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Spectral Mixture Analysis of Hyperspectral Scenes
Using Intelligently Selected Training Samples
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Abstract—In this letter, we address the use of artificial neural
networks for spectral mixture analysis of hyperspectral scenes.
We specifically focus on the issue of how to effectively train
neural network architectures in the context of spectral mixture
analysis applications. To address this issue, a multilayer percep-
tron neural architecture is combined with techniques for intelli-
gent selection and labeling of training samples directly obtained
from the input data, thus maximizing the information that can
be obtained from those samples while reducing the need for
a priori information about the scene. The proposed approach is
compared to unconstrained and fully constrained linear mixture
models using hyperspectral data sets acquired (in the laboratory)
from artificial forest scenes, using the compact airborne spectro-
graphic imaging system. The Spreading of Photons for Radiation
INTerception (SPRINT) canopy model, which assumes detailed
knowledge about object geometry, was employed to evaluate the
results obtained by the different methods. Our results show that
the proposed approach, when trained with both pure and mixed
training samples (generated automatically without prior informa-
tion) can provide similar results to those provided by SPRINT,
using very few labeled training samples. An application to real
airborne data using a set of hyperspectral images collected at dif-
ferent altitudes by the digital airborne imaging spectrometer 7915
and the reflective optics system imaging spectrometer, operating
simultaneously at multiple spatial resolutions, is also presented
and discussed.

Index Terms—Hyperspectral imaging, intelligent training,
neural networks, spectral mixture analysis.

I. INTRODUCTION

OST of the pixels collected by hyperspectral imaging
instruments contain the resultant mixed spectra from
the reflected surface radiation of various subpixel constituent
materials [1]. Mixed pixels exist for several reasons. First, if the
spatial resolution of the sensor is not fine enough to separate
different pure signature classes at a macroscopic level, these
can jointly occupy a single pixel, and the resulting spectral
measurement will be a composite of the individual pure spectra,
often called endmembers in hyperspectral analysis terminology
[2]. Second, mixed pixels can also result when distinct materials
are combined into a homogeneous or intimate mixture, and this
circumstance occurs independently of the spatial resolution of
the sensor [3].
A standard approach to characterize mixed pixels in the
literature has been linear spectral unmixing, which involves
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the separation of a pixel spectrum into its pure component
endmember spectra, and the estimation of the abundance value
for each endmember in the pixel [2]. The linear model assumes
minimal secondary reflections and/or multiple scattering effects
in the data collection procedure. The resulting mixed spectrum
can be expressed as a linear combination of endmember com-
ponents, weighted by a scalar endmember abundance fraction
as follows:
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where 7 = [rq,72,...,7x]" is an N-dimensional pixel vector
given by a collection of values at different wavelengths, E is a
matrix containing p endmember signatures, i.e., E = {ei}le,
a is a vector containing the fractional abundance values for
each of the p endmembers in 7, ie., @ = [a1,as,...,a,]T,
and m is a noise vector. Two constraints are generally imposed
into the linear mixture model above: the abundance-sum-to-one
constraint, i.e., Zle a; = 1, and the abundance nonnegativity
constraint, i.e., a; > 0 forall 1 < i < p [4].

Although the linear mixture model has practical advantages
such as ease of implementation and flexibility in different
applications [5], there are many naturally occurring situations
where nonlinear models may best characterize the resultant
mixed spectra for certain endmember distributions [6], [7]. In
those cases, the mixed spectra are better described by assuming
that part of the source radiation is multiply scattered before
being collected at the sensor [3]. A general expression for the
nonlinear mixture model can be given as r = f(E,a) + n,
where f is an unknown nonlinear function that defines the
interaction between E and a. Although the use of nonlinear
physical models has been quite popular in the characteriza-
tion of spectral mixtures based on prior knowledge [8], [9],
fewer efforts have been devoted to designing data sampling
techniques able to estimate f.

In this letter, we focus on the use of artificial neural net-
works (ANNs) to accomplish the aforementioned task. We
hypothesize that the problem of mixed pixel characterization
using ANNs demands intelligent training algorithms able to
automatically label the most informative training samples, thus
optimizing the compromise between estimation accuracy (to
be maximized) and ground-truth knowledge (to be minimized).
To address this issue, we develop an unsupervised algorithm
for intelligent selection and labeling of informative training
samples, which are used to train a feedforward ANN of var-
ious layers: the multilayer perceptron (MLP) [10], which has
been often used in the past to decompose mixed pixels [11],
[12]. The proposed approach is investigated and compared
to fully constrained and unconstrained linear mixture models
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Fig. 1. Neural network-based spectral unmixing architecture.

using data acquired in the laboratory from artificial scenes
using a Compact Airborne Spectrographic Imaging (CASI)
instrument [13] and real airborne hyperspectral scenes collected
by the Digital Airborne Imaging Spectrometer (DAIS) 7915
and Reflective Optics System Imaging Spectrometer (ROSIS)
sensors. The Spreading of Photons for Radiation INTerception
(SPRINT) model [9] and a combination of multiple resolution
airborne data and ground measurements are, respectively, used
in experiments for validation purposes.

II. NEURAL NETWORK-BASED SPECTRAL UNMIXING

Fig. 1 shows a schematic block diagram of the proposed
neural network-based unmixing architecture. The first step
consists of an estimation of the number of endmembers p
in the input data. For this purpose, in this letter, we use the
concept of virtual dimensionality [14]. Then, a supervised MLP
neural network is trained with intelligently selected training
samples (both pure and mixed) in order to estimate endmember
fractional abundances. The number of neurons at the input layer
of the MLP architecture equals the number of spectral bands V.
The training samples are labeled pixel vectors directly obtained
from the hyperspectral data, with no previous dimensionality
reduction. The second layer is the hidden layer, and the third
layer is the output layer. The number of neurons at the output
layer p equals the number of estimated endmembers. It should
be noted that the number of hidden neurons in the MLP
architecture can be fine tuned depending on the problem under
consideration [10]. However, in this letter, we are mainly inter-
ested in exploring training mechanisms and their implications,
without particular emphasis on careful adjustment of neural net-
work configuration parameters. Subsequently, finding optimal
parameters for the hidden layer is beyond our scope. Based on
previous results in the literature and our own experimentation,
we have considered one hidden layer only, with the number
of neurons empirically set to the square root of the product
of the number of input features and information classes, a
configuration that has been shown to be successful for MLP-
based mixed pixel characterization in previous work [7]. It is
also worth noting that our training algorithm uses Bayesian
inference techniques [15] to select the values of regulariza-
tion coefficients using only the training data. This approach
avoids overfitting issues but may include some training error
resulting from the fact that training and testing data are mixed
together. However, regularization is used in this letter instead
of cross-validation mainly due to the deterministic nature of
our proposed approach for selection of training samples. This
also comes at the expense of increasing the complexity of the
learning stage [15].

III. AUTOMATIC SELECTION OF TRAINING SAMPLES

The quality of training has a significant effect on mixed
pixel characterization using neural networks [16]. Conventional
approaches for selection of training samples often perform
this task randomly, or by choosing the samples located in
exemplar regions of each class only, while atypical cases are
often removed or down-weighted in training set refinement
operations. Such exemplar training patterns are located near
the central core of the class in feature space. However, a key
concern in the context of mixed pixel interpretation is how to
identify and characterize the response of sites that lie away from
the class core, and near to the decision boundaries commonly
used in conventional full-pixel classification. Therefore, border
[17] (or, equivalently, mixed) training samples may be useful
to refine a set of fractional abundance estimations obtained by
using only spectrally pure training samples.

In this section, we describe a new technique for automatic
selection and labeling of training samples from the input hy-
perspectral data. The proposed technique, called mixed training
algorithm (MTA), first uses Winter’s N-FINDR algorithm [18]
as an approach to automatically label spectrally pure training
samples (endmembers) without prior knowledge. Then, it it-
eratively seeks for the most highly mixed pixels in the input
data set by following a procedure which behaves in an opposite
way as N-FINDR and other convex geometry-based endmem-
ber extraction methods [2], i.e., it automatically selects and
labels highly mixed training samples. Different sets of training
samples, obtained by the MTA discussed in this section, will
be used in the following section to investigate the impact of the
composition of the training set on the characterization of mixed
pixels. The MTA can be summarized by the following steps.

1) Use the N-FINDR algorithm to produce an initial set of
p pure training samples (endmembers) which are labeled
by assuming that the vector of fractional abundances
associated to each extracted endmember s; is formed
by a; = 1.0 (meaning 100% abundance), and a; = 0.0
(meaning 0% abundance) for j # i, with 1 < j < p.

2) Compute ¢, = (1/p) >-7_, s;, i.e., the centroid of the
simplex defined by the set of spectral endmembers
{s;}Y_, produced for the input hyperspectral scene by the
N-FINDR algorithm.

3) Atiteration j > 1, calculate a pointwise spectral distance
between each pixel vector = in the input hyperspectral
data and ¢, and mark the pixel vector which provides the
lowest distance value (i.e., the most spectrally similar to
cp) as anew training sample ¢;.

4) Label the training sample ; by obtaining a vector of
fractional estimates a; = [d1, 2, . . ., &p]T in which

o distance(t;, s;) withl <:<p. (2
i P_| distance(t;, s;)’ o

5) Remove the pixel previously selected as a training sample
from the input hyperspectral scene and repeat from step 3
until a final set of k£ mixed labeled training samples
{t;}h_, is generated. Each pair formed by a labeled
training sample ¢; and its associated vector of fractional
abundances a;, estimated by means of (2), is used to train
the proposed MLP-based neural network.
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Fig. 2. Color images of the CASI laboratory scenes formed using band 50
(770 nm) as red, band 30 (618 nm) as green, and band 20 (543 nm) as blue.

It should be noted that the MTA was implemented using the
spectral angle distance (SAD) [3] as the baseline metric.

IV. RESULTS USING LABORATORY DATA

The CASI scenes used in experiments were obtained by the
following procedure [13]. Two kinds of objects, namely, opaque
and translucent, were mounted on stems to simulate forest
crowns on trunks. These simulated “trees” were randomly
placed on a mounting board covered with one of the three
backgrounds: dark, green, and white. The dimensions of tree
crowns for opaque and translucent trees ranged from 1.3 to
1.7 cm. Canopies of both opaque and translucent trees were
designed with sparse and dense populations. For the sparse
population, 40 trees were planted in an area of 40 cm by 40 cm,
while 100 trees were planted in the same area for the dense
population. The scene illumination in this simulation was gen-
erated using a 100-W tungsten lamp and illumination angle of
40°. Twelve hyperspectral images (labeled as CASIO1_01 to
CASIO1_12) were acquired by CASI [13], a pushbroom imager,
by moving the entire scene perpendicularly at a constant rate
with respect to the CASI field of view. The scenes (see Fig. 2)
were acquired in 72 spectral channels covering the spectral
region from 414 to 914 nm, at nominal spectral resolution of
7.5 nm. The spatial resolution in the direction of across track
is 0.27 cm. The spectral signatures of the p = 3 endmembers
extracted by the N-FINDR algorithm from the scenes with
sparse opaque trees are shown in Fig. 3.

Table I shows the endmember fractional abundances esti-
mated by the unconstrained (UCLSU) and fully constrained
(FCLSU) linear spectral unmixing algorithms described in [4],
and by the proposed MLP-based architecture trained using:
1) only the samples labeled by N-FINDR; 2) the samples
labeled by N-FINDR plus MTA; and 3) randomly generated
training samples. In the first case, only p = 3 pure samples

labeled by N-FINDR were used to train the MLP architecture.
In the second case, the training set was expanded by including
k = 4 additional mixed training samples labeled by MTA. In
this case, we tested values in the range k = {1,...,20} and
experimentally observed that values of k < 3 resulted in less
accurate fractional abundance estimation results (comparable to
those produced by UCLSU and FCLSU), while values of £ > 5
did not significantly improve the quality of abundance estima-
tions. Finally, in the third case, we adopted a random training
sample selection algorithm using (2) to label each randomly
selected training sample, and varied & in the range {1, ..., 20}.
In this case, we conducted ten Monte Carlo runs for each value
of k and reported in Table I only the best mean scores for each
scene, generally obtained for k£ = 20. In all experiments, the
quality of fractional abundances was assessed using the abun-
dance estimations provided by the SPRINT canopy model (also
reported in the Table I). The most similar fractional abundance
estimations across all tested methods with regard to SPRINT
are shown in bold typeface. In order to interpret the results in
Table I, let us first focus on the scenes with opaque trees and
sparse population. The errors in the fractions of the endmem-
bers obtained by FCLSU and UCLSU are larger for the scene
with white background than for the scenes with dark and green
background. This is because, in the scene with white back-
ground, the high reflectance of the background increases the
multiple scattering between tree crowns and the background. It
can also be seen from Table I that the proposed intelligently
trained MLP (using p = 3 endmembers plus k£ = 4 training
samples) generally provided the most similar abundance esti-
mation results with regard to the SPRINT canopy model, in
particular, for the scene with white background. For illustrative
purposes, Fig. 4 shows the abundance maps for the sunlit tree,
background, and shadow endmembers obtained after applying
the proposed method to this particular scene (CASIO1_05).
When the MLP was trained using randomly selected training
samples, the fractional abundance estimates could not generally
improve those obtained using the other tested methods, despite
the higher number of labeled training samples used for the
learning stage. For the scenes with translucent trees and sparse
population, the fractions of the endmembers estimated by the
intelligently trained MLP were also the most similar to those re-
ported by the SPRINT model. A comparison of the estimations
provided by FCLSU (and particularly UCLSU) for the scenes
with translucent trees with those obtained for the scenes with
opaque trees reveals that the errors in the estimated fractions
are generally larger for the scenes with translucent trees. This is
likely due to the relative increase in multiple scattering between
crowns and the background due to crown transparency. For the
scenes with opaque trees and dense population, the FCLSU and
UCLSU estimation errors for the scene with white background
are increased compared with the scenes with dark and green
background. If we compare these results with the estimations
provided for the scenes with sparse population, we can observe
that the abundance estimation errors increase. This is because,
for the dense canopies, the multiple scattering between tree
crowns and the background is larger. Here, the intelligently
trained MLP again provided the most similar estimations with
regard to those provided by the SPRINT model, followed by the
MLP trained with a comparatively higher number of randomly
selected samples. Finally, for the scenes with translucent trees
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Fig. 3. Endmember spectra for sunlit tree, background, and shadow in selected CASI scenes with (a) green, (b) white, and (c) dark background.

TABLE 1
FRACTIONAL ABUNDANCE ESTIMATIONS PROVIDED BY DIFFERENT
SPECTRAL MIXTURE ANALYSIS METHODS FOR THE MAIN
CONSTITUENTS IN THE CASI SCENES. THE MOST SIMILAR
ESTIMATIONS WITH REGARDS TO THE SPRINT CANOPY
MODEL ARE SHOWN IN BOLD TYPEFACE

Scene Endmember FCLSU UCLSU MLP MLP MLP SPRINT
(Random) (N-FINDR) (MTA)
CASI01_01 Sunlit tree 0.083 0.101 0.062 0.095 0.105 0.109
(sparse, opaque Background 0727 0728 0.841 0.724 0.735 0723
trees, green Shadow 0.189 0.175 0.096 0.180 0.166 0.167
background) Total 1.000 1.004 0.999 0.999 1.006 0.999
CASION_02 Sunlit tree 0.074 0.084 0.048 0.073 0.086 0.104
(sparsc, transl. Background 0.805 0.801 0.863 0.746 0.722 0.701
trees, green Shadow 0.120 0.103 0.088 0.180 0.191 0.194
background) Total 1.000 0.998 0.999 0.999 0.999 0.999
CASIO1_03 Sunlit tree 0.183 0.205 0.207 0232 0.283 0.294
(dense, opaque Background 0.404 0.433 0.516 0457 0.409 0.383
trees, green Shadow 0413 0.352 0.276 0311 0.307 0318
background) Total 1.000 0.990 0.999 1.000 0.999 0.995
CASIO _04 Sunlit tree 0.181 0.195 0.150 0.178 0.264 0279
(dense, transl. Background 0.547 0489 0.675 0567 0.349 0357
trees, green Shadow 0272 0.311 0.175 0.253 0.387 0.362
background) Total 1.000 0.995 1.000 0.998 1.000 0.998
CASIN_05 Sunlit tree 0.074 0.067 0.120 0.127 0.115 0.109
(sparse, opaque Background 0.655 0.620 0.606 0.609 0.710 0.723
trees, white Shadow 0.271 0223 0273 0.264 0.173 0.167
background) Total 1.000 0910 0.999 1.000 0.998 0.999
CASIO1_06 Sunlit tree 0.105 0.026 0.631 0.129 0.090 0.104
(sparse, transl. Background 0.796 0.789 0.342 0.464 0.737 0.701
trees, white Shadow 0.099 0.170 0.025 0.407 0.172 0.194
background) Total 1.000 0.985 0.998 1.000 0.999 0.999
CASI01_07 Sunlit tree 0.204 0.190 0.370 0315 0.290 0.294
(dense, opaque Background 0429 0.400 0462 0.445 0.377 0.383
trees, white Shadow 0.367 0422 0.176 0240 0.335 0318
background) Total 1.000 1012 1.008 1.000 1.002 0.995
CASIO1_08 Sunlit tree 0249 0.133 0.868 0.208 0.253 0279
(dense, transl, Background 0491 0.538 0.114 0.531 0.367 0.357
trees, white Shadow 0.260 0.319 0.017 0.259 0.379 0.362
background) Total 1.000 0.990 0.999 0.998 0.999 0.998
CASI01_09 Sunlit tree 0.129 0.094 0.270 0.097 0.110 0.109
(sparse, opaque Background 0.737 0.707 0.593 0.729 0.734 0.723
trees, dark Shadow 0.134 0.189 0.146 0.153 0.154 0.167
background) Total 1.000 0.990 1.009 0.979 0.998 0.999
CASIOI_10 Sunlit tree 0.081 0.080 0.830 0.093 0.119 0.104
(sparse, transl. Background 0.815 0.625 0.139 0.804 0.738 0701
trees, dark Shadow 0.104 0.215 0.030 0.103 0.142 0.194
background) Total 1.000 0.920 0.999 1.000 0.999 0.999
CASIOI_11 Sunlit tree 0.349 0271 0.214 0.261 0.296 0.294
(dense, opaque Background 0.390 0.332 0.561 0.388 0.386 0383
trees, white Shadow 0261 0390 0221 0291 0.293 0.318
background) Total 1.000 0.993 0.996 0.940 0.975 0.995
CASIOI_12 Sunlit tree 0.167 0.209 0.163 0.151 0.253 0279
(dense, transl. Background 0.507 0.383 0.694 0.657 0.371 0.357
trees, dark Shadow 0.326 0.429 0.140 0.191 0.387 0.362
background) Total 1.000 1.021 0.997 0.999 1.011 0.998

and dense population, the multiple scattering between crowns
and the background was more significant but could be accu-
rately modeled by the MLP trained using MTA.

We emphasize that the fractional abundance estimations
provided by all MLP-based models were not constrained to be
positive or to sum to unity for each pixel. However, negative
and/or unrealistic abundance fractions, which usually indicate

Shadow

Sunlit tree

Background

Fig. 4. Endmember fractional abundance maps for sunlit tree, background,
and shadow, estimated from the CASIO1_05 scene by our proposed method.

a bad fit of the model and/or reveal inappropriate endmember
selections, were very rarely found, in particular, when the MLP
was trained using MTA (see Table I).

V. RESULTS USING REAL AIRBORNE DATA

The image data used in experiments (available in reflectance
units) is formed by a ROSIS scene collected at high spatial res-
olution, with 1.2-m pixels, and its corresponding DAIS scene,
collected at low spatial resolution with 6-m pixels. The spectral
range from 504-864 nm (covered by the two considered sensors
through narrow spectral bands) was selected for experiments.
Fig. 5(a) shows the selected test site (located in Caceres, Spain)
which contains several cork-oak trees (appearing as dark spots)
and pasture (gray) areas on a bare soil (white) background.
To obtain reliable estimates of the fractional land covers for
each DAIS pixel, the ROSIS image was first classified into the
three land-cover components using a maximum-likelihood su-
pervised classification approach based on three image-derived
spectral endmembers extracted using the N-FINDR algorithm
and shown in Fig. 5(b). Our assumption was that the pixels in
the ROSIS image were sufficiently small to become spectrally
simple to analyze. Second, the classified ROSIS image was
registered with the DAIS image using an automated ground
control point-based method with subpixel accuracy. Third, the
classification map was associated with the DAIS image to
provide an initial estimation of land cover classes for each pixel
at the DAIS image scale. For that purpose, a 6 x 6 m grid was
overlaid on the 1.2 x 1.2 m classification map derived from the
ROSIS scene, where the geographic coordinates of each pixel
center point were used to validate the registration procedure at
a subpixel level. Then, fractional abundances were calculated
within each 6 x 6 m grid as the proportion or ROSIS pixels
labeled as cork-oak tree, pasture, and soil within that grid.
Most importantly, the abundance maps at the ROSIS level were
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Fig. 5. (a) Band (584 nm) of ROSIS hyperspectral image. (b) Spectral
signatures of soil (r1), pasture (72), cork-oak tree (r3) extracted by
N-FINDR.

TABLE II
NRMSE SCORES (IN PERCENT) IN FRACTIONAL ABUNDANCE
ESTIMATION OF SOIL (71 ), PASTURE (72), AND
CORK-OAK TREE (73) IN THE DAIS 7915 IMAGE

Number of training samples (k)

Training Material 1 2 3 4 5 6
MLP ry 11.16 11.23 10.84 10.95 10.67 10.58
(random) ry 15.10 14.49 1432 13.79 13.62 12.88
rg 16.26 15.80 1573 15.21 14.49 13.56
MLP ry 10.04 9.12 6.35 5.66 547 553
(MTA) ry 11.17 823 4.39 3.96 4.12 4.03
ry 1421 11.35 6.13 6.09 5.95 5.86

refined using GPS-guided field assessment before obtaining a
set of reference fractional abundances for each DAIS pixel.

We first measured the normalized root-mean-square error
(NRMSE) in the fractional abundance estimation results pro-
vided by UCLSU and FCLSU for each of the three pure
spectral components shown in Fig. 5(b) with regard to their
corresponding reference fractional abundances. In all cases,
the NRMSE scores in abundance estimation for the soil (1),
pasture (r2) and cork-oak (r3) were above 10% estimation
error in percentage, which suggested that linear mixture mod-
eling was not flexible enough to accommodate the full range of
spectral variability throughout the landscape. Table II quantita-
tively compares the performance of the proposed MLP-based
model trained using different algorithms and various numbers
of labeled samples (the MLP trained using N-FINDR is not
displayed since it provided very similar results to those found
by UCLSU). When k = 3 MTA-labeled samples were used in
addition to p = 3 endmembers, a significant improvement in
abundance estimation was observed with regard to the case in
which a higher number of randomly selected training samples
were used, with NRMSE scores below 10% in all cases. Inter-
estingly, using additional MTA-labeled training samples did not
significantly improve the quality of abundance estimations, thus
indicating that the first MTA-labeled samples were the most in-
formative ones. Our Matlab implementation of MTA took only
a couple of minutes to extract k£ = 6 training samples from the
ROSIS scene in a dual-core Intel Xeon processor at 2.33 GHz
with 3 GB of RAM (the training algorithm took above 40 m of
computation in the same environment).

VI. CONCLUSION AND FUTURE WORK

In this letter, we have experimentally demonstrated that a
simple MLP-based neural network architecture, trained using
samples intelligently selected by our proposed MTA algorithm,

can improve the fractional abundance estimation results pro-
vided by both UCLSU and FCLSU. In a previous study [19],
a linear support vector machine (SVM) technique for fractional
abundance estimation provided similar results to those found by
linear unmixing methods. Since SVMs have great potential for
characterization of nonlinear mixtures, further SVM formula-
tions for solving the nonlinear unmixing problem are expected.
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