembers and their correspondent abundance fractions faee g

E
e ¼ 1

at each image pixel fi.

2.2. Processing chain

The inputs to the hyperspectral processing chain considered in
this work are a hyperspectral image cube F with N spectral bands
and T pixel vectors; the number of endmembers to be extracted, E, a
maximum number of projections, K; a cut-off threshold value, vc,
used to select as final endmembers only those pixels that have been
selected as extreme pixels at least vc times after K projections; and a
threshold angle, va, used to discard redundant endmembers. The
processing chain can be summarized by the following steps:
(1)
 Skewer generation: Produce a set of K randomly generated unit
vectors for pixel purity indexing (Boardman, 1993), denoted
by {skewerj}j¼1

K .

(2)
 Extreme projections: For each skewerj, all sample pixel vectors

fi in the original data set F are projected onto skewerj via dot
products of jf i � skewerjj to find the pixel vectors at extreme
(maximum and minimum) projections, forming an extrema
set for skewerj which is denoted by Sextrema(skewerj). Define
an indicator function of a set S, denoted by IS(fi), to denote
membership of an element fi to that particular set as IS(fi)¼1
if fiAS. Using the indicator function above, calculate the
number of times that a given pixel has been selected as
extreme using

NtimesðfiÞ ¼
XK

j ¼ 1

ISextremaðskewerjÞ
ðf iÞ: ð2Þ
(3)
 Endmember selection: Find the pixels with value of Ntimes(fi)
above vc and form a unique set of E endmembers {ee}e¼1

E by
calculating the spectral angle distance (SAD) for all possible
endmember pairs and discarding those which result in an
angle value below va. SAD is invariant to multiplicative
scalings that may arise due to differences in illumination and
sensor observation angle (Chang, 2003). The SAD between two
endmembers ei and ej is given by

SADðei,ejÞ ¼ cos�1 ei � ej

JeiJ � JejJ
: ð3Þ
Spectral unmixing: For each pixel vector fi in F, a set of
(4)

abundance fractions specified by fae1

,ae2
, . . . ,aeE

g is obtained
using the set of endmembers {ee}e¼1

E , so that fi can be
expressed as a linear combination of endmembers by
minimizing the term n in the following expression:
f i ¼ e1 � ae1

þe2 � ae2
þ � � � þeE � aeE

þn, thus solving the linear
mixture problem in (1) (Chang, 2003).
3. Parallel heterogeneous implementation

Let us assume that pi denotes a processing node weighted by
its relative cycle-time ti. Similarly, let us assume that cij denotes
the maximum capacity of the slowest link in the path of physical
communication links from pi to pj. In order to balance the load in a
fully heterogeneous environment, processor pi should accomplish
a share of ai �W of the original workload, denoted by W, to be
accomplished by a certain algorithm, with aiZ0 for 1r irP andPP

i ¼ 1 ai ¼ 1, being P the total number of processors in the system.
With the above notation in mind (Legrand et al., 2004), we have
developed a master-slave heterogeneous implementation of the
processing chain in Section 2 using the C++ programming
language, with calls to message passing interface (MPI). The
proposed implementation consists of the following stages:

3.1. Workload estimation algorithm

This stage first obtains necessary information about the
heterogeneous system, including the number of available proces-
sing nodes P, each processor’s identification number {pi}i¼1

P , and
processor cycle-times {ti}i¼1

P . Then, a master processor performs
the following steps:
(1)
 Set ai ¼ bð1=tiÞ=
PP

i ¼ 1ð1=tiÞc for all iAf1, . . . ,Pg, i.e. this step
first approximates the faig

P
i ¼ 1 so that ai � ti � const for all

processors.

(2)
 Iteratively increment some ai until the set of faig

P
i ¼ 1 best

approximates the total workload to be completed, i.e. for
m¼

PP
i ¼ 1 ai to W, find kAf1, . . . ,Pg so that tk � ðakþ1Þ ¼

minfti � ðaiþ1ÞgPi ¼ 1, and then set ak ¼ akþ1.

(3)
 Produce P partitions of the input hyperspectral data set as

follows (Plaza et al., 2008):

(a) Establish an initial partitioning of the data so that the
number of pixel vectors in each partition is proportional
to the estimated values of faig

P
i ¼ 1, and assuming that no

upper bound exist on the number of pixel vectors that can
be stored by the local memory.

(b) For each processor pi, check if the number of pixel vectors
assigned to it is greater than the upper bound. For all the
processors whose upper bounds are exceeded, assign
them a number of pixels equal to their upper bounds.
Now, solve the partitioning problem of a set with
remaining pixel vectors over the remaining processors
until all pixel vectors in the input data have been
assigned.

(c) Iteratively recalculate the workload assigned to each
processor using:

Wk
i ¼Wk�1

i �
X

jANðiÞ

cij

Wk�1
i

ti
�

Wk�1
j

tj

 !
ð4Þ

where N(i) denotes the set of neighbors of processing
node pi, and Wi

k denotes the workload of pi (i.e., the
number of pixel vectors assigned to this processor) after
the k-th iteration. This scheme has been demonstrated to



A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–12911286
converge to an average workload Wi :¼ ð
PP

j ¼ 1 Wj=PP
j ¼ 1 tjÞti (Elsasser et al., 2002).
3.2. Parallel algorithm

Using the P heterogeneous partitions obtained in the previous
step, the following parallel algorithm is now applied:
(1)
 Skewer generation: Generate K random unit vectors
{skewerj}j¼1

K in parallel, and broadcast the entire set of
skewers to all the workers.
(2)
 Extreme projections: For each skewerj, each worker projects all
the sample pixel vectors at its local partition l (where
1r lrP) onto skewerj to find sample vectors at its extreme
projections, and forms an extrema set for skewerj which is
denoted by Sextrema

(l) (skewerj). Now each worker calculates the
number of times that each pixel vector fi

(l) in each local
partition is selected as extreme using

NðlÞtimesðf
ðlÞ
i Þ ¼

XK

j ¼ 1

I
SðlÞextremaðskewerjÞ

ðfðlÞi Þ: ð5Þ
(3)
 Endmember selection: Each worker selects those pixel vectors
which satisfy NðlÞtimesðf

ðlÞ
i Þ4vc , and then sends the spatial

coordinates of those pixels to the master node. The master
now forms a unique set {ee}e¼1

E by calculating the SAD for all
possible pixel vector pairs provided by the workers in parallel,
and discarding those pixels which result in angle values below
va.
(4)
 Spectral unmixing: The master broadcasts the final set of
endmembers {ee}e¼1

E to all workers. Each worker then obtains
a set of fractional abundances faðlÞe1

,aðlÞe2
, . . . ,aðlÞeE

g for each pixel
vector fi

(l) in its local partition l, so that the term n in the
following expression is minimized: fðlÞi ¼ e1 � a

ðlÞ
e1
þe2 � a

ðlÞ
e2

þ � � � þeE � a
ðlÞ
eE
þn. The workers finally send the local results

to the master, which combines them and forms the final
output.
4. Adaptive data compression

The idea of the adopted lossy compression method is to apply a
discrete wavelet transform (Kaewpijit et al., 2003) in the spectral
domain before communicating each vector through the network.
This includes the pixels distributed to slave processors in the
workload estimation step, the skewers broadcast by the master in
the skewer generation step, the final endmembers broadcast by the
master in the spectral unmixing step, and the local results returned
by the workers to the master in the same step. The lossy
compression procedure does not only reduce the data volume to
be communicated, but it can also preserve the characteristics of
the spectral signatures. This is due to the intrinsic property of
wavelet transforms, which preserve high and low-frequency
features during the signal decomposition, therefore retaining the
peaks and valleys found in typical spectra.

One of the advantages of using a one-dimensional wavelet
transform (across spectral bands) is the fact that this is a very
localized operation, which means less accesses to secondary
storage and better cache memory system utilization. This can be
greatly beneficial in terms of achieving data locality while, at the
same time, reducing interprocessor communications. Another
advantage of using the wavelet transform for compression
purposes is that its performance can be better for larger
dimensions. This property, which fits well the analysis of
hyperspectral signals due to their high dimensionality, results
from the very nature of wavelet compression, where significant
features of the signal might be lost when the signal is under-
sampled. A final major advantage is that the compression process
is pixel-based, and therefore it can be effectively integrated in the
heterogeneous algorithm described in Section 3 and executed in
parallel. A general description of the encoder and decoder
modules of the adopted wavelet-based compression strategy
follows:
�
 Encoder: Each time the master processor or a slave processor
needs to communicate a pixel vector through the system, its
associated signal (spectral signature) is decomposed (encoded)
using a Daubechies wavelet (filter size four) (Kaewpijit et al.,
2003). This transform decomposes each signature into a set of
composite bands that are linear, weighted combinations of the
original spectral bands. An example of the encoding process
for a standard AVIRIS spectral signature is shown in Fig. 3. As
the number of wavelet decomposition levels increases, the
structure of the spectral signature becomes smoother than
the structure of the original signature. It can be seen that the
overall structure of the signal is recognizable until level 2 and
more degraded at level 3.

�
 Decoder: An approximation of the original spectrum at pixel

vector can be reconstructed (decoded) after reception of the
compressed signal and the wavelet coefficients (which are
transmitted through the network) using an inverse discrete
wavelet transform (Kaewpijit et al., 2003). Because the
reconstructed spectral data are produced from the approxima-
tion, the more levels is which the signal is decomposed, the
more different the reconstructed signal is with regards to the
original signal, because of the loss of high-pass components.

At this point, it is important to emphasize that the needed level of
decomposition for each given pixel should be the one that
corresponds to producing an acceptable spectral similarity with
the original signature. In this work, we make use of the spectral
angle distance in (3) as a quantitative indicator to measure the
similarity between the original spectral signature and the
reconstructed spectral approximation. A threshold similarity
angle parameter, ta, is fixed in advance, so that the number of
levels of the wavelet decomposition is adaptively defined (at run-
time) for each pixel in order to meet the desired similarity
threshold in the reconstructed pixel with regards to the original
one. For instance, setting ta¼0.1 (a reasonable similarity thresh-
old as studied in previous work, Plaza et al., 2004) automatically
discards level 3 and retains level 2 as the highest acceptable
decomposition level to avoid significantly degrading the original
signal in the example given in Fig. 3. Note that the number of
levels needed to meet the quantitative criterion above varies from
one pixel to another, depending on the complexity of its
associated spectral signature.
5. Experimental results

In this section we evaluate the impact of including data
compression on the scalability of the parallel heterogeneous
algorithm described in Section 3. This section is structured as
follows. First, we present the hyperspectral image data set that
will be used in experiments, along with the analysis results
obtained after applying the processing chain in Section 2 to the
same data set. Then, we describe the heterogeneous parallel
platform used for experimentation. Next, we introduce the
motivation for data compression. The section concludes with an
experimental assessment of the increase in parallel performance



Fig. 2. Hyperspectral image (left). Location of fires in World Trade Center (right).

Fig. 3. Example of a mineral spectral signature and different levels of wavelet decomposition for lowpass component. (a) Level 1: 200 bands. (b) Level 2: 100 bands.

(c) Level 3: 25 bands.

A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–1291 1287
observed after applying the proposed adaptive data compression
strategy.
2 http://speclab.cr.usgs.gov/wtc
5.1. Hyperspectral data

The image scene used for experiments in this work was
collected by the AVIRIS instrument, flown over the World Trade
Center (WTC) area in New York City on September 16, 2001, just
five days after the terrorist attacks that collapsed the two main
towers and other buildings in the WTC complex. The data set
consists of 614 �512 pixels, 200 spectral values per pixel (each
coded using 16 bits), for a total size of about 123 MB. Water
absorption and noisy channels were removed prior to data
processing from the original 224-band data set due to low signal
to noise ratio in those channels. Fig. 2 (left) shows a false color
composite of the data set selected for experiments. Fig. 2 (right)
shows a thermal map centered at the region where the buildings
collapsed. The map shows the target locations of the thermal hot
spots, used in this work as ground-truth to validate the parallel
hyperspectral processing algorithms.

Table 1 evaluates the accuracy of the hyperspectral processing
chain described in Section 2 in estimating the sub-pixel
abundance of fires in Fig. 2 (right), taking advantage of the
information about the area covered by each thermal hot spot
available from U.S. Geological Survey (USGS).2 Since each pixel in
the AVIRIS scene has a size of 1.7 square meters, it is inferred that
the thermal hot spots are sub-pixel in nature, and thus require
spectral unmixing in order to be characterized. Experiments in
Table 1 demonstrate that the processing chain can provide
accurate estimations of the area covered by thermal hot spots.
In particular, the estimations for the thermal hot spots with
higher temperature (labeled as ‘A’ and ‘G’ in the table) were
almost perfect. Here, the processing chain was run using a total of
K¼104 skewers, with the cutoff threshold parameter vc set to the
mean of Ntimes scores after 104 iterations, and the threshold angle
value set to va¼0.1, a reasonable limit of tolerance for this metric.
These parameter values are in agreement with those used before
in the literature (Plaza et al., 2004). In this experiment, the
number of endmembers was set to E¼15 using the virtual
dimensionality concept (Chang, 2003), which automatically
calculates the number of endmembers in a scene.

5.2. Heterogeneous platform

The fully heterogeneous network considered in our study
consists of 16 different workstations, and four communication

http://speclab.cr.usgs.gov/wtc


Table 1
Comparison of area estimation (in square meters) for each thermal hot spot by parallel implementations of hyperspectral processing chain (USGS reference values are also

included).

Thermal hot spot Latitude (North) Longitude (West) Temperature (K) Area (USGS) Area (Chain)

‘A’ 40342u47:1800 74300u41:4300 1000 0.56 0.55

‘B’ 40342u47:1400 74300u43:5300 830 0.08 0.06

‘C’ 40342u42:8900 74300u48:8800 900 0.80 0.78

‘D’ 40342u41:9900 74300u46:9400 790 0.80 0.81

‘E’ 40342u40:5800 74300u50:1500 710 0.40 0.45

‘F’ 40342u38:7400 74300u46:7000 700 0.40 0.37

‘G’ 40342u39:9400 74300u45:3700 1020 0.04 0.05

‘H’ 40342u38:6000 74300u43:5100 820 0.08 0.09

Table 2
Specifications of heterogeneous processors.

Processor number Architecture specification Cycle-time (s/megaflop) Memory (MB) Cache (KB)

p1 Free BSD–i386 Intel Pentium 4 0.0058 2048 1024

p2, p5, p8 Linux–Intel Xeon 0.0102 1024 512

p3 Linux–AMD Athlon 0.0026 7748 512

p4, p6, p7, p9 Linux–Intel Xeon 0.0072 1024 1024

p10 SunOS–SUNW UltraSparc-5 0.0451 512 2048

p11–p16 Linux–AMD Athlon 0.0131 2048 1024

Table 3
Capacity of communication links (time in milliseconds to transfer a one-megabit

message).

Processor p1–p4 p5–p8 p9–p10 p11–p16

p1–p4 19.26 48.31 96.62 154.76

p5–p8 48.31 17.65 48.31 106.45

p9–p10 96.62 48.31 16.38 58.14

p11–p16 154.76 106.45 58.14 14.05

A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–12911288
segments. Table 2 presents the properties of the 16 heterogeneous
workstations, where processors {pi}i¼1

4 are attached to commu-
nication segment s1, processors {pi}i¼5

8 communicate through s2,
processors {pi}i¼9

10 are interconnected via s3, and processors
{pi}i¼11

16 share the communication segment s4. The communication
links between the different segments {sj}j¼1

4 only support serial
communication. For illustrative purposes, Table 3 also presents
the capacity of all point-to-point communications in the hetero-
geneous network, expressed as the time in milliseconds to
transfer a one-megabit message between each processor pair
(pi,pj) in the heterogeneous system. As noted, the communication
network of the fully heterogeneous network consists of four
relatively fast homogeneous communication segments, intercon-
nected by three slower communication links with capacities
c(1,2)
¼29.05, c(2,3)

¼48.31, c(3,4)
¼58.14 in milliseconds, respec-

tively. Although this is a simple architecture, it is also a quite
typical and realistic one as well.
5.3. Motivation for data compression

Table 4 presents the total time spent by the parallel
heterogeneous algorithm in computations and communications
when processing the hyperspectral image described in Subsection
5.1 on the parallel platform described in Section 5.2. The
parameter settings for the parallel algorithm were exactly the
same as those used to produce the results in Table 1 (the parallel
algorithm produced exactly the same results as the sequential
version). For the parallel implementation, we assumed that
processor p3 (the fastest) was always the master. Two types of
computation times are analyzed in Table 4, namely, sequential

(those performed by the root node with no other parallel tasks
active in the system), and parallel (the rest of computations, i.e.
those performed by the root node and/or the workers in parallel).

On the other hand, four types of communications are also
reported in Table 4, resulting from a detailed analysis of the
communications that take place in our parallel algorithm:
�
 Resulting from the workload estimation step, the master sends
each slave an amount of pixel vectors that depends on the
processing speed of the slave and also on the capacity of the
communication links between the slave and its neighbors.

�
 In the skewer generation step, K random unit vectors with N

dimensions (skewers) are broadcast to all the workers. These
communications can be partially overlapped with computa-
tions in the extreme projections step of the parallel algorithm
since there are no data dependencies involved. Specifically,
each pixel vector in the local partition needs to be projected
onto each skewer, and the projection of a skewer to a pixel
vector is independent of the projection of the same skewer to a
different pixel vector, so the extreme projections step can start
as soon as the first skewer is received by the worker.

�
 In the endmember selection step, the workers send (in parallel)

the spatial coordinates of the pixels locally selected as
extremes to the master node.

�
 Finally, in the spectral unmixing step, the final set of end-

members is first broadcast to all the workers. Since each
worker needs the full suite of endmembers to estimate the
fractional abundances in the local pixels, these communica-
tions cannot be overlapped with computations. As a result, this
step can only start after the full suite of final endmembers is
received by the worker. At the end of this step, the workers
send (in parallel) the fractional abundances estimated for each
local pixel to the master node.

As described above, in our implementation the communications
can only be partially overlapped with computations due to data
dependencies. In this regard, it is important to emphasize that the
communication times reported on Table 4 actually correspond to
the non-overlapped portions of the different types of commu-
nications. As a result, the total execution time of the parallel



Table 5
Computation and communication times (seconds) for parallel implementation of

hyperspectral processing chain on heterogeneous network, with adaptive

compression.

ta Computations Communications

Sequential Parallel Workload

estimation

Skewer

generation

Endmember

selection

Unmixing

0.05 15.91 62.83 3.86 2.68 0.61 1.85

0.1 15.44 62.54 3.12 2.21 0.43 1.54

0.2 14.89 62.33 2.79 1.86 0.56 1.46

0.4 14.71 62.06 2.45 1.54 0.48 1.28

Table 4
Computation and communication times (seconds) for parallel implementation of

hyperspectral processing chain on heterogeneous network (without adaptive

compression).

Computations Communications

Sequential Parallel Workload

estimation

Skewer

generation

Endmember

selection

Unmixing

13.25 61.13 6.21 4.45 0.65 2.89

A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–1291 1289
heterogeneous algorithm in the considered network is the sum of
all times reported on Table 4, i.e. 88.58 s, out of which 14.2 s
(16.03% of the total execution time) correspond to communica-
tions that could not be overlapped with computations.
5.4. Impact of introducing adaptive data compression

Table 5 presents the total time spent by the parallel
heterogeneous algorithm in computations and communications
when the adaptive data compression strategy described in Section
4 was incorporated into the algorithm. Here, we considered
different values of the threshold angle parameter used to control
the quality of the reconstruction after data compression, ranging
from ta¼0.05 (high spectral fidelity in the reconstruction) to
ta¼0.4 (low spectral fidelity). According to our extensive experi-
ments in Plaza et al. (2004), setting ta¼0.1 generally leads to
acceptable results in many application domains. Therefore, we
recommend this parameter setting in most hyperspectral imaging
applications (the main feature of our proposed algorithm is that
the number of decomposition levels is automatically estimated in
order to satisfy this tolerance threshold in the reconstruction of
the data after compression, therefore the algorithm adaptively
decides the compression strategy in order to achieve the desired
quality in spectral signature reconstruction). It is important to
emphasize that, in our considered application, high-quality
fractional abundance estimations (within 70.3 square meters
deviation per pixel with regards to those reported in Table 1) were
only achieved for values of tar0:1. For values of ta40:1, the
quality of the fractional abundance estimations was significantly
lower (above 70.9 square meters deviation per pixel with
regards to those reported in Table 1). Therefore, from now on
we assume that ta¼0.1 is the most appropriate reconstruction
threshold in terms of both algorithm accuracy and parallel
performance. In this case, the total execution time of the
heterogeneous algorithm in the considered network was 85.28 s,
out of which 7.3 s (8.56% of the total execution time) correspond
to communications. If we compare these times with those
obtained for the parallel heterogeneous algorithm without
adaptive compression (see Table 4), we can infer that the
incorporation of adaptive lossy compression reduced the com-
munication time up to 51.4% (from 14.2 to 7.3 s) without
significantly reducing sub-pixel analysis accuracy.

As presented by Table 5, the introduction of adaptive run-time
compression slightly increased the sequential and parallel compu-
tation times (from 74.38 to 77.98 s for ta¼0.1) as a result of the
encoding and decoding processes. However, the increase was not
very significant, meaning that both the compression processing
overhead and the CPU load in compression over various
processors was very small. This is due to the high inter-correlation
observed in many of the values that comprise the analyzed
spectral signatures. This property, characteristic of hyperspectral
analysis, tremendously facilitated the execution of the one-
dimensional wavelet transform in computationally efficient
terms, resulting from the good cache memory system utilization
(enhanced by data locality) and the very few accesses to
secondary storage. For values of tar0:1, the one-dimensional
wavelet typically required at most 2–3 levels of decomposition
per pixel (these are adaptively selected at run-time).

In turn, the use of lossy compression resulted in a significant
decrease of communication times, in particular, of those involved
in the workload estimation (distribution of pixel vectors by the master
to the slave processors) and skewer generation (broadcast of skewers
by the master processor) steps. The communication times were also
decreased for the spectral unmixing step (broadcast of final end-
members by the master processor). Since the endmember selection

step only involved communicating the spatial coordinates of a few
pixels selected as extreme by each worker, these times always
remained very low. Another reason why the sequential and parallel

computation times were not significantly increased was that some of
the adaptive compression operations (e.g. returning the local results
obtained by the workers to the master in the spectral unmixing step)
could also be performed in parallel.

To conclude our study, we have analyzed the scalability of the
parallel heterogeneous algorithm (with and without adaptive data
compression) on the fully heterogeneous network. Here, the
concept of scalability used is the one addressed in Llorente et al.
(1996) and Grama et al. (2003), i.e. we seek to reduce commu-
nication time in order to improve scalability since we have
experimentally observed that parallel performance is maintained
by scaling the size of the problem (e.g. using larger or smaller
hyperspectral data sets). Fig. 4 shows the performance gain of the
heterogeneous parallel algorithm (implemented using different
values of ta) as the number of processors was increased on the
heterogeneous cluster. Here, we assumed that processor p3

(the fastest) was always the master, and varied the number of
slaves. The construction of speedup plots in heterogeneous
environments is not straightforward, mainly because the workers
do not have the same relative speed, and therefore the order in
which they are added to plot a speedup curve needs to be further
analyzed. To substantiate the impact of the order of selection of
slaves when constructing the speedup plots, we have tested three
different strategies:
(1)
 First, we used an ordering strategy based on the relative speed
of processors in Table 2, i.e., the first case study tested (labeled
as ‘2 processors’) consisted of using processor p3 (the fastest)
as the master and processor p10 (i.e., the one with lowest
relative speed) as the slave; the second case tested (labeled as
‘3 processors’) consisted of using processor p3 as the master
and processors p10 and p11 (i.e., the two processors with lowest
relative speed) as slaves, and so on, until a final case (labeled
as ‘16 processors’) was tested, based on using processor p3 as
the master and all remaining 15 processors as slaves.
(2)
 Second, we used an ordering strategy based on the inverse
relative speed of processors in Table 2, i.e., the first case study



Fig. 4. Performance gain of heterogeneous parallel algorithm, with ðta 40:0Þ and

without (ta¼0.0) adaptive compression, as number of processors was increased on

the heterogeneous network.

A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–12911290
tested (labeled as ‘2 processors’) consisted of using processor
p3 (the fastest) as the master and processor p10 (i.e., the one
with lowest relative speed) as the slave; the second case
tested (labeled as ‘3 processors’) consisted of using processor
p3 as the master and processor p4 (i.e., the second fastest
processor) as slave, and so on, until a final case (labeled as ‘16
processors’) was tested, based on using processor p3 as the
master and all remaining 15 processors as slaves.
(3)
 Finally, we also used a random ordering strategy, i.e., the first
case study tested (labeled as ‘2 processors’) consisted of using
processor p3 as the master and a different processor, selected
randomly among the remaining processors (say, processor pi)
as the slave; the second case (labeled as‘3 processors’)
consisted of using processor p3 as the master, processor pi

as the first slave, and a different processor, selected randomly
among the remaining processors, as the second slave, and so
on, a final case was tested (labeled as ‘16 processors’), based
on using processor p3 as the master and all remaining 15
processors as slaves.
Since the three tested strategies resulted in very similar speedup
curves, we report only one case (corresponding to the first
ordering strategy described above) in Fig. 4 for space considera-
tions. The other two strategies, based on the inverse relative
speed of processors and random ordering strategy provided very
similar results, thus indicating that the proposed parallel
implementation scales well regardless of the ordering in which
heterogeneous processors are included in order to plot the
speedup curve. This fact also reveals that the properties of
the heterogeneous communication network are well captured by
the parallel implementation, since the processors are commu-
nicated via heterogeneous communication links and their relative
ordering when plotting the speedup curve is not affected by the
heterogeneous communication links.

As shown by Fig. 4, the incorporation of additional processing
nodes provided better speedups as the value of ta was increased,
regardless of the relative speed of the nodes. This indicated that
the use of adaptive wavelet-based data compression at run-time
can increase the scalability of the code by intelligently reducing
the information to be transmitted through the heterogeneous
network. For instance, the measured speedup improved from
12.82 to 14.63 (for 16 processors) when ta¼0.1, the best observed
compromise between sub-pixel analysis accuracy and parallel
efficiency. Although better speedup values can be achieved by
using values of ta40:1, we do not display them in Fig. 4 because
the quality of the resulting fractional abundance estimations in
those cases is degraded.
Finally, it should be noted that the experimental results in this
work have been measured on a distributed network of
workstations with slow communication lines. This is mainly
because we are interested in analyzing the performance of our
parallel algorithms in this type of systems, which are still widely
used in relevant agencies and organizations. For instance, the
considered parallel system specifications are similar to those used
at NASA Jet Propulsion Laboratory’s AVIRIS data facility, which
currently holds the most relevant repository of high-quality
hyperspectral data sets. Of course, upgrading the hardware
(e.g. via Gigabit Ethernet cards) could lead to improved parallel
performance results. However, we have decided to report results
on a parallel platform with slower communication links on
purpose, thus trying to address the characteristics of current
systems in many international agencies and organizations
involved in hyperspectral data processing. In this regard, although
the results reported in this work are encouraging, further research
is required in order to fully optimize the proposed implementa-
tions and extrapolate these results to different heterogeneous
parallel environments (e.g. with superior parallel performance)
and analysis scenarios.
6. Conclusions and future lines

In heterogeneous networks, the slowness of communication
links can be a bottleneck in order to achieve good scalability of
parallel applications. A possible method to overcome this issue is
to intelligently compress the information to be transmitted
through the communication network. If the adopted compression
strategy is lossy, then higher compression ratios can be achieved.
However, in this case it is very important to substantiate the
trade-off between the increase in parallel efficiency and the
potential decrease in algorithm accuracy resulting from such loss
of information.

In this paper, we have studied the impact of incorporating a
wavelet-based lossy compression strategy at run-time in order to
reduce the amount of information that is communicated in a
parallel and heterogeneous remote sensing application. The
proposed approach adaptively determines the most appropriate
level of compression in order to avoid degrading the spectral
signature associated to each pixel vector in the remotely sensed
scene, thus ensuring that the most relevant information for
analyzing the data with sub-pixel precision is preserved. Our
experimental results, obtained in the context of a fully hetero-
geneous network of workstations, show that the incorporation of
adaptive lossy compression can reduce the communications
up to 51.4% without significantly degrading the sub-pixel analysis
of a remotely sensed hyperspectral scene. The main benefit of
our proposed approach can be summarized as follows: with only
a little increase in computation time (associated to the accom-
modation of the – necessary but fast – compression and
decompression operations in the parallel heterogeneous algo-
rithm) the parallel performance of the implementation increases
significantly since the amount of data to be communicated
throughout the communication network is much smaller. This is
a crucial aspect for improving parallel performance of hyperspec-
tral imaging applications, due to the high dimensionality of
the data.

In the future, we would like to study the effect of performing
the data compression and decompression on the programmable
processor available on the network interface, so that these
overheads can be eliminated from the host processors. We would
also like to investigate performance issues when there are more
processes running on each node. Implementation of the proposed
framework on specialized hardware devices such as field



A. Plaza et al. / Computers & Geosciences 36 (2010) 1283–1291 1291
programmable gate arrays (FPGAs) rather than desktop compu-
ters is also an important extension of this work to be approached
in future developments. Finally, we also feel that the applicability
of the proposed strategy extends beyond the domain of remotely
sensed hyperspectral image processing. This is particularly true
for the domains of signal processing and linear algebra applica-
tions (Lastovetsky and Reddy, 2007; Benner et al., 2008), which
include similar patterns of communication and calculation.
Acknowledgements

This work has been supported by the European Community’s
Marie Curie Research Training Networks Programme under
Reference MRTN-CT-2006-035927, Hyperspectral Imaging
Network (HYPER-I-NET). Funding from the Spanish Ministry of
Science and Innovation (HYPERCOMP/EODIX Project, Reference
AYA2008-05965-C04-02) and funding from Junta de Extremadura
(Project Reference: PRI09A110) are also gratefully acknowledged.
Last but not least, we would like to take this opportunity to
gratefully thank the two anonymous reviewers for their com-
ments and suggestions, which greatly helped us to improve the
quality and presentation of our manuscript.

References

Adams, J.B., Smith, M.O., Johnson, P.E., 1986. Spectral mixture modeling: a new
analysis of rock and soil types at the viking lander 1 site. Journal of
Geophysical Research 91, 8098–8112.

Benner, P., Quintana, E.S., Quintana, G., 2008. Solving linear-quadratic optimal
control problems on parallel computers. Optimization Methods & Software 23,
879–909.

Biehl, L., Landgrebe, D., 2002. MultiSpec—a tool for multispectral hyperspectral
image data analysis. Computers & Geosciences 28, 1153–1159.

Boardman, J.W., 1993. Automating spectral unmixing of AVIRIS data using convex
geometry concepts. In: Summaries of Airborne Earth Science Workshop, JPL(Jet
Propulsion Laboratory) Publication 93-26, Pasadena, pp. 11–14.

Chang, C.-I., 2003. Hyperspectral Imaging: Techniques for Spectral Detection and
Classification. Kluwer, New York, p. 390.

Dai, H., 2005. Parallel processing of prestack Kirchhoff time migration on a PC
cluster. Computers & Geosciences 31, 891–899.

Du, Q., Chang, C.-I., 2004. Linear mixture analysis-based compression for
hyperspectral image analysis. IEEE Transactions on Geoscience and Remote
Sensing 42, 875–891.

Du, Q., Zhu, W., Yang, H., Fowler, J.E., 2009. Segmented principal component
analysis for parallel compression of hyperspectral imagery. IEEE Geoscience
and Remote Sensing Letters 6, 713–717.

Elsasser, R., Monien, B., Preis, R., 2002. Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing Systems 35, 305–320.

Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N., 1985. Imaging spectrometry for
Earth remote sensing. Science 228, 1147–1153.

Grama, A., Gupta, A., Karypis, G., Kumar, V., 2003. Introduction to Parallel
Computing, second ed. Addison Wesley, Essex, England, p. 312.
Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale,
B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O., 1998.
Imaging spectroscopy and the airborne visible/infrared imaging spectrometer
(AVIRIS). Remote Sensing of Environment 65, 227–248.

Kaewpijit, S., Le Moigne, J., El-Ghazawi, T., 2003. Automatic reduction of
hyperspectral imagery using wavelet spectral analysis. IEEE Transactions on
Geoscience and Remote Sensing 41, 863–871.

Keshava, N., Mustard, J.F., 2002. Spectral unmixing. IEEE Signal Processing
Magazine 19, 44–57.

Kumar, V.S., Nanjundiah, R., Thazhuthaveetil, M.J., Govindarajan, R., 2008. Impact
of message compression on the scalability of an atmospheric modeling
application on clusters. Parallel Computing 34, 1–16.

Lastovetsky, A., 2003. Parallel Computing on Heterogeneous Networks. Wiley
Interscience, New York, p. 380.

Lastovetsky, A., Reddy, R., 2007. Data distribution for dense factorization on
computers with memory heterogeneity. Parallel Computing 33, 757–779.

Legrand, A., Renard, H., Robert, Y., Vivien, F., 2004. Mapping and load-balancing
iterative computations. IEEE Transactions on Parallel and Distributed Systems
15, 546–558.

Llorente, I.M., Tirado, F., Vazquez, L., 1996. Some aspects about the scalability of
scientific applications on parallel architectures. Parallel Computing 22,
1169–1195.

Motta, G., Rizzo, F., Storer, J.A., 2006. Hyperspectral Data Compression. Springer,
Berlin, p. 480.

Penn, B.S., 2002. Using simulated annealing to obtain optimal linear end-member
mixtures of hyperspectral data. Computers & Geosciences 28, 809–817.

Plaza, A., 2008a. Parallel processing of remotely sensed hyperspectral imagery:
full-pixel versus mixed-pixel classification. Concurrency and Computation:
Practice & Experience 20, 1539–1572.

Plaza, A., 2008b. Parallel techniques for information extraction from hyperspectral
imagery using heterogeneous networks of workstations. Journal of Parallel and
Distributed Computing 68, 93–111.

Plaza, A., Chang, C.-I., 2007. High Performance Computing in Remote Sensing.
Chapman & Hall, CRC Press, Boca Raton, p. 450.

Plaza, A., Martinez, P., Perez, R., Plaza, J., 2002. Spatial/spectral endmember
extraction by multidimensional morphological operations. IEEE Transactions
on Geoscience and Remote Sensing 40, 2025–2041.

Plaza, A., Martinez, P., Perez, R., Plaza, J., 2004. A quantitative and comparative
analysis of endmember extraction algorithms from hyperspectral data. IEEE
Transactions on Geoscience and Remote Sensing 42, 650–663.

Plaza, A., Plaza, J., Valencia, D., 2007. Impact of platform heterogeneity on the
design of parallel algorithms for morphological processing of high-dimen-
sional image data. Journal of Supercomputing 40, 81–107.

Plaza, A., Valencia, D., Plaza, J., 2008. An experimental comparison of parallel
algorithms for hyperspectral analysis using homogeneous and heterogeneous
networks of workstations. Parallel Computing 34, 92–114.

Ramakhrishna, B., Plaza, A., Chang, C.-I., Ren, H., Du, Q., Chang, C.-C., 2006. Spectral/
spatial hyperspectral image compression. In: Motta, G., Rizzo, F., Storer, J.A.
(Eds.), Hyperspectral Data Compression. Springer, Berlin, pp. 309–346.

Sourbier, F., Operto, S., Virieux, J., Amestoy, P., L’Excellent, J.-Y., 2009. FWT2D: a
massively parallel program for frequency-domain full-waveform tomography
of wide-aperture seismic data. Part 2: numerical examples and scalability
analysis. Computers & Geosciences 35, 496–514.

Tian, Y., Peters-Lidard, C.D., Kumar, S.V., Geiger, J., Houser, P.R., Eastman, J.L.,
Dirmeyer, P., Doty, B., Adams, J., 2008. High-performance land surface
modeling with a linux cluster. Computers & Geosciences 34, 1492–1504.

Zeng, X., McMechan, G.A., 2002. Load balancing across a highly heterogeneous
processor cluster using file status probes. Computers & Geosciences 28,
911–918.


	Improving the scalability of hyperspectral imaging applications on heterogeneous platforms using adaptive run-time data...
	Introduction
	Hyperspectral image processing chain
	Problem formulation
	Processing chain

	Parallel heterogeneous implementation
	Workload estimation algorithm
	Parallel algorithm

	Adaptive data compression
	Experimental results
	Hyperspectral data
	Heterogeneous platform
	Motivation for data compression
	Impact of introducing adaptive data compression

	Conclusions and future lines
	Acknowledgements
	References




