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SUMMARY

The purpose of content-based image retrieval (CBIR) is to retrieve, from real data stored in a database,
information that is relevant to a query. In remote sensing applications, the wealth of spectral information
provided by latest-generation (hyperspectral) instruments has quickly introduced the need for parallel
CBIR systems able to effectively retrieve features of interest from ever-growing data archives. To address
this need, this paper develops a new parallel CBIR system that has been specifically designed to be
run on heterogeneous networks of computers (HNOCs). These platforms have soon become a standard
computing architecture in remote sensing missions due to the distributed nature of data repositories.
The proposed heterogeneous system first extracts an image feature vector able to characterize image
content with sub-pixel precision using spectral mixture analysis concepts, and then uses the obtained
feature as a search reference. The system is validated using a complex hyperspectral image database,
and implemented on several networks of workstations and a Beowulf cluster at NASA’s Goddard Space
Flight Center. Our experimental results indicate that the proposed parallel system can efficiently retrieve
hyperspectral images from complex image databases by efficiently adapting to the underlying parallel
platform on which it is run, regardless of the heterogeneity in the compute nodes and communication
links that form such parallel platform. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Content-based image retrieval (CBIR) systems offer mechanisms for selecting the data items that
resemble most a specific query among all the available information in a database [1,2]. A major
challenge for the development of efficient CBIR systems in the context of remote sensing ap-
plications is how to deal with the extremely large volumes of data produced by current Earth-
observing imaging spectrometers [3]. The multispectral nature [4] of those systems is crucial in
applications such as environmental studies, target detection for military purposes or risk/hazard
prevention and response. For instance, the NASA Jet Propulsion Laboratory’s Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) [5] is able to record the visible and near infrared spec-
trum of the reflected light of an area several kilometers long (depending on the duration of the
flight) using hundreds of spectral bands. The resulting ‘image cube’ is a stack of images (Figure 1),
in which each pixel (vector) has an associated spectral signature or ‘fingerprint’ that uniquely
characterizes the underlying objects. The resulting data often comprises several Gigabytes per
flight.
Most available parallel systems used by institutions such as NASA or the European Space Agency

during the last decade for hyperspectral data processing have been homogeneous in nature. For
instance, Beowulf clusters have been used to access greatly increased computational power, but at
a low cost (commensurate with falling commercial PC costs) in a number of remote sensing appli-
cations [6–10]. Despite the success of the Beowulf systems in hyperspectral imaging applications,
a recent trend in the design of high-performance systems for data-intensive problems in remote
sensing is the use of heterogeneous computing resources distributed among different locations [11].
It has been shown that such heterogeneous networks of computers (HNOCs) can realize a very high
level of the aggregate performance in both generic [12,13] and remote sensing applications [14], and
the pervasive availability of these resources has resulted in the progressive incorporation of the con-
cept of grid computing [15] into remote sensing studies, with the ultimate goal of making distributed
collections of data easy to access from different users. Although it is expected that heterogeneous
and grid-based CBIR systems will soon represent a tool of choice in many scientific applica-
tions [16,17], very few efforts have been developed toward the design of computationally efficient
CBIR systems for remote sensing image retrieval on fully heterogeneous platforms, i.e. in systems
made up of distributed heterogeneous processors that communicate through links with different
capacities.
In this paper, we describe a new parallel CBIR system for information extraction and mining from

remote sensing data repositories. The system has been specifically designed to be run on HNOCs.
The main objective of this paper is to analyze if HNOCs can serve as a baseline parallel system
for efficient implementation of hyperspectral image retrieval algorithms from large data reposito-
ries, using spectral mixture analysis concepts when conducting the content-based image search.
This strategy is expected to simplify the procedure of searching hyperspectral images by content,
due to the special properties of hyperspectral imagery which can be well captured using spectral
unmixing concepts. In order to address this general objective, we pursue the following specific
objectives:

1. To develop a spectral mixture analysis-based CBIR system that can assist users in the task of
efficiently searching hyperspectral image instances in large data repositories.
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Figure 1. The concept of hyperspectral imaging.

2. To implement the proposed system in HNOCs so that it can be run in distributed parallel
platforms made up of different processing nodes connected by heterogeneous communica-
tion links.

3. To validate the proposed system in terms of both hyperspectral image retrieval accuracy and
parallel performance, with particular attention to the scalability and load balancing achieved
in heterogeneous platforms.

The paper is structured as follows. Section 2 describes the spectral unmixing-based hyperspectral
image retrieval methodology used to implement the core of our CBIR system. Section 3 describes
its parallel heterogeneous implementation. Section 4 assesses the performance of the system by
comparing its accuracy and parallel properties using several heterogeneous and homogeneous net-
works, and a massively parallel Beowulf cluster. Finally, Section 5 concludes with some remarks
and hints at the plausible future research.
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2. HYPERSPECTRAL IMAGE RETRIEVAL METHODOLOGY

2.1. Problem formulation

Let us assume that a remotely sensed hyperspectral scene with N bands is denoted by F, in which
a pixel of the scene is represented by a vector fi =[ fi1, fi2, . . . , fin] ∈ �N , where � denotes the
set of real numbers in which the pixel’s spectral response fik at sensor channels k = 1, . . . , N is
included. Under the linear mixture model assumption, each pixel vector in the original scene can
be modeled using the following expression:

fi =
E∑

e=1
ee · aee + n (1)

where ee denotes the spectral response of a pure spectral signature (endmember in hyperspectral
imaging terminology), aee is a scalar value designating the fractional abundance of the endmember
ee, E is the total number of endmembers, and n is a noise vector. The use of spectral endmembers
allows one to deal with the problem of mixed pixels, which arise when the spatial resolution of
the sensor is not high enough to separate different materials [18,19]. For instance, it is likely that
the pixel labeled as ‘vegetation’ in Figure 1 actually comprises a mixture of vegetation and soil.
In this case, the measured spectrum can be decomposed into a linear combination of pure spectral
endmembers of soil and vegetation, weighted by abundance fractions that indicate the proportion
of each endmember in the mixed pixel.
The solution of the linear spectral mixture problem described in (1) relies on a successful estima-

tion of how many endmembers, E , are present in the input hyperspectral scene F, and also on the
correct determination of a set {ee}Ee=1 of endmembers and their correspondent abundance fractions
{aee}Ee=1 at each pixel fi . Two physical constraints are generally imposed into the model described
in (1), these are the abundance non-negativity constraint (ANC), i.e. aee≥0, and the abundance
sum-to-one constraint (ASC), i.e.

∑E
e=1aee = 1 [20].

2.2. Proposed methodology

The image content retrieval methodology used in this work to describe hyperspectral data sets
consists of two main stages:

1. Endmember extraction: First, a set of pure spectral signatures (endmembers) are extracted
from the input data set. For this purpose, we have considered a standard algorithm in the
literature: Boardman’s pixel purity index (PPI) [21]. This algorithm has been widely used in
hyperspectral image analysis for endmember extraction due to its publicity and availability in
the environment for visualizing images software‡ originally developed by Analytical Imaging
and Geophysics. The algorithm searches for a set of vertices of a convex hull in a given data
set, which are supposed to be pure signatures present in the data. The concept of the algorithm
is illustrated by a toy example in Figure 2.

‡http://www.ittvis.com.
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Figure 2. Toy example illustrating the performance of the PPI algorithm used for endmember extraction.

2. Fully constrained linear spectral unmixing (FCLSU): Using the set of endmembers extracted
in the previous stage, we estimate the fractional abundances of such endmembers in each
pixel of the scene using a fully constrained linear spectral unmixing (FCLSU) algorithm that
incorporates both the ANC and the ASC constraints. The algorithm adopted in this work was
proposed by Heinz and Chang [20,22].

3. Spectral signature matching: Once a set of image endmembers have been extracted, along
with their correspondent abundances, the similarity of a pair of images can be determined
by a spectral matching procedure in which the spectral endmembers of an input (test) image
are sorted and then compared with the ordered endmembers of each of a set of reference
images stored in a database [19]. After the endmember spectra of the two images have been
matched by means of a spectral similarity metric, their corresponding abundance fractions
are compared and used to produce a feature vector representing the fractional proportions of
endmembers in the compared images.

In the following, we describe the endmember extraction algorithm (EEA) used in this work and
also the spectral similarity matching algorithm used to perform signature comparison and sorting.
For convenience, and in order to save space, from now on we assume that spectral unmixing is the
last step of the EEA, although it is important to emphasize that different unmixing algorithms can
use the endmembers provided by the PPI (or by a different algorithm) to produce final fractional
abundance estimates.

2.3. Endmember extraction algorithm (EEA)

The inputs to the algorithm are a hyperspectral image cube F with N spectral bands; a maximum
number of projections, K ; a cutoff threshold value, vc, used to select as final endmembers only
those pixels that have been selected as extreme pixels at least vc times throughout the process; and
a threshold angle, va , used to discard redundant endmembers during the process. The output of
the algorithm is a set of E final endmembers {ee}Ee=1. The algorithm can be summarized by the
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following steps [21]:
1. Skewer generation: Produce a set of K randomly generated unit vectors, denoted by

{skewer j }Kj=1.
2. Extreme projections: For each skewer j , all sample pixel vectors fi in the original data set F

are projected onto skewer j via products of |fi · skewer j | to find sample vectors at its extreme
(maximum and minimum) projections, forming an extrema set for skewer j , which is denoted
by Sextrema(skewer j ).

3. Calculation of pixel purity scores: Define an indicator function of a set S, denoted by IS(x),
to denote membership of an element x to that particular set as IS(fi ) = 1 if x∈ S. Using the
indicator function above, calculate the number of times that given pixel has been selected as
extreme using the following equation:

Ntimes(fi ) =
K∑
j=1

ISextrema(skewer j )(fi ) (2)

4. Endmember selection: Use the virtual dimensionality concept in [22,23] to estimate the number
of endmembers E in the input image. Then find the pixels with the value of Ntimes(fi ) above
vc and form a unique set of endmembers {ee}Ee=1 by calculating the spectral angle distance
(SAD) for all possible endmember pairs and discarding those that result in an angle value
below va . SAD is a standard similarity metric for remote sensing operations, which is invariant
to unknown multiplicative scalings that may arise due to differences in the illumination and
sensor observation angle [3]. The SAD between endmember ei and endmember e j is defined
as follows:

SAD(ei , e j ) = cos−1 ei · e j
‖ei‖ · ‖e j‖ (3)

5. Spectral unmixing: For each sample pixel vector fi in F, a set of abundance fractions specified
by {ae1, ae2, . . . , aeE } and satisfying the ASC and ANC constraints are obtained using the
set of endmembers {ee}Ee=1, so that each fi can be expressed as a linear combination of
endmembers as follows, using the FCLSU algorithm proposed by Heinz and Chang [20,22]:

fi = e1 · ae1 + e2 · ae2 + · · · + eE · aeE (4)

2.4. Spectral signature matching algorithm (SSMA)

Let {ee}Ee=1 be a set of E endmembers extracted from a test image, and let {rr }Rr=1 be a set of R
endmembers extracted from a reference image in the database. It should be noted that the reference
endmembers are stored for each image data set cataloged in the system as part of the image header
file, which also contains information about the image dimensions, application domain, etc. In order
to match endmembers in the test set to endmembers in the reference set, a SAD-based spectral
similarity criterion is implemented using the following steps:

1. Initial labeling: Label all endmembers in the test set {ee}Ee=1 as ‘unmatched.’
2. Matching: For each unmatched endmember in the test set {ee}Ee=1, calculate the spectral angle

between the test endmember and all endmembers in the reference set {rr }Rr=1. If the pair
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(ek, r j ), with 1≤k≤E and 1≤ j≤R, results in the minimum obtained value of SAD(ek, r j ),
and the value is below the threshold angle va , then label the associated endmembers, ek and
r j as ‘matched.’

3. Relative difference calculation: For each matched endmember ek resulting from the previous
step, calculate |aek − ar j |, i.e. the relative difference between the abundance fraction asso-
ciated with endmember ek in the test image and the abundance associated with its matched
endmember r j in the reference image. The resulting values are used as a feature vector for
signature comparison when searching the database.

3. HETEROGENEOUS CBIR SYSTEM

In this section we describe the proposed parallel CBIR system. First, we describe the optimization
problem in the context of fully heterogeneous networks. Then, we briefly discuss data partitioning
strategies and further provide a heterogeneous parallel implementation aimed at maximizing the
load balance.

3.1. Optimization problem

A fully heterogeneous network can be modeled as a complete graph, where each node models a
computing resource pi weighted by its relative cycle-time ti . Each edge in the graph models a
communication link weighted by its relative capacity, where cij denotes the maximum capacity of
the slowest link in the path of physical communication links from pi to p j (we assume that the
system has symmetric costs, i.e. cij = cji). With the above assumptions in mind [24], processor pi
should accomplish a share of �i · W of the total workload, denoted by W , to be performed by a
certain algorithm, with �i≥0 for 1≤i≤P and

∑P
i=1�i = 1, being P the total number of processors

in the system.
In order to take into account the communication time to distribute the workload among the pro-

cessing nodes, diffusion algorithms have been shown to be able to improve the load balancing of
the system in some situations [25]. These algorithms migrate a load fraction (flow) over the topol-
ogy’s communication links, depending on the workload difference to its neighbors. An important
aspect in this context is the local calculation of the flow. The calculation has to be fast, in order
not to increase the overall computation time. Thus, a global gathering of the load information and
the distribution of the calculated flow over the whole network results in a high communication
overhead. In this work, we adopt a local iterative load balancing scheme in which each processor
exchanges information only with its neighbors when seeking for an appropriate division of the
original workload, as reported in [25,26].
In this context, it should also be taken into account that the workload in real-world applications

usually cannot be divided arbitrarily, but only to some extent. The unit-size token model [27]
assumes a smallest load entity, called indivisible token, so that the workload is always represented
by a multiple of this smallest entity. Given the characteristics of the hyperspectral processing
algorithms described in Section 2, which work on a pixel-by-pixel basis, in our specific application
domain each pixel vector will be regarded as a unit-size token.
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Figure 3. Spatial-domain decomposition approach adopted for the partitioning of hyperspectral data.

Taking into account the optimization problem above, an abstract view of our proposed CBIR
implementation can be simply stated in the form of a client–server architecture, in which a server
processor receives an input image and distributes work according to the processing speeds of P
heterogeneous nodes, and the capacities of the heterogeneous communication links that connect
such nodes, so that image features are obtained in parallel. Once the image features have been
obtained at the master, this node performs a parallel search by comparing the features with those
for other images in the database. In the course of this process, some communications between the
master and the workers also take place [10].

3.2. Hyperspectral data partitioning

The proposed system adopts a partitioning strategy in which the data are always partitioned into
blocks made up of spatially adjacent pixel vectors that retain the full spectral content associated
with them (Figure 3).
The main advantage of the spatial-domain decomposition approach in Figure 3 is that the cost of

inter-processor communication is reduced, as shown in the previous work [10,18,24]. At this point,
it is important to emphasize that spatial-domain partitioning should be used with extra care when
parallelizing data processing techniques that include sample spectral correlation and/or covariance
calculations, such as the principal component transform [28] or the RX detector developed by Reed
and Yu [29], both of them widely used in hyperspectral image analysis. In those cases, important
aspects such as the size of the spatial-domain partitions or the need to overlap adjacent partitions
arise. These aspects have been addressed in the previous work [30,31].
With the above issues in mind, the two major goals of our partitioning algorithm are: (i) to obtain

an appropriate set of workload fractions {�i }Pi=1 that best fit the heterogeneous environment and
(ii) to translate the chosen set of values into a suitable decomposition of the input data, taking into
account the properties of the heterogeneous system. To accomplish such goals, we have developed
a workload estimation algorithm (WEA) that assumes that the workload of each processor pi
must be directly proportional to its local memory and inversely proportional to its cycle-time ti .
The algorithm also takes into account the communication time to distribute the workload among
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the nodes. It performs the following operations:

1. Obtain necessary information about the heterogeneous system, including the number of avail-
able processing nodes P , each processor’s identification number {pi }Pi=1, and processor cycle-
times {ti }Pi=1.

2. Set

�i =
⌊

(1/ti )∑P
i=1(1/ti )

⌋

for all i ∈ {1, . . . , P}. In other words, this step first approximates the {�i }Pi=1 so that the amount
of work assigned to each processing node is proportional to its speed and �i · ti ≈ const for
all processors.

3. Iteratively increment some �i until the set of {�i }Pi=1 best approximates the total workload

to be completed, i.e. for m =∑P
i=1�i to W , find k ∈ {1, . . . , P} so that tk · (�k + 1) =min

{ti · (�i + 1)}Pi=1, and then set �k = �k + 1.
4. Produce P partitions of the input hyperspectral data set, so that the spectral channels corre-

sponding to the same pixel vector (unit-size token) are never stored in different partitions. In
order to achieve this goal, we have adopted a methodology that consists of three main steps:

(a) The hyperspectral data set is first partitioned, using spatial-domain decomposition, into a
set of vertical slabs that retain the full spectral information at the same partition (Figure 3).
The number of rows in each slab is set to be proportional to the estimated values of {�i }Pi=1,
and assuming that no upper bound exist on the number of pixel vectors that can be stored
by the local memory at the considered node.

(b) For each processor pi , check if the number of pixel vectors assigned to it is greater than
the upper bound. For all the processors whose upper bounds are exceeded, assign them a
number of pixels equal to their upper bounds. Now, we solve the partitioning problem of a
set with remaining pixel vectors over the remaining processors. We recursively apply this
procedure until all the pixel vectors in the input data have been assigned, thus obtaining
an initial workload distribution for each pi . It should be noted that, with the proposed
algorithm description, it is possible that all processors exceed their upper bounds. This
situation was never observed in our experiments. However, if the considered network
includes processing units with low memory capacity, this situation could be handled by
allocating an amount of data equal to the upper bound to those processors, and then
processing the remaining data as an offset in a second algorithm iteration.

(c) Iteratively recalculate the workload assigned to each processor using the following ex-
pression:

Wk
i =Wk−1

i − ∑
j∈N (i)

cij

(
Wk−1

i

ti
− Wk−1

j

t j

)
(5)

where N (i) denotes the set of neighbors of processing node pi , and Wk
i denotes the

workload of pi (i.e. the number of unit-size tokens or pixel vectors assigned to this
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processor) after the kth iteration. This scheme has been demonstrated in the previous
work to converge to an average workload [25]

Wi :=
∑P

j=1Wj∑P
j=1t j

ti

To conclude this subsection, we would like to emphasize that we have also tested a simplified
version of the WEA algorithm above, which does not take into account the communication capacity
of heterogeneous communication links in the workload estimation process. The simplified version,
referred to hereinafter as SWEA, simply does not execute step 4(c) of the WEA algorithm.

3.3. Parallel EEA

To reduce the code redundancy and enhance reusability, our goal, when designing the parallel
EEA, was to reuse much of the code for the sequential one, as indicated by the master–slave
parallel implementation given below:

1. Data partitioning: Produce a set of L spatial-domain heterogeneous partitions of F using the
WEA algorithm.

2. Skewer generation: Generate K random unit vectors {skewer j }Kj=1 in parallel, and broadcast
the entire set of skewers to all the workers.

3. Extreme projections: For each skewer j , project all the sample pixel vectors at each local
partition l onto skewer j to find sample vectors at its extreme projections, and form an extrema

set for skewer j , which is denoted by S(l)
extrema(skewer j ). Now calculate the number of times

each pixel vector f(l)i in the local partition is selected as extreme using the following expression:

N (l)
times(f

(l)
i ) =

K∑
j=1

I
S(l)
extrema(skewer j )

(f(l)i ) (6)

4. Candidate selection: Select those pixel vectors with N (l)
times(f

(l)
i )>vc and send them to the

master node.
5. Endmember selection: The master calculates the total number of endmembers in the input

image using the virtual dimensionality concept in [22,23] and forms a unique set {ee}Ee=1 by
calculating the SAD for all possible pixel vector pairs provided by the workers in parallel,
and discarding those pixels that result in angle values below va .

6. Spectral unmixing: The master broadcasts the set of endmembers {ee}Ee=1 to all workers. Each

worker then obtains a set of fractional abundances {a(l)
e1 , a(l)

e2 , . . . , a(l)
eE } for each pixel vector

f(l)i in its local partition l, using the set {ee}Ee=1 so that the following expression is satisfied:

f(l)i = e1 · a(l)
e1 + e2 · a(l)

e2 + · · · + eE · a(l)
eE (7)
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3.4. Parallel SSMA

As in our design of the parallel EEA, our goal is to reuse the code for the sequential SSMA. The
master–slave implementation of this algorithm is shown as follows:

1. Data partitioning and initial labeling: The master processor produces a set of L spatial-domain
heterogeneous partitions of F using the WEA algorithm and labels all endmembers in the test
set {ee}Ee=1 as ‘unmatched.’

2. Matching: For each unmatched endmember in the test set {ee}Ee=1, calculate (in parallel)
the spectral angle between the test endmember and all endmembers in the reference set
{rr }Rr=1. If the pair (ek, r j ), with 1≤k≤E and 1≤ j≤R, results in the minimum obtained
value of SAD(ek, r j ), and the value is below the threshold angle va , then label the associated
endmembers, ek and r j as ‘matched.’

3. Relative difference calculation: For each matched endmember ek resulting from the previous
step, calculate (in parallel) |aek − ar j |, i.e. the relative difference between the abundance
fraction associated with endmember ek in the test image and the abundance associated with
its matched endmember r j in the local partition. The resulting values are used as a feature
vector for signature comparison when searching the database.

The proposed parallel algorithms for endmember extraction and spectral signature matching
have been implemented in the C + + programming language, using calls to message passing
interface (MPI) [32]. We resorted to MPI-derived data types to directly scatter the hyperspectral
data structures, which may be stored non-contiguously in memory, in a single communication step.
As a result, we avoid creating all partial data structures on the master node (thus making a better
use of memory resources and compute power).

3.5. Search procedure

To conclude this section devoted to the algorithmic description of our system, we briefly list the
stages involved in a standard search procedure using the proposed CBIR system from a user’s point
of view:

1. Input query: The user first selects a sample portion or a full hyperspectral scene to be used as
an input image F. Then, the system computes (in parallel) the feature vector associated with
that portion/image using the parallel EEA algorithm developed in the previous section.

2. Signature comparison and sorting: The feature vector obtained in the previous stage is stored
in a header file associated with F and compared (in parallel) with the pre-computed feature
vectors of all the images in the database, using the parallel SSMA algorithm in the previous
section. At this point, it is important to emphasize that, in the proposed implementation, the
database is centralized at the master node. In this regard, a distributed database implementation
(to be targeted in the future work) may provide advantages in terms of increased availability,
quality of service, and ease of expansion. After this process, the identifiers of the M images
that are most similar to the test image are extracted and ranked in the descending order of
similarity.
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3. Display of results: A mosaic made up of the first M images selected is assembled and then
presented to the user as the search result.

4. Query update: If the user considers the search result to be unsatisfactory, he may select one
of the displayed images (or a different portion of the original image) as a new input, and then
return to the first stage. The system keeps track of successful and unsuccessful queries as
identified by the user.

4. EXPERIMENTAL RESULTS

4.1. Parallel computing architectures

The parallel computing architectures used in this study comprise the Thunderhead Beowulf cluster
at NASA (see http://thunderhead.gsfc.nasa.gov for details) and two HNOCs distributed among
different locations at the University of Maryland. Thunderhead is a 512-processor homogeneous
Beowulf cluster composed of 256 dual 2.4GHz Intel Xeon nodes, each with 1GB of memory and
80GB of main memory, interconnected with 2 GHz optical fiber Myrinet [33]. The two HNOCs
were custom designed in order to approximate a recently proposed framework for the evaluation
of heterogeneous parallel algorithms [34], which relies on the assumption that a heterogeneous
algorithm cannot be executed on a heterogeneous network faster than its homogeneous version on
the equivalent homogeneous network. In [34], a homogeneous computing environment is considered
equivalent to the heterogeneous one if the following three principles are satisfied:

1. Both environments should have exactly the same number of processors.
2. The speed of each processor in the homogeneous environment should be equal to the average

speed of processors in the heterogeneous environment.
3. The aggregate communication characteristics of the homogeneous environment should be the

same as those of the heterogeneous environment.

With the above three principles in mind, a heterogeneous algorithm may be considered optimal if
its efficiency on a heterogeneous network is the same as that evidenced by its homogeneous version
on the equivalent homogeneous network. This allows using the parallel performance achieved by
the homogeneous version as a benchmark for assessing the parallel efficiency of the heterogeneous
implementation.
The fully heterogeneous network considered in our study consists of 16 different workstations,

and four communication segments. Table I shows the properties of the 16 heterogeneous work-
stations, where processors {pi }4i=1 are attached to communication segment s1, processors {pi }8i=5
communicate through s2, processors {pi }10i=9 are interconnected via s3, and processors {pi }16i=11 share
the communication segment s4. The communication links between the different segments {s j }4j=1
only support serial communication. For illustrative purposes, Table II also shows the capacity of all
point-to-point communications in the heterogeneous network, expressed as the time in milliseconds
to transfer a 1MB message between each processor pair (pi , p j ) in the heterogeneous system. As
noted, the communication network of the fully heterogeneous network consists of four relatively fast
homogeneous communication segments, interconnected by three slower communication links with
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Table I. Specifications of heterogeneous processors.

Processor Architecture Cycle-time Memory Cache
number specification (seconds per megaflop) (MB) (kB)

p1 Free BSD—i386 Intel Pentium 4 0.0058 2048 1024
p2, p5, p8 Linux—Intel Xeon 0.0102 1024 512
p3 Linux—AMD Athlon 0.0026 7748 512
p4, p6, p7, p9 Linux—Intel Xeon 0.0072 1024 1024
p10 SunOS—SUNW UltraSparc-5 0.0451 512 2048
p11–p16 Linux—AMD Athlon 0.0131 2048 1024

Table II. Capacity of communication links (in time in milliseconds to transfer a 1MB message).

Processor p1–p4 p5–p8 p9–p10 p11–p16

p1–p4 19.26 48.31 96.62 154.76
p5–p8 48.31 17.65 48.31 106.45
p9–p10 96.62 48.31 16.38 58.14
p11–p16 154.76 106.45 58.14 14.05

capacities c(1,2) = 29.05, c(2,3) = 48.31, c(3,4) = 58.14 in milliseconds, respectively. On the other
hand, the fully homogeneous network consists of 16 identical Linux—AMD Athlon workstations
with cycle-time of w =0.0131 seconds per megaflop and 2GB of main memory, interconnected via
a homogeneous communication network in which the capacity of links is c= 26.64ms.

4.2. Hyperspectral data

In order to illustrate the performance of our parallel CBIR system, we specifically address a case
study of urban monitoring and assessment, using a collection of 154 high-resolution hyperspectral
data sets (comprising a total space of more than 20 Terabytes) gathered by NASA over the World
Trade Center (WTC) area in New York City during the last two weeks of September, 2001, only
a few days after the terrorist attacks that collapsed the two main towers and other buildings in the
WTC complex. In all cases, the spatial resolution is of 3.7mpixel−1, and the spectral resolution is
of 224 narrow spectral bands between 0.4 and 2.5 �m. Figure 4 shows a false color composite of
one of such images, with 614× 512 pixels and 224 bands. The false color composition has been
formed using the 1682, 1107, and 655 nm channels. The vegetated areas are located at the south-
west of Manhattan, whereas the burned areas can be seen further north in mid-town. Smoke coming
from the WTC area is also visible in the scene. The area used as input query in our experiment
is shown in a red rectangle, and is centered at the region where the towers collapsed. This area
contains spectral signatures of thermal hot spots corresponding to fires in the area. The fact that
our search area contains such spectral signatures was expected to assist in the detection of other
images containing fires across the entire database, which is a useful task in order to assist in the
detection of such fires at sub-pixel levels, thus contributing to the extinction efforts conducted in
the area.
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Figure 4. AVIRIS hyperspectral image collected over the World Trade Center (left)
and detail of the area used as input query (right).

Using the search area in the rightmost part of Figure 4 as input query, the proposed parallel CBIR
system successfully retrieved all the image instances (M = 7) containing the WTC complex across
the database, with no false positive detections, using the Virtual Dimensionality concept in [22,23]
to automatically estimate the number of endmembers in each scene and a total of K = 104 skewers
for the endmember extraction stage. Specifically, it was observed that the PPI algorithm produced
the same final set of endmembers as the number of skewers was above this value (experiments
with K = 105 and K = 106 were conducted). Based on the above experiments, the cutoff threshold
parameter vc was set to the mean of PPI scores obtained after K = 104 iterations. Finally, the
threshold angle value used to implement the SAD-based similarity criterion of SSMA was set to
va = 0.1, a reasonable limit of tolerance for this metric. These parameter values are in agreement
with those used before in the literature [19].
For illustrative purposes, Figure 5 shows the seven full image flightlines in the considered AVIRIS

database, which contain the searched area centered at theWTC complex. On the other hand, Figure 6
shows some of the full image flightlines in the considered database, which do not contained the
searched area. Typically, each flightline comprises from 5 to 7 individual images, and a total
of 24 full flightlines were considered in our experiments§ . As shown by Figures 5 and 6, the
complexity of the scenes is very high due to smoke and urban interferers in the scene, which hinder
the identification of areas with hot spot thermal fires that are used as a search criterion in this
experiment. In this regard, the proposed parallel CBIR system performed very accurately in this

§See http://aviris.jpl.nasa.gov/ql/listg01.html.
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Figure 5. Full flightlines collected by the AVIRIS sensor over the World Trade Center area,
which contain the search area in Figure 4. Typically, each flightline contains 5–7 hyperspectral

images (each with 224 spectral bands).

task, thus serving as a relevant tool for content-based retrieval of hyperspectral images based on
a complex search criterion: the presence of fires, which in many cases can only be detected at
sub-pixel levels.
In addition, as will be shown in the following subsection, the signature comparison and sorting

times achieved by queries in the proposed parallel CBIR algorithm were deemed suitable for
(near) real-time exploitation of the system, including the appealing possibility of rapidly providing
emergency response teams with information about the presence of fires and the evolution in the
distribution of debris and other materials in the dusts deposited around the WTC area in this
particular case study.

4.3. Parallel performance evaluation

To investigate its parallel properties, the proposed CBIR systemwas first tested on the two considered
HNOCs. Table III shows the measured execution times for the heterogeneous EEA (referred to
hereinafter as Hetero-EEA) and the heterogeneous SSMA (referred to hereinafter as Hetero-SSMA),
and their respective homogeneous versions, in the task of performing a new input query using a
reference hyperspectral scene not yet cataloged in the system. In the following, we will refer to
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Figure 6. Full flightlines collected by the AVIRIS sensor over the World Trade Center area,
which do not contain the search area in Figure 4. Typically, each flightline contains 5–7

hyperspectral images (each with 224 spectral bands).

Table III. Execution times (seconds) of the parallel versions of EEA and SSMA on the two networks.

Algorithm Heterogeneous Homogeneous

Hetero-EEA (implemented using WEA) 82.07 87.24
Hetero-EEA (implemented using SWEA) 84.40 89.06
Homo-EEA 667.35 81.33

Hetero-SSMA (implemented using WEA) 16.02 17.36
Hetero-SSMA (implemented using SWEA) 16.94 18.91
Homo-SSMA 158.23 15.93

the homogeneous version of a certain heterogeneous algorithm by replacing the ‘Hetero-’ in the
name of the heterogeneous algorithm by ‘Homo-’ to indicate that the algorithm is the equivalent,
homogeneous version of the same heterogeneous one.
It is important to emphasize that the workload estimation process in the homogeneous versions

was conducted by simply setting

�i =
⌊

(1/ti )∑P
i=1(1/ti )

⌋

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:1138–1159
DOI: 10.1002/cpe



1154 A. J. PLAZA, J. PLAZA AND A. PAZ

for all i ∈ {1, 2, . . . , P}, followed by execution of steps 4(a) and (b) of the WEA algorithm. For the
heterogeneous algorithms, we used both the WEA algorithm and its simplified version (SWEA) to
measure the impact of introducing (or not) the communication properties in the workload estimation
process. The total time spent by this process (less than 2 s in all cases) was negligible in comparison
with the total execution time of each algorithm. This is due to the high volume of computations
involved in hyperspectral imaging applications and also to the regularity of such computations,
which simplifies the load predictions.
As expected, the execution times reported in Table III show that the heterogeneous algorithms

were able to adapt much better to the heterogeneous environment than the homogeneous versions,
which only performed satisfactorily on the homogeneous network. One can see that the hetero-
geneous algorithms were always several times faster than their homogeneous counterparts in the
heterogeneous system. On the other hand, the homogeneous algorithms only slightly outperformed
their heterogeneous counterparts in the homogeneous network. Table III also indicates that the per-
formance of the heterogeneous algorithms on the heterogeneous platform was almost the same as
that evidenced by the equivalent homogeneous algorithms on the homogeneous one. This indicated
that the proposed heterogeneous algorithms were close to the optimal heterogeneous modifications
of the basic homogeneous ones [34]. Table III also reveals that using WEA for workload estimation
in the heterogeneous algorithms resulted in slightly lower execution times than those obtained using
SWEA, a fact that suggests that including the capacities of the communication links in the workload
estimation can improve the overall performance of the heterogeneous algorithms.
In order to fully substantiate the above remark, Figure 7(a) plots the speedups achieved by

the heterogeneous algorithms (implemented using both WEA and SWEA) over their respective
homogeneous versions on the heterogeneous network. Here, the speedup was simply calculated as
the execution time of the homogeneous algorithm divided by the execution time of the heterogeneous
algorithm. One can see that, for both algorithms, the speedups were slightly higher when WEA was
used to partition the initial workload. This revealed that including the capacity of the communication
links in the initial workload estimation can be beneficial. On the other hand, Figure 7(b) plots the
speedup of the homogeneous algorithms over their heterogeneous counterparts (implemented using
both WEA and SWEA) in the homogeneous network. In this case, the speedup was calculated as the
execution time of the heterogeneous algorithm divided by the execution time of the homogeneous
algorithm. As can be seen in Figure 7(b), the homogeneous versions only slightly outperformed
the heterogeneous ones in this platform. The speedup factors in Figure 7(b) were very close to one
(in particular, when WEA was used), a fact that reveals that the performance of the heterogeneous
algorithms was almost the same as that evidenced by their respective homogeneous versions in the
homogeneous network. The reported speedups suggest the flexibility of the proposed heterogeneous
algorithms in adapting to the properties of different computing environments, regardless of their
inherent heterogeneity or homogeneity.
To further explore the parallel properties of the considered algorithms in more detail, an in-depth

analysis of the computation and communication times achieved by the different methods is also
highly desirable. For that purpose, Table IV shows the total time spent by the tested algorithms in
communications and computations in the two considered networks, where two types of computation
times were analyzed, namely sequential (those performed by the root node with no other parallel
tasks active in the system, labeled as SEQ in the table) and parallel (the rest of computations,
i.e. those performed by the root node and/or the workers in parallel, labeled as PAR in the table).
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Figure 7. (a) Speedup of the heterogeneous algorithms over their homogeneous versions
on the heterogeneous network and (b) speedup of the homogeneous algorithms over their

heterogeneous versions on the homogeneous network.

Table IV. Communication (COM), sequential computation (SEQ), and parallel computation (PAR) times for the
parallel versions of EEA and SSMA on the two networks.

Heterogeneous Homogeneous
Algorithm COM SEQ PAR COM SEQ PAR

Hetero-EEA (implemented using WEA) 6.88 19.06 56.13 9.63 15.75 61.86
Hetero-EEA (implemented using SWEA) 7.11 19.25 58.04 10.55 16.40 62.11
Homo-EEA 14.12 19.03 634.20 5.95 16.20 59.18

Hetero-SSMA (implemented using WEA) 1.91 2.35 11.76 2.60 2.02 12.74
Hetero-SSMA (implemented using SWEA) 2.21 2.41 12.32 3.31 2.54 13.06
Homo-SSMA 1.96 2.05 154.22 2.13 1.25 12.55

The latter includes the times in which the workers remain idle. It can be seen from Table IV that
SEQ scores were significant for the EEA algorithm as a result of the endmember selection step,
which is performed in sequential fashion at the master. Table IV also reveals that the proposed
SSMA implementation is almost embarrassingly parallel since PAR scores clearly dominated the
SEQ scores. Finally, it can also be seen from Table IV that the cost of PAR computations dominated
that of communications (COM) in all the considered parallel algorithms. In particular, the values of
PAR scores achieved by the homogeneous algorithms executed on the heterogeneous network were
very high, but this is mainly due to a less efficient workload distribution among the heterogeneous
workers. This aspect was significantly improved when the WEA or SWEA algorithms were used to
estimate the workload to be assigned to each heterogeneous processor, resulting in more efficient
balancing of the load. Therefore, a more detailed study of load balance is highly desirable to fully
substantiate the parallel properties of the considered algorithms.
To analyze the issue of load balance in more detail, Table V shows the imbalance scores

achieved by the parallel algorithms on the two considered networks. The imbalance is defined
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Table V. Load balancing rates for the parallel versions of EEA and SSMA on the two networks.

Heterogeneous Homogeneous
Algorithm Dall Dminus Dall Dminus

Hetero-EEA (implemented using WEA) 1.03 1.02 1.05 1.03
Hetero-EEA (implemented using SWEA) 1.07 1.05 1.06 1.03
Homo-EEA 1.82 1.23 1.10 1.06

Hetero-SSMA (implemented using WEA) 1.01 1.01 1.03 1.02
Hetero-SSMA (implemented using SWEA) 1.02 1.01 1.03 1.02
Homo-SSMA 1.16 1.11 1.03 1.01

Figure 8. Scalability of the heterogeneous versions of EEA and SSMA on Thunderhead.

as D = Rmax/Rmin , where Rmax and Rmin are the maxima and minima processor run times,
respectively. Therefore, perfect balance is achieved when D = 1. In the table, we display the
imbalance considering all processors, Dall, and also considering all processors but the root, Dminus.
As we can see from Table V, only the heterogeneous algorithms were able to provide the values
of Dall close to 1 (the optimal case) in the two considered networks, with both the heterogeneous
SSMA and EEA algorithms producing results close to optimal when the WEA algorithm was used
to estimate the workload in the heterogeneous network. In this case, the heterogeneous versions
provided almost the same results for both Dall and Dminus. While the homogeneous algorithms ex-
ecuted on the heterogeneous network provided the highest values of Dall and Dminus (and hence the
highest imbalance), the heterogeneous algorithms executed on the homogeneous network resulted
in values of Dminus, which were also close to optimal.
Taking into account the results presented above, and with the ultimate goal of exploring issues

of scalability, we have also compared the performance of the parallel CBIR system on NASA’s
Thunderhead Beowulf cluster. For that purpose, Figure 8 plots the speedups achieved by multi-
processor runs of the heterogeneous EEA and SSMA algorithms on Thunderhead. In this case, we
only used SWEA to perform the workload estimation due to the fact that the communication links in
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the Thunderhead system are homogeneous. As the speedup factors achieved by the homogeneous
versions were almost identical to those obtained by the heterogeneous algorithms, the plots for
the homogeneous algorithms are omitted for simplicity. It can be seen from Figure 8 that the
heterogeneous SSMA scaled slightly better than the heterogeneous EEA. This has to do with
the higher number of sequential computations involved in the parallel EEA algorithm. However,
the combined performance was satisfactory. For instance, using 256 processors on Thunderhead, the
heterogeneous EEA was able to extract feature vectors for the considered AVIRIS scene (140MB
in size) in only 6 s, whereas the SSMA efficiently searched the most similar scenes across the full
database of 154 images (with pre-computed signatures) in only 4 s, resulting in a total processing
of approximately 10 s to catalog and fully describe a new entry in the database. The above result
represents a significant improvement over the implementation of the same CBIR process on a single
Thunderhead processor, which took over 1 h of computation for the same operation.

5. CONCLUSIONS AND FUTURE LINES

This paper described an innovative parallel CBIR system for hyperspectral image retrieval from
heterogeneous platforms. As a case study of the specific issues involved in the development of data
mining systems in remote sensing applications, we provided a detailed discussion on the effects
that platform heterogeneity has on degrading the parallel performance of an information extraction
algorithm which first extracts the spectral endmembers and then uses their relative abundance
fractions as a feature vector to perform a query based on the sub-pixel image content. The evaluation
strategy conducted in this work was based on experimentally assessing the proposed heterogeneous
implementation by comparing its efficiency on a fully HNOCs with the efficiency achieved by
the equivalent homogeneous version on an equally powerful homogeneous network of computers.
Performance results have also been provided for a Beowulf cluster, thus covering the two most
widely used types of parallel platforms in parallel CBIR applications.
Our experimental results indicate that the proposed parallel CBIR system can accurately extract

hyperspectral image instances from a complex image database with sub-pixel precision and quickly
enough for practical use. As a result, we believe that the proposed system can adequately exploit the
source of the computational power currently offered by Beowulf clusters and heterogeneous net-
works of workstations, thus making the proposed tool accessible and applicable to obtaining results
quickly enough and with high reliability in many on-going and planned Earth-observing missions.
As a future extension of the system, we plan to develop a distributed database implementation that
may provide competitive advantages in terms of increased availability, quality of service, and ease
of expansion.
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