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Abstract. Hyperspectral image compression has become increasingly important in data 
exploitation because of enormous data volumes and high redundancy provided by hundreds of 
contiguous spectral channels. Since a hyperspectral image can be viewed as a 3-dimensional 
(3D) image cube, many efforts have been devoted to extending 2D image compression 
techniques to perform 3D image compression on hyperspectral image cubes. Unfortunately, 
some major issues generally encountered in hyperspectral data exploitation at low or very 
low-bit rate compression, for example, subpixels and mixed pixels which do not occur in 
traditional pure pixel-based image compression are often overlooked in such a 2D-to-3D 
compression. Accordingly, a direct application of 2D-to-3D compression techniques to 
hyperspectral image cubes without taking precaution may result in significant loss of crucial 
spectral information provided by subtle substances such as small objects, anomalies during low 
bit-rate lossy compression. This paper takes a rather different view by investigating lossy 
hyperspectral compression from a perspective of exploring spectral information, referred to as 
exploitation-based lossy compression and further develops spectral/spatial hyperspectral image 
compression to effectively preserve crucial and vital spectral information of objects which are 
generally missed by commonly used mean-squared error (MSE) or signal-to-noise ratio 
(SNR)-based compression techniques when lossy compression is performed at low bit rates. In 
order to demonstrate advantages of the proposed spectral/spatial compression approach 
applications of subpixel target detection and mixed pixel analysis are used for experiments for 
performance evaluation. 
 
Keywords: 3D-cube compression, hyperspectral data compression, independent component 
analysis (ICA), JPEG2000. principal components analysis (PCA), set partitioning in 
hierarchical tree (SPIHT), spectral/spatial hyperspectral image compression, virtual 
dimensionality (VD). 

1 INTRODUCTION 

Due to significantly improved spatial and spectral resolution provided by a hyperspectral 
imaging sensor, hyperspectral imagery expands capability of multispectral imagery in many 
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ways ranging from subpixel target detection, objection discrimination, mixed pixel 
classification to material quantification. It also presents new challenges to image analysts, 
particularly, how to deal with its enormous data volume effectively while still achieving their 
desired goals. In particular, in many applications such as rare minerals in geology, special 
spices in agriculture and ecology, toxic waste in environmental monitoring, drug trafficking in 
law enforcement, combat vehicles in battlefield, abnormalities in intelligent gathering, tumors 
in medical images etc., the information of interest is generally provided by a target pixel which 
appears either at so-called subpixel scale in the sense that a subpixel target has size smaller than 
pixel resolution or as a mixed pixel in a form that fractions of multiple target substances are 
mixed in a single pixel. In general, such interesting target pixels cannot be identified a priori or 
any prior knowledge due to the fact that the probability of their unexpected occurrence is 
usually low and their sample population is also relatively small even if they are present. 
Consequently, the spatial extent of these target pixels is very limited, which results in very little 
spatial correlation among these target pixels that can be explored by spatial domain-based 
compression techniques. Accordingly, these types of target pixels may be well likely be 
sacrificed by spatial domain-based lossy compression if no extra care is taken.  

When data compression is performed, two different types of criteria must be specified. One 
is a design criterion used to develop a compression technique and the other is a performance 
criterion used to evaluate the effectiveness of a specified compression technique in 
performance. While these two types of criteria are considered as separate criteria, they are 
generally correlated to each other. Specifically, a performance criterion is always a major 
driving force to determine what design criterion should be selected to design a desired 
compression technique. For example, the Karhunen-Loeve transform (KLT) is the optimal 
linear transform when the performance criterion is the mean squared error (MSE). On the other 
hand, when the compression ratio (CR) is used as a performance criterion instead of MSE, the 
KLT may not be an optimal compression technique in terms of data size reduction. So, how 
effective a data compression technique is in fact determined by a specific application which in 
turn determines what a best performance criterion is. This is particularly true for hyperspectral 
data exploitation where compression performance varies with applications. As examples, in 
linear spectral mixture analysis for hyperspectral imagery the compression performance should 
be measured by spectral unmixed error instead of CR or MSE [1]. Similarly, for anomaly 
detection or endmember extraction the compression performance must be measured by how 
effectively anomalies or endmembers are extracted rather than CR or MSE. However, it is a 
common practice in data compression community that CR, MSE, signal-to-noise ratio (SNR) 
and peak SNR (PSNR) are most widely used criteria in performance analysis. Unfortunately, 
these criteria may not be effective performance measures in the above-mentioned applications 
since the targets of interest such as anomalies, endmembers usually do not have many samples 
in the data set and thus, their contribution to MSE, SNR or PSNR is generally too little to 
substantiate their existence. Instead, their presence can be only characterized by their spectral 
properties. To this end, this paper is particularly interested in spectral compression where 
spectral statistics are used as performance criteria to derive design criteria that can be used to 
develop compression techniques. Accordingly, the commonly used spectral compression 
technique, principal components analysis (PCA) can be considered as a 2nd order spectral 
statistics transform which uses data sample variance as a design criterion similar to the MSE 
used by KLT as a design criterion. By contrast, independent component analysis (ICA) can be 
regarded as an infinite order statistics-based transform because it uses mutual information as a 
design criterion to measure statistical independence among independent components it 
generates. The spectral compression proposed in this paper integrates these component analysis 
transforms to perform lossy compression for hyperspectral data at low or very low bit rates. In 
order to address inappropriateness of the commonly used second order statistics-based 
performance criteria such as MSE and SNR in lossy hyperspectral data compression, several 



 

recent efforts have been focused on criteria going beyond second-order statistics [3-5], for 
example, a criterion is introduced in [2-3] to include an additional term which is a penalty to 
non-orthogonality via independent component analysis (ICA) to account for high order 
statistics and application-oriented performance criteria in [4] such as maximum spectral angle 
(MSA) and maximum spectral information divergence (SID) with the SID originally proposed 
in [5] to take into account hyperspectral image classification as applications. 

This paper addresses low-bit rate compression problems arising in hyperspectral data by 
introducing a new concept of exploitation-based hyperspectral data compression where a 
performance criterion is actually determined by an exploitation-based application instead of an 
objective measure such as MSE or SNR. In other words, an effective compression performance 
should be determined by features of objects of interest in data exploitation rather than the data 
itself such as data size. In many applications, lossless compression may not offer advantages 
over lossy compression in terms of feature extraction. More specifically, it explores low bit rate 
exploitation-based hyperspectral data compression where design criteria are derived based on 
spectral statistics and compression performance is evaluated by selecting an adequate 
performance criterion to meet a specific goal [6-19]. For example, the principal components 
analysis (PCA) is a 2nd order statistics-based spectral compression technique using data 
variance as a design criterion. Unfortunately, it was recently shown in [20-21] that another 2nd 
order statistics-based spectral transform, called maximum noise fraction (MNF) or noise 
adjusted principal component (NAPC) transform which makes use of SNR as a design criterion 
performs better than PCA when the image quality of multispectral imagery is used as a 
performance criterion.  

It is noted that many unknown and interesting signal sources can be uncovered 
unknowingly in hyperspectral imagery, such as man-made objects, anomalies that generally 
provide very important, crucial and vital information for image analysis in defense and 
intelligence applications. These types of targets give very little attribute to 2nd order spectral 
statistics but can be more effectively characterized by high order spectral statistics such as 
skewness, kurtosis. If a 2nd order statistics-based criterion is used to design an optimal 
transformation for spectral compression, the compressed data may not be able to capture the 
spectral characteristics of these targets. Using PCA as an example, these targets may only show 
in minor components instead of principal components. As a consequence, it will require all PCs 
to capture these targets rather than preserving only the first few principal components may lose 
these targets as shown in [19]. Similarly, such targets may be well likely be suppressed by lossy 
compression techniques which make use of 2nd order statistics-based design criteria such as 
PCA, MNF/NAPC if precaution is not taken. In this case, using high order spectral statistics as 
design criteria to derive transformations will better serve the purpose of preserving these 
targets. 

For hyperspectral image analysis two types of pixels are of particular interest and are 
generally not encountered in traditional image processing. One is subpixel targets which are 
embedded in single pixels and their existence cannot be verified by their spatial properties, but 
rather specified by their spectral characteristics. The other is mixed pixels which are 
admixtures of multiple target substances with only partial fractional abundances present in 
single pixels. In either case, spatial information is not as effective as spectral information. 
When hyperspectral image compression is performed, it is critical and crucial to take into 
account this issue which has been unfortunately overlooked by lossy compression in the past. It 
should be noted that the reason why hyperspectral data is called "hyperspectral" is simply 
because the spectral information provided by hundreds of contiguous spectral channels is far 
more important than spatial information in addressing various issues arising in a single pixel 
vector. In doing so, the exploitation-based hyperspectral image compression introduced in this 
paper develops a two-stage compression approach, referred to spectral/spatial compression, 
which performs spectral compression in the first stage followed by spatial compression in the 



 

second stage. It is important to have spectral compression done prior to spatial compression to 
avoid the spectral information of a single pixel being inadvertently compromised by spatial 
compression when a 3D compression is directly applied to hyperspectral image cubes as 
demonstrated by experiments conducted in this paper. Since 3D compression actually performs 
spectral and spatial compression simultaneously, it is referred in this paper to as 3D-cube 
compression to reflect the fact that it compresses an image cube as a whole. 

One of major techniques to perform spectral compression is dimensionality reduction (DR) 
by component transforms. The PCA is probably the most widely used component transform to 
accomplish this goal. However, a key issue for the PCA is determination of the number of 
principal components needed to be retained after DR for the follow-up spatial compression. A 
common approach is to calculate the accumulated sum of largest eigenvalues to determine how 
many components required to be preserved. Unfortunately, it has been shown in [22-23] that 
such an approach is generally ineffective. Instead, a new concept of the virtual dimensionality 
(VD) recently introduced in [22-23] was shown to be a better criterion for dimensionality 
reduction in [24]. On the other hand, it has been also shown in [25-27], the PCA-based spectral 
compression may not be effective in capturing spectral characteristics exhibited by subpixels 
and mixed pixels due to the fact that these pixels are more likely to be extracted by high order 
statistics such as independent component analysis (ICA) [28] rather than second-order statistics 
based such as variance-based PCA. Therefore, in order to address these two issues, this paper 
develops various approaches to spectral/spatial compression which include the VD for DR and 
the use of PCA and/or ICA for spectral compression.  

In order to validate the proposed spectral/spatial compression, synthetic images are used 
and they are custom-designed to simulate various scenarios to demonstrate several interesting 
findings. Specifically, the experiments show that a direct application of 3D-cube low bit rate 
lossy compression results in significant loss of spectral information which can be actually 
preserved by a simple spectral/spatial compression technique. Most importantly, the 
experimental results also demonstrate that the spectral/spatial compression is more effective 
than 3D-cube lossy compression in exploitation applications such as subpixel detection and 
mixed pixel classification/quantification. Additionally, the commonly used SNR and MSE are 
also shown to be inappropriate compression criteria in hyperspectral image compression when 
compression ratios are high. To further substantiate simulation results, real hyperspectral 
image experiments are further conducted for performance analysis and evaluation. 

The remainder of this paper is organized as follows. Section II briefly reviews two 
well-known 2D image compression techniques, wavelet-based JPEG2000 [29-32] and set 
partitioning in hierarchical tree (SPIHT) [33] along with their extensions to 3D-cube 
compression. Section III develops several spectral/spatial compression techniques for 
hyperspectral image compression, which include PCA-based spectral/spatial compression, 
ICA-based spectral/spatial compression, and mixed (PCA,ICA)-based spectral/spatial 
compression, all of which use the VD to determine the number of components required to be 
retained after DR. Section IV custom-designs synthetic images to simulate various scenarios to 
demonstrate that 3D-cube lossy compression does not necessarily perform better than 
spectral/spatial compression in subpixel detection and mixed pixel classification. Section V 
presents real image experiments to further substantiate simulations results. Finally, Section VI 
concludes with some remarks.  

2 REVIEW OF 3D COMPRESSION TECHNIQUES 

Many 3D-cube image compression techniques are generally extended directly from their 2-D 
counterparts. Two 3D-cube compression techniques of particular interest that will be used in 
this paper for comparative study and analysis are the JPEG2000 Multicomponent [32] which is 
an extension of the wavelet-based 2D-JPEG2000 [29] and the 3D-SPIHT [34-35] which is 



 

extended by 2D-SPIHT developed by Said and Pearlman [33]. It’s important to note that in the 
3D compression techniques used, the spectral redundancy was reduced by using 1D DWT. 

2.1 JPEG 2000 multicomponent 

The JPEG2000 [29-30] is a new still image compression standard which has replaced the 
commonly used DCT-based JPEG. It is a wavelet-based compression technique that 
adds/improves features such as coding of regions of interest, progressive coding, scalability 
etc. The entire coding can be divided into four stages: tiling, discrete wavelets transform 
(DWT), scalar quantization and block coding. The image is divided into rectangular regions 
called tiles, each tile gets encoded separately. The purpose of dividing images into tiles is that 
the decoder needs to decode only certain parts of the image on demand, instead of decoding the 
entire image and also less memory will be needed by the decoder to decode the image. After 
dividing the image into tiles, a wavelet transform is applied to each tile. The wavelet transform 
is followed by scalar quantization to quantize the subbands. The scalar quantized subbands 
representing different scales are coded using Embedded Block Coding with Block Truncation 
(EBCOT) [29-32,36] scheme. For the case of hyperspectral imagery the Part II of JPEG2000 
[32] is implemented to allow multi-component image compression which involves grouping of 
arbitrary subsets of components into component collections and applying point transforms 
along the spectral direction like wavelet transform. The post-compression rate-distortion 
optimizer of EBCOT is simultaneously applied to all codeblocks across all the components. 

2.2 3D-SPIHT compression 
Recently, an approach developed by Said and Pearlman [33], called set partitioning in 
hierarchical trees (SPIHT) has become popular. Two main features introduced by Shapiro [37] 
are used in the SPIHT algorithm. First, it utilizes a partial ordering of coefficients by magnitude 
and transmits the most significant bits first. Second, the ordering data are not explicitly 
transmitted. The decoder running the same algorithm can trace the ordering information from 
the transmitted information. Kim et al [34] later extended the 2D-SPIHT to 3D-SPIHT for 
video compression in a relatively straightforward manner. There is no constraint imposed on 
the SPIHT algorithm regarding the dimensionality of the data. If all pixels are lined up in 
decreasing order of magnitude, 3D-SPIHT performs exactly the same as 2D-SPIHT. In the case 
of 3D subband structure, one can use a wavelet packet transform to allow a different number of 
decompositions between the spatial and spectral dimensions. 

3 SPECTRAL/SPATIAL HYPERSPECTRAL DATA COMPRESSION 

Despite the fact that a hyperspectral image can be viewed as a 3D image cube, there are several 
major unique features that a hyperspectral image distinguishes itself from being viewed as a 3D 
image cube. The first and foremost is spectral features provided by hundreds of contiguous 
spectral channels. Unlike pure voxels in a 3D image, a hyperspectral image pixel vector is 
specified by a range of wavelengths in a third dimension that characterizes the spectral 
properties of a single pixel vector. Using the spectral profile captured in the spectral domain a 
single pixel in a 3D image cube can be solely analyzed by its spectral characterization. Another 
important unique feature provided by hyperspectral imagery is that many material substances 
of interest can be only explored by their spectral properties, not spatial properties such as waste 
in environmental pollution, chemical/biological agent detection in bioterrorism, camouflaged 
combat vehicles and decoys in surveillance applications. In addition, certain targets such as 
chemical plumes, biological agents, which are considered to be relatively small with no rigid 
shapes but yet provide significant information, generally cannot be identified by prior 
knowledge. Instead, these targets can be only uncovered and revealed by their spectral 
properties. Therefore, when a compression ratio is high, whether or not a hyperspectral image 
compression technique is effective may not be necessarily determined by its spatial 



 

compression as do most compression techniques in image processing since small and subtle 
targets such as subpixel and mixed pixel targets may be very likely sacrificed by low-bit rate 
compression due to their limited spatial presence. Under such a circumstance, we need count on 
spectral compression to retain these targets. Accordingly, separating spectral compression from 
3D compression may be more desirable and effective than 3D-cube compression compressing 
spectral and spatial information all together simultaneously in the sense that both the JP2K Part 
II and 3D-SPIHT codec perform spectral and spatial compression using separable 
transformations (i.e., 1D linear transform or 1D wavelet packet transform in the spectral 
dimension and 2D DWT in the spatial dimensions) as a one shot operation. This paper develops 
an exploitation-based hyperspectral image compression which carries out spectral/spatial 
compression in a two-stage process where the first stage implements 1D-spectral compression 
for spectral dimensionality reduction and is then followed by a 3D-cube compression in the 
second stage. There are key differences between our proposed spectral/spatial compression and 
3D-cube compression. One is that our proposed spectral/spatial compression separates spectral 
compression from spatial compression to perform spectral dimensionality reduction prior to the 
3D-cube compression. Another is that after spectral dimensionality reduction our 
spectral/spatial compression still performs 3D-cube compression on the spectral 
dimensionality reduced 3D-cube data compared to only 2D spatial compression being 
performed on the spectral compressed data by 1D spectral compression. A third difference is 
that there are indeed two types of spectral compression carried out in our proposed 
spectral/spatial compression, viz. one is spectral dimensionality reduction and the other is 
spectral redundancy in 3D-cube compression. As a result, two compression criteria can be 
designed from an exploitation point of view to best fit applications. Finally, a fourth difference 
is that according to our experience spectral information is better preserved using 
dimensionality reduction than using 1D wavelet compression since it offers better 
de-correlation. Accordingly, on many occasions even spectral dimensionality reduction 
implemented in conjunction with only 2D spatial compression may outperform 3D-cube 
compression techniques. One such example is the linear spectral mixture analysis 
(LSMA)-based hyperspectral image compression [1] where the LSMA was used to perform 
spectral compression by transforming an original hyperspectral image cube to a small number 
of abundance fractional images that were further processed by a follow-up spatial compression. 
It is interesting to note that many transform coding methods developed in the literature for 
hyperspectral image compression generally perform 1D-spectral/2D-spatial compression 
where a 2D spatial compression technique is applied to individual spectral de-correlated 
components. However, it has been shown in [25-27] that 1D-spectral/3D-cube compression 
performed slightly better than 1D-spectral/2D-spatial compression. This is because the former 
has performed two types of spectral compression, spectral dimensionality reduction by 1D 
spectral compression followed by spectral redundancy removal by the spectral compression 
carried out by 1D discrete wavelet in 3D-cube compression as opposed to the latter which is 
only benefited from 1D spectral dimensionality reduction. As a result, 2D spatial compression 
is not as effective as 3D-cube compression. Because of that, only techniques for 
1D-spectral/3D-cube compression will be used in this paper.  

In what follows, we develop various exploitation-based lossy hyperspectral image 
compression techniques using two component transforms, PCA and ICA to implement 
1D-spectral/3D-cube compression where 1D spectral compression is performed by either PCA 
or ICA as spectral dimensionality reduction and the 3D-cube compression to be used can be 
one of the two techniques, 3D-multicomponent JPEG2000 and 3D-SPIHT described in Section 
II. 



 

3.1 Principal components analysis (PCA) 
The principal components analysis (PCA) is an optimal transform to represent data in the sense 
of data variance. In transform coding, principal components analysis and Karhunen-Loève 
transform (KLT) both use the same orthonomal basis to decompose the signal. However, PCA 
leads to dimension reduction (only principal components are retained), while the KLT retains 
all the components, as an invertible transform.  The idea of PCA can be briefly described as 
follows. 
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Equation (6) implies that the -transferred data matrix  NrrrX ~~~~
21   has been 

de-correlated or whitened by the matrix  which is referred to as a whitening matrix. The 
transform  defined by (5) is an eigen transformation via the eigen matrix  and the lth 
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implements the transform  defined by (4) to obtain a set of Principal Components (PCs) via 
(5) or (7) with all Ll 1 . In order to achieve DR, only the PCs specified by eigenvectors that 
correspond to first q largest eigenvalues will be retained, while the PCs specified by 
eigenvectors corresponding to the remaining (L-q) smaller eigenvalues will be discarded.  

3.2 Independent component analysis (ICA) 
ICA has received considerable interest in recent years to be used to solve blind source 
separation (BSS) problems because of its versatile applications ranging from source separation, 
channel equalization to speech recognition and functional magnetic resonance imaging [28]. 
The idea of BSS is that data are linearly mixed by a set of separate independent sources and 
demix these signal sources according to their statistical independency measured by mutual 
information. In order to validate its approach, an underlying assumption is that at most one 
source in the mixture model can be allowed to be a Gaussian source.  This is due to the fact that 
a linear mixture of Gaussian sources is still a Gaussian source. More precisely, let x be a mixed 
signal source vector expressed by 

Asx                                                                                                        (8) 
where A is an pL   mixing matrix and s is a p-dimensional signal source vector with p signal 

sources needed to be separated. The purpose of the BSS is to find a demixing matrix W that 
separates the mixed signal source vector x into a set of sources which are statistically the most 
independent as possible. Several different criteria have been proposed to measure source 
independency [28]. Nevertheless, they all originated from the concept of mutual information 
which is a criterion to measure the discrepancy between two random sources.  
 

3.3 PCA/3D-cube compression 
Using the PCA to de-correlate inter-band spectral information is not new [38-39]. What is new 
is to use the concept of the VD [22-23] to determine the numbers of PCs required for spectral 
compression. Since the PCs resulting from the PCA are spectrally de-correlated, we can 
compress these VD-determined PCs in two ways described in the following two subsections.  

3.3.1 PCA/3D-Cube Compression 

One way is to form the selected VD-determined PCs as a 3D image cube so that a 3D-cube 
compression technique can be directly applied for spatial compression. Since the spectral 
correlation has been compressed by the PCA, a further spatial compression may have little 
effect on spectral information. The detailed implementation can be summarized as follows. 
PCA/3D-Cube Compression Algorithm 

1. Determine the VD of an L-band hyperspectral image, p. 
2. Form the first p PCA-generated principal component images as a 3D image cube, referred 

to as 3D p-PC image cube. 
3. Apply a 3D-cube image compression technique such as 3D-multicomponent JPEG2000 or 

3D-SPIHT to the 3D p-PC image. 
4. Exploit the resulting compressed 3D image cube for various applications. 

3.3.2 Inverse PCA Image Reconstruction Algorithms 

The compression technique described in Section III.A.1 does not reconstruct the image from a 
compressed image in the original data space formed by the original number of spectral bands. 
In some applications such as 3D visualization, image reconstruction may be necessary for 
image analysts. In order to reconstruct a 3D image with the same number of spectral bands of 
the original hyperspectral image, we can include an additional process which is to apply the 
inverse of the PCA to reconstruct the orignal images. The details of implementing 
IPCA/3D-cube compression can summarized as follows. 



 

IPCA/3D-Cube Compression Algorithm 
1. Determine the VD of an L-band hyperspectral image, p. 
2. Form the first p PCA-generated principal component images as a 3D image cube, referred 

to as 3D p-PC image cube. 
3. Apply the inverse of the PCA to the spectral dimensionality reduced 3D p-dimensional PC 

image cube to reconstruct an image in the original data space. 
4. Apply a 3D-cube image compression technique such as 3D-multicomponent JPEG2000 or 

3D-SPIHT to the image reconstructed in step 3. 
5. Exploit the resulting compressed image obtained in step 4 for various applications. 

3.4 ICA/3D-cube compression 
The main goal of using the PCA in the previous lossy compression techniques is to perform 
both dimensionality reduction and spectral de-correlation to achieve data compression. It has 
been demonstrated in [25-27] that the PCA might not be effective to preserve subtle 
information that could be only characterized by high-order statistics rather than the 
second-order statistics such as variance. In order to address this issue, we can use the ICA to 
replace the PCA in the PCA/3D-cube compression techniques proposed in Sections 3.3. The 
resulting techniques are referred to as ICA/3D-cube compression techniques. While such 

ICAPCA   replacement seems intuitive and natural, it is by no means straightforward. One 
major problem with it is that there is no criterion which can be used to prioritize the 
components produced by the ICA in the same way that the PCA uses the variance to prioritize 
its produced PCs. Accordingly, the ICA such as the FastICA developed by Hyvarinen and Oja 
[40] generally cannot perform dimensionality reduction in the same way that the PCA does. 
Additionally, the ICA-generated components are statistically independent, not merely 
second-order de-correlated. Therefore, using the ICA for spectral compression may not be as 
easy as it was thought. 

Recently, the issue of using the ICA for dimensionality reduction was investigated in [24]. 
Its application to hyperspectral data compression was also explored in [25-27] where three 
algorithms were developed to rank ICs by different criteria in a similar manner that the PCA 
does for its PCs using variance as a criterion. Of particular interest is the algorithm that used an 
unsupervised algorithm, called Automatic Target Generation Process (ATGP) [23,41] to 
produce an appropriate set of initial projection vectors for the FastICA so that the 
FastICA-generated ICs can be ranked in the same order that the initial projection vectors 
generated by the ATGP. This ATGP-FastICA algorithm has been shown to be promising in 
[24] and will be used in our proposed spectral/3D-cube spatial compression techniques 
described as follows. 
ATGP-FastICA Dimensionality Reduction (ATGP-FastICA DR) Algorithm 
1 Use the VD to determine the number of dimensions, p, required to be retained. 

Perform sphereing on the data matrix X and let the resulting sphered data matrix be 

denoted by X̂ . It should be noted that the data matrix X is formed by grouping all pixel 

vectors in X as column vectors and X̂  is the data matrix resulting from the sphering 
process generally required prior to the FastICA. 

2 Apply the ATGP to X̂  to find p target pixel vector,  p

iit . 

3 Use the FastICA to find p independent components,  p

i 1iIC   where the i-th ICi is 

generated by the FastICA with the i-th target pixel vector chosen to be the initial projection 
vector instead of being generated randomly.  

By virtue of the ATGP-FastICA DR algorithm described above algorithms similar to 
PCA/3D-Cube compression algorithm and IPCA/3D-Cube compression algorithm can be 
further developed by replacing the PCA and IPCA with FastICA and the inverse of the FastICA 



 

respectively, referred to as ICA/3D-Cube compression algorithm and IICA/3D-Cube 
compression algorithm. 

4 SYNTHETIC IMAGE-BASED COMPUTER SIMULATIONS 

In order to shed light on the issues of subpixels and mixed pixels in hyperspectral image 
compression, real hyperspectral image-derived synthetic images were custom-designed to 
simulate various scenarios to demonstrate facts that blindly applying 3D data compression to a 
hyperspectral image without extra care may result in significant loss of information. The 
synthetic images to be used for experiments were simulated from a HYperspectral Digital 
Image Collection Experiment (HYDICE) image scene in [23]. It is an image scene shown in 
Fig. 1(a), which has a size of 6464  pixel vectors with 15 panels in the scene and the ground 
truth map in Fig. 1(b). It was acquired by 210 spectral bands with a spectral coverage from 
0.4m to 2.5 m. Low signal/high noise bands: bands 1-3 and bands 202-210; and water vapor 
absorption bands: bands 101-112 and bands 137-153 were removed. So, a total of 169 bands 
were used in experiments. The spatial resolution is 1.56m and spectral resolution is 10nm. 
Within the scene in Fig. 1(a) there is a large grass field background, and a forest on the left 
edge. Each element in this matrix is a square panel and denoted by pij with rows indexed by i 
and columns indexed by 3,2,1j . For each row 5,,2,1 i , there are three panels pi1, pi2, pi3, 

painted by the same paint but with three different sizes. The sizes of the panels in the first, 
second and third columns are m3m3   and m2m2   and m1m1   respectively. Since the size 
of the panels in the third column is m1m1  , they cannot be seen visually from Fig. 1(a) due to 
the fact that its size is less than the 1.56m pixel resolution. For each column 3,2,1j , the 5 

panels have the same size but with five different paints. However, it should be noted that the 
panels in rows 2 and 3 were made by the same material with two different paints. Similarly, it is 
also the case for panels in rows 4 and 5. Nevertheless, they were still considered as different 
panels but our experiments will demonstrate that detecting panels in row 5 (row 4) may also 
have effect on detection of panels in row 2 (row 3). The 1.56m-spatial resolution of the image 
scene suggests that most of the 15 panels are one pixel in size except the panels in the 1st 
column along with the 2nd, 3rd, 4th, 5th rows which are two-pixel panels, denoted by p211, p221, 
p311, p312, p411, p412, p511, p521. Fig. 1(b) shows the precise spatial locations of these 15 panels 
where red pixels (R pixels) are the panel center pixels and the pixels in yellow (Y pixels) are 
panel pixels mixed with the background. Fig. 1(c) plots the 5 panel spectral signatures pi for 

5,,2,1 i  obtained by averaging R pixels in the m3m3   and m2m2   panels in row i in 
Fig. 1(b).  
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Fig. 1 (a) A HYDICE panel scene which contains 15 panels; (b) Ground truth map of spatial locations of 
the 15 panels; (c) Spectral signatures of p1, p2, p3, p4 and p5 

 
It should be noted the R pixels in the m1m1   panels are not included because they are not 

pure pixels, mainly due to that fact that the m1m1   panels are smaller than the pixel resolution 
is 1.56 m. These panel signatures along with the R pixels in the m3m3   and m2m2   panels 
were used as required prior target knowledge for the following comparative studies. Fig. 1(b) 
shows the precise spatial locations of these 15 panels where red pixels (R pixels) are the panel 
center pixels and the pixels in yellow (Y pixels) are panel pixels mixed with the background. 
The 1.56m-spatial resolution of the image scene suggests that most of the 15 panels are one 
pixel in size except that p21, p31, p41, p51 which are two-pixel panels. Fig. 1(c) plots the 5 panel 
spectral signatures pi for 5,,2,1 i  obtained by averaging R pixels in the m3m3   and 

m2m2   panels in row i in Fig. 1(b).  
Two popular compression techniques 3D-SPIHT and JPEG2000-Multicomponent are used 

for benchmark comparison with our proposed exploitation-based spectral/spatial compression 
techniques. The implementation in QccPack [42] was used for the 3D-SPIHT algorithm. For 
3D-SPIHT 4-level spectral and 4-level spatial wavelet packet decomposition was performed. 
In particular, the wavelet packet decomposition was used instead of the dyadic decomposition 
because it could be better tailored to the data (the wavelet packet decomposition is considered 
to be more suitable for hyperspectral images). On other hand, the JPEG2000 algorithm 
implemented in our experiments was obtained from the kakadu [43] version 4.2.1. Since the 
kakadu software implements only Part I of the JPEG2000 standard, a 1-D spectral transform 
was performed separately on the data before feeding the data to the kakadu coder. In order to 
implement JP2K Part II type compression we applied 1D wavelet transform spectrally using 
QccPack and the transformed components were then fed to the kakadu codec simultaneously 
with equal weights given to all components. The codec automatically allocated rate 
simultaneously across all the components to optimally truncate the embedded bit stream. 

All the proposed exploitation-based spectral/spatial compression techniques are carried out 
in two stages, i.e., VD-determined spectral compression in the 1st stage followed by either 
JPEG2000 Multicomponent or 3D-SPIHT spatial compression in the 2nd stage. For the spatial 
compression, a variable bit-rate lossy compression technique was used in both the JPEG2000 
Multicomponent and 3D-SPIHT. More details can be found in [25-27]. The PCA and ICA 
transforms generate real numbers. We have rounded these numbers to 16 bit in the 
implementation of spectral/spatial compression techniques. Also the PCA and ICA are data 
dependent transforms, thus the transformation vectors need to be stored and/or transmitted in 
order to perform reconstruction of the data, these transformation vectors will act as an 
overhead, and this overhead factor has been included in the calculation of the compression 
ratio.  

The compression ratios were chosen to be 20, 40, 60 and 100 since little difference was noted 
in the detection/quantification performance for compression ratios lower than 20. This implied 
that for very low compression ratios (<10) the 3D-cube compression alone and spectral/spatial 



 

based compression can successfully preserve the subpixel and mixed pixel information. Such 
subtle difference can be only observed when the data are compressed with high compression 
ratios (>40). In order to address the issues of subpixels and mixed pixels, two examples were 
custom-designed to illustrate and demonstrate the superiority of spectral/spatial compression to 
the 3D-cube compression in terms of preserving subpixel and mixed pixel spectral information.  

The first example was designed to investigate the issue of subpixel quantification of subtle 
targets (weak signals) embedded in a single background, in which case both PCA and ICA 
based compression techniques work well as compared to 3D-cube compression alone. As a 
matter of fact, it was demonstrated in [27] that for subpixel detection of subtle targets (weak 
signals) over a single background the ICA based compression techniques worked the best. The 
second example is designed to investigate the issue of subpixel and mixed pixel quantification 
of strong targets (strong signals) embedded in multiple backgrounds, in which case the ICA 
cannot be applied and the best results are obtained by using the PCA based compression. 

 
Example 1 (Single Background) 

The synthetic image to be used for our experiments in this example is shown in Fig. 2 
which is similar to the real scene and has the same size of 6464   pixel vectors. The 
background in the synthetic image was simulated by p1 panel signature from the image scene in 
Fig. 1(c) with an added Gaussian noise to achieve signal-to-noise ratio (SNR) 30:1. There are 
16 panels located at the center and arranged in four rows with four panels in each row. The 
four-pixel panels in the i-th row and the 1st column are composed of single pure pixels, denoted 
by pi,11 pi,12, pi,21 and pi,22 pixel vectors simulated by pi+1 from Fig. 1(b) for 4,3,2,1i  
respectively. The single panel in the i-th row and the 2nd column is a single-pixel panel, denoted 
by pi2 simulated by pi+1 with abundance 75%. The single panel in the i-th row and the 3rd 
columns is a single-pixel panel, denoted by pi3 simulated by pi+1 with abundance 50%. The 
single panel in the i-th row and the 4th columns is a single-pixel panel, denoted by pi4 simulated 
by pi+1 with abundance 25%. Fig. 2 shows a synthetic image obtained by implanting the 16 
simulated panels in the background image where their corresponding background pixels were 
removed to accommodate the panel pixels. It should be noted that the noise background in Fig. 
2 has been visually suppressed because of high intensity gray level values of panel pixels. 
Table 1 shows the subpixel abundance fractions of the panels in four rows. 

 
 

 
 

Fig. 2. 16 panels implanted in a single background. 
 



 

Table 1. The abundance fractions (%) of the panels in four rows. 

Panel  (pi,11, pi,12, pi,21, pi,22)  (pi2) (pi3) (pi4) 

Pixels p1,11 p1,12 p1,21 p1,22 P12 P13 P14 

p2 100 100 100 100 75 50 25 

Pixels p2,11 p2,12 p2,21 p2,22 p22 P23 P24 

p3 100 100 100 100 75 50 25 

Pixels p3,11 p3,12 p3,21 p3,22 P32 p33 P34 

P4 100 100 100 100 75 50 25 

Pixels p4,11 p4,12 p4,21 p4,22 p42 p43 p44 

P5 100 100 100 100 75 50 25 

 
Clearly, the synthetic image in Fig. 2 is composed of five different classes including four 

panel signatures p2, p3, p4, p5 and one background class p1. To verify this number, a recently 
developed concept, called virtual dimensionality (VD) in [22-23] was used to determine the 
number of spectrally distinct signatures present in this synthetic image where a technique, 
called Harsanyi-Farrand-Chang (HFC) method [44] was used. Table 2 tabulates its VD 
estimates for the synthetic image Fig. 2 with various false alarm probabilities, PF.  

 
Table 2. VD estimates for the synthetic image in Example 1. 

PF 10-1 10-2 10-3 10-4 10-5 

VD 5 5 5 5 5 

 
As shown in Table 2, the value estimated by the VD was 5 across all false alarm 

probabilities, which is exactly the same number of spectrally distinct signatures according to 
the ground truth. The VD-estimated value, 5 provides the necessary knowledge about how 
many components needed to be retained when dimensionality reduction is performed, provided 
that each component can be used to accommodate one distinct signature. In the case of Fig. 2, 
the number of components required after dimensionality reduction was 5. 

In order to demonstrate the issues of subpixels and mixed pixels caused by lossy data 
compression, the unsupervised fully constrained least squares (UFCLS) developed in [23,45] 
was used to estimate the abundance fractions of all subpixels and mixed pixels in Fig. 2. Since 
the results obtained for panels in each of four rows were very similar, Table 3 tabulates the 
abundance fractions of the 2nd, 3rd and the 4th single pixel panels in the first row of the synthetic 
image obtained by 3D-cube compression and spectral/3D compression techniques. From Table 
3 the performance of 3D SPIHT seemed acceptable for CR = 20, 40, but its performance for CR 
= 60 and 100 was poor. The performance of JPEG 2000 Multicomponent was very poor in all 
the cases. On the other hand, our proposed spectral/3D compression techniques except the 
ICA/ JPEG2000 Multicomponent performed well with all compression ratios where the crucial 
subpixel and mixed pixel information was well preserved through spectral compression with 
the spatial compression only causing very little or no deterioration of information provided by 
subpixels and mixed pixels. In fact, the compression ratios did not seem to have impact on their 
compression performance. However, despite the fact that the ICA/JPEG2000 Multicomponent 
did not perform as well as the other three spectral/3D compression techniques did, it was 
interesting to note that its inverse counterpart, the IICA/JPEG2000 Multicomponent did 
perform very well. This implied that the ICA/JPEG2000 Multicomponent tended to 



 

overestimate the abundance fractions by over-suppressing the background and the use of 
inverse ICA-reconstructed images seemed to be able to correct the issue of over-estimated 
abundance fractions resulting from compression. 
 
Table 3. Abundance fractions (%) for the 2nd, 3rd and the 4th single pixel panels in the first row for different 
compression ratios 

Compression 
Ratio (CR) 

100 60 40 20 

Panels p12 p13 p14 p12 p13 p14 p12 p13 p14 p12 p13 p14 
Original Image 75 50 25 75 50 25 75 50 25 75 50 25 

3D – SPIHT 66 39 13 67 47 20 70 50 24 73 50 24 
JPEG2000 

Multicomponent 
61 25 9 67 36 17 70 42 20 71 45 21 

PCA/JPEG2000 
Multicomponent 

75 49 24 75 49 24 75 49 24 75 49 24 

ICA/JPEG2000 
Multicomponent 

75 59 35 75 58 34 75 58 34 75 58 34 

IPCA/JPEG2000 
Multicomponent 

75 49 24 75 49 24 75 49 24 75 49 24 

IICA/JPEG2000 
Multicomponent 

75 49 24 75 49 24 75 49 24 75 49 24 

 
Table 4 also calculated the SNR and MSE for our two proposed spectral/3D compression 

techniques, IPCA/JPEG2000 Multicomponent and IICA spectral/ JPEG2000 Multicomponent 
along with 3D-SPIHT, JPEG2000 Multicomponent for CR = 100, 60, 40 and 20. It should be 
noted that in order to make fair comparison, no MSE and SNR were calculated for 
PCA/JPEG2000 Multicomponent and ICA/JPEG2000 Multicomponent because they were 
performed in reduced dimensions.  
 

Table 4. SNR and MSE values for the different compression techniques. 

Compression 
Ratio (CR) 

100 60 40 20 

 SNR MSE SNR MSE SNR MSE SNR MSE 
3D - SPIHT 37.65 1.44E+05 37.94 1.35E+05 38.35 1.23E+05 39.53 9.32E+04
JPEG2000 

Multicomponent 
37.54 1.48E+05 37.80 1.40E+05 38.13 1.29E+05 39.28 9.86E+04

IPCA/JPEG2000 
Multicomponent 

37.74 1.42E+05 37.74 1.42E+05 37.74 1.42E+05 37.74 1.42E+05

IICA/JPEG2000 
Multicomponent 

22.41 4.98E+06 22.41 4.98E+06 22.41 4.98E+06 22.41 4.98E+06

 
As shown in Table 4, the IICA yielded the worst MSE and SNR, but its performance was 

among the best in terms of subpixel quantification according to Table 3. The reason for this was 
because the image background was largely suppressed by the ICA and much of background 
information was lost in the image reconstruction by the IICA. 
 
Example 2 (Multiple Backgrounds) 

In Example 1, we demonstrated that the JPEG2000 Multicomponent did not perform well 
for all compression ratios greater than or equal to 20 compared to other techniques, but 
3D-SPIHT did reasonably well in some cases such as CR = 20, 40. In the following example, 
we will further demonstrate that both 3D-SPIHT, JPEG2000 Multicomponent fail to address 
the issues of subpixels and mixed pixels. In doing so, the synthetic image shown in Fig. 3 was 



 

custom-designed to address the inability of the 3D compression such as 3D-SPIHT and 
JPEG2000 Multicomponent in preserving quantitative information provided by subpixels and 
mixed pixels.  The image in Fig. 3 is similar to the one used in Example 1 and also has the same 
size of 6464   pixel vectors. 
 

 

  
Fig. 3. Synthetic Imagery for Example 2 showing the four quadrants and the subpixel and mixed pixel 

implanted in each 
 
As shown in Table 2, the value estimated by the VD was 5 across all false alarm 

probabilities, which is exactly the same number of spectrally distinct signatures according to 
the ground truth. The VD-estimated value, 5 provides the necessary knowledge about how 
many components needed to be retained when dimensionality reduction is performed, provided 
that each component can be used to accommodate one distinct signature. In the case of Fig. 2, 
the number of components required after dimensionality reduction was 5. The difference 
between images in Fig. 2 and Fig. 3 is that the image background in Fig. 3 was made up of four 
different signatures instead of a single image background signature in Fig. 2. First of all, the 
image was divided into four quarters, each of which had its own background composed of a 
different panel signature. More specifically, the background in each of the four quarters was 
simulated by one of p1, p2, p3, p4 respectively with an added Gaussian noise to achieve 
signal-to-noise ratio (SNR) 30:1. The background pixels in a 22   square panel marked by a 
circle at the upper left the corner had no noise added.  

In each of these quarters a subpixel and a mixed pixel with specific abundance fractions 
were implanted by replacing the original pixels. There are two single one-pixel panels 
implanted in each background marked by circles in Fig. 3.  

It should be noted that a simulated subpixel target was defined as a target with fractional 
abundance embedded in a background (B). For example, in the first quadrant the first panel 
contained a subpixel with target signature  p2 of fractional abundance 50% with the background 
signature p1 of 50% and the second panel is a mixed pixel with the three signatures p2, p3 and  
p4 sharing the same fractional abundance 1/3.   

It is worth noting that this example was particularly designed so that the ICA would not be 
applicable because the image backgrounds in the four quadrants were simulated by different 
Gaussian noises, in which case the ICA could not unmix the simulated four Gaussian noises. 

Once again, the VD was used to estimate the number of spectrally distinct signatures which 
was 4 across all false alarm probabilities PF = 10-1, 10-2, 10-3, and 10-4. The value of 4 estimated 
by the VD was exactly the same number of panel signatures. p1, p2, p3, p4 used to simulate the 
image in Fig. 3. 

Now, the UFCLS was used to estimate the abundance fractions of all subpixels and mixed 
pixels. Table 5 tabulates the UFCLS-estimated abundance fractions for the subpixel and mixed 
pixel panels. 

mixed pixel,  1/3 x (p2+p3+p4) 

subpixel,  0.5 x (p1+ p2) 

1 2 

4 3 

mixed pixel,  1/3 x (p1+p3+p4) 

subpixel,  0.5 x (p2+ p3) 

mixed pixel,  1/3 x (p1+p2+p4) 

subpixel,  0.5 x (p3+ p4) 

mixed pixel,  1/3 x (p1+p2+p3) 

subpixel,  0.5 x (p4+ p1) 

noise-free 2x2 panel 



 

 
Table 5. Abundances fractions (%) for the subpixel and the mixed pixel panels in the first quadrant using 
UFCLS unmixing [23,45] for different compression ratios. 
 

Panels  Subpixel Mixed 

CR  100 60 40 20 100 60 40 20 

Original 

p1 50 50 50 50 0 0 0 0 

p2 50 50 50 50 33 33 33 33 

p3 0 0 0 0 33 33 33 33 

p4 0 0 0 0 33 33 33 33 

3D - SPIHT 

p1 70 61 61 55 35 25 25 11 

p2 25 36 36 43 11 17 17 24 

p3 5 3 3 2 29 31 31 33 

p4 0 0 0 0 25 27 27 31 

JPEG2000 
Multicomponent 

p1 78 68 68 61 46 20 17 10 

p2 8 23 23 33 13 30 31 35 

p3 12 7 8 6 23 24 25 26 

p4 2 2 1 0 18 26 28 29 

PCA/JPEG2000 
Multicomponent 

p1 49 48 48 48 1 1 1 1 

p2 45 47 47 47 32 32 32 32 

p3 4 4 4 4 34 34 34 34 

p4 1 1 1 1 33 33 33 33 

IPCA/JPEG2000 
Multicomponent 

p1 49 50 50 50 0 0 0 0 

p2 51 50 50 50 33 33 33 33 

p3 0 0 0 0 33 33 33 33 

p4 0 0 0 0 33 33 33 33 

 
Table 6 also calculated the SNR and MSE for the three compression techniques, 3D-SPIHT, 
JPEG2000 Multicomponent and IPCA/JPEG2000 Multicomponent with CR = 100, 60, 40 and 
20 where all the three produced similar SNRs and MSEs. 

 
Table 6. SNR and MSE values for the different compression techniques. 

CR 100 60 40 20 

 SNR MSE SNR MSE SNR MSE SNR MSE 

3D - SPIHT 48.68 1.22E+04 48.98 1.14E+04 49.35 1.05E+04 50.56 7.90E+03 
JPEG2000 

Multicomponent 
48.45 1.28E+04 48.81 1.18E+04 49.13 1.10E+04 50.17 8.64E+03 

IPCA/JPEG2000 
Multicomponent 

48.94 1.15E+04 48.94 1.15E+04 48.94 1.15E+04 48.94 1.15E+04 

 
Apparently, the compression performance of 3D SPIHT and JPEG2000 Multicomponent 

was very poor for CR = 100 and 60 and only improved slightly even for CR = 40 and 20 in 
quantification of subpixels and mixed pixels, particularly, their performance in mixed pixel 
quantification with all compression ratios. By contrast, the IPCA-JPEG2000 Multicomponent 
and PCA-JPEG2000 with all compression ratios performed consistently better for both 
subpixel and mixed pixel quantification. The experimental results in this example were also 
very similar to those in Example 1. According to Tables 5 and 6 the IPCA/JPEG2000 
Multicomponent performed very well in both quantification of subpixels and mixed pixels, and 



 

SNR/MSE. Similar conclusions drawn from Examples 1 and 2 were observed in [25-27]. All 
these experiments conducted in this paper as well as those in [25-27] demonstrated an 
important fact that using the SNR and MSE as compression measures is inappropriate to 
address the issues of subpixels and mixed pixels. This implies that the SNR and MSE cannot be 
blindly applied to hyperspectral data compression without precaution. 

5  REAL IMAGE EXPERIMENTS 

In this section, the real 15-panel HYDICE image scene in Fig. 1 was used for experiments. 
Similar experiments conducted for the synthetic images in Section IV were also performed for 
the real image scene in Fig. 1. The CEM [23] and the UFCLS method were also used to 
investigate the issues of subpixel detection and mixed pixel classification and quantification 
respectively for the same six compression techniques used in Section IV, 3D-SPIHT, 
JPEG2000 Multicomponent, PCA/JPEG2000 Multicomponent, ICA/JPEG2000 
Multicomponent, IPCA/JPEG2000 Multicomponent and IICA/JPEG2000 Multicomponent for 
performance evaluation. The VD values estimated by the HFC method for this image scene are 
tabulated in Table 7 where the VD was empirically selected to be 9 according to experiments in 
[22-27].  

 
Table 7. VD estimates for the HYDICE image. 

PF 10-1 10-2 10-3 10-4 10-5 

VD 14 11 9 9 7 

 
The value of VD = 9 was used to perform dimensionality reduction for our proposed 
spectral/3D compression. 
  
 Example 3 (Subpixel panel detection)  

This example is to demonstrate the effect of lossy compression on target detection in the 15 
panels in Fig. 1(b), particularly the five subpixel panels, p13, p23, p33, p43, p53 in the 3rd column. 
As the CEM was implemented, the p1, p2, p3, p4, p5 in Fig. 1(c) were used as desired target 
signatures. The results of the CEM implemented on the original un-compressed image are 
shown in Fig. 4.  

 

     
 

Fig. 4. 15-panel detection results by CEM on the un-compressed original image scene in Fig. 1(a) 
 
Since similar results were obtained for panels in all the five rows, Figs. 5-10 only show results 

obtained for detection of panels for the 5th row by applying the CEM to 6 compressed images resulting 
from 3D-SPIHT, JPEG2000 Multicomponent, PCA/JPEG2000 Multicomponent, ICA/JPEG2000 
Multicomponent, IPCA/JPEG2000 Multicomponent, IICA/JPEG2000 Multicomponent. This was 
because the detection of the panels in 5th row was challenging due to the panels in rows 4 and 5 made by 
the same panel materials with two different paints. As a result, the CEM detected panels in both rows 4 
and 5 if either p4 or p5 was used as a desired signature. This was also true for the CEM in detection of 
panels in the 2nd and 3rd rows. 

 



 

             
 
          (a) CR = 100                    (b) CR = 60                       (c) CR=40                          (d) CR=20 

 
Fig. 5. Detection of panels in 5th row by produced by applying CEM to 3D-SPIHT compressed images. 

 

             
 
          (a) CR = 100                   (b) CR = 60                     (c) CR=40                    (d) CR=20 
 
Fig. 6. Detection of panels in 5th row by produced by applying CEM to JPEG2000 
Multicomponent-compressed images. 

 

             
 
          (a) CR = 100                      (b) CR = 60                       (c) CR=40                        (d) CR=20 
 
Fig. 7. Detection of panels in 5th row by produced by applying CEM to PCA/JPEG2000 Multicomponent 
compressed images. 

 

             
 
     (a) CR = 100                      (b) CR = 60                      (c) CR=40                         (d) CR=20 
 

Fig. 8. Detection of panels in 5th row produced by applying CEM to ICA/JPEG2000 Multicomponent 
compressed images. 

 
 



 

              
 
          (a) CR = 100                     (b) CR = 60                         (c) CR=40                      (d) CR=20 
 
Fig. 9. Detection of panels in 5th row by produced by applying CEM to IPCA/JPEG2000 Multicomponent 
compressed images. 

 
 

             
 
     (a) CR = 100                      (b) CR = 60                         (c) CR=40                         (d) CR=20 

 
Fig. 10. Detection of panels in 5th row by produced by applying CEM to IICA/JPEG2000 
Multicomponent compressed images. 
 
Comparing all the detection results in Figs. 5-10 against that in Fig. 4, the best results were 
those produced by the ICA/JPEG2000 Multicomponent and IICA/JPEG2000 Multicomponent 
where the PCA-based/3D compression was among the worst and the 3D compression came in 
between but did not perform well either.  
 
Example 4 (Mixed pixel panel quantification) 

The experiments conducted in Example 3 were designed to investigate the issue of 
subpixel target detection where only desired target knowledge was required. This example was 
conducted to demonstrate the ineffectiveness of 3D lossy compression on mixed pixel panel 
classification and quantification with the UFCLS used to perform quantification of the 15 
panels. In this case, the target knowledge must be known prior to the UFCLS. It was 
demonstrated in [23,45] that 34 target pixels could be generated in an unsupervised manner and 
provided sufficient target information for the UFCLS to perform well. Once again, due to 
similar results that can be obtained for all the 15 panel pixels as Example 3 did, Table 8 only 
tabulates the UFCLS-estimated abundance fractions (%) of three panels in the 5th row where 
the panel in the 1st column is a two-pixel panel, denoted by p511 and p512, the 2nd panel pixel by 

p53 and the 3rd subpanel pixel by p54. The six lossy compression techniques 3D-SPIHT, 
JPEG2000 Multicomponent, PCA/JPEG2000 Multicomponent and ICA/JPEG2000 
Multicomponent, IPCA/JPEG2000 Multicomponent, IICA/JPEG2000 Multicomponent were 
evaluated for CR = 100, 60, 40 and 20. 



 

 
Table 8. Abundance fractions (%) of the mixed pixel panels of the 5th row.  

CR 100 60 40 20 

 p511 p512 p52 p53 p511 p512 p52 p53 p511 p512 p52 p53 p511 p512 p52 p53

Original Image 72 100 78 15 72 100 78 15 72 100 78 15 72 100 78 15

3D - SPIHT 58 100 35 1 55 100 56 8 60 100 62 13 69 100 74 13

JPEG 2000 
Multicomponent 

57 100 18 0 67 100 48 9 66 100 61 6 62 100 57 11

ICA/JPEG2000 
Multicomponent 

71 100 70 0 69 100 72 7 69 100 72 12 69 100 72 12

IPCA/JPEG2000 
Multicomponent 

71 100 77 10 73 100 78 15 72 100 78 18 73 100 78 16

IICA/JPEG2000 
Multicomponent 

77 100 74 6 67 100 74 8 68 100 75 11 68 100 75 11

 
From this table we can see that the ICA-based spectral/spatial compression techniques clearly 
outperformed all other compression techniques. More interestingly, the compression ratios had 
little effect on the abundance estimates of the PCA/spatial and ICA/spatial compression 
techniques, while the accuracy of abundance estimates of 3D-SPIHT and 3D-multicomponent 
JPEG2000 was gradually increased with compression ratios. Finally, Table 9 also tabulates 
SNR and MSE for the four compression techniques, 3D-SPIHT, JPEG2000 Multicomponent, 
IPCA/JPEG2000 Multicomponent and IICA/ JPEG2000 Multicomponent with CR = 100, 60, 
40 and 20. 

 
Table 9. SNR and MSE for the different compression techniques. 

CR 100 60 40 20 
 SNR MSE SNR MSE SNR MSE SNR MSE 

3D-SPIHT 28.38 9.01E+05 31.76 4.13E+05 34.93 1.99E+05 41.10 4.80E+04 
JPEG2000 Multicomponent 26.93 1.25E+06 30.02 6.16E+05 32.79 3.26E+05 38.03 9.74E+04 

IPCA/JPEG2000 Multicomponent 40.34 5.73E+04 42.52 3.46E+04 42.79 3.26E+04 42.79 3.26E+04 
IICA/JPEG2000 Multicomponent 11.66 4.22E+07 11.66 4.23E+07 11.66 4.23E+07 11.66 4.23E+07 

 
As we can see from Table 9, the IICA yielded the worst MSE and SNR, but produced the best 
detection performance in Fig. 10 among the four techniques. These real image experiments 
provide further evidence that the MSE and SNR were indeed not appropriate criteria to be used 
for compression to address issues of subpixels and mixed pixels for hyperspectral image 
compression.  

One particular comment is noteworthy. According to all the experiments conducted in this 
paper, the improvement on compression performance of the 3D compression techniques was 
closely related and proportionally to increase of the SNR, decrease of MSE as well as decrease 
of compression ratio. That is, the better performance a 3D compression, the higher the SNR, the 
smaller the MSE and the lower the compression ratio. This observation explains the reason why 
researchers in data compression community have been focused their attention on criteria of 
SNR and MSE. Unfortunately, this common sense is no longer true for hyperspectral data 
compression at low bit rates as we demonstrated in our experiments in the above four examples. 
This is because the SNR and MSE have little impact on subpixel and mixed pixel analysis such 
as subpxiel detection and mixed pixel quantification when compression ratios are high. In other 
words, in order for a hyperspectral data compression to be effective, exploitation applications 
should be considered as the main performance criteria. Blinding using SNR and MSE as 
compression criteria may have misleading results in hyperspectral data interpretation and 
analysis. 



 

6  CONCLUSION 

For a hyperspectral data compression to be effective, hyperspectral data compression must be 
conducted on an exploitation basis and a blind use of data compression technique generally 
results in poor performance. Also, a direct application of 3D lossy compression techniques to 
hyperspectral imagery may cause significant loss of crucial information provided by spectral 
correlation. It has been shown in this paper by experiments that the SNR and MSE are 
inappropriate to be used as compression criteria for subpixel and mixed pixel analysis when 
compression ratios are high. That is, higher SNR or lower MSE does not guarantee better 
compression performance and vice versa. To address these issues this paper develops 
spectral/spatial compression techniques which implements a spectral dimensionality reduction 
transform prior to a 3D compression. Since the spectral dimensionality reduction is performed 
by component analysis, determining how many components to be retained is very challenging. 
Over the past years, this number has been assumed a priori on a trial and error basis. The 
proposed spectral/spatial compression uses a newly developed concept of virtual 
dimensionality (VD) to determine this number. Experimental results demonstrate that such 
spectral/3D cube compression performs not only better than 3D compression techniques 
implemented alone, but also better than spectral/2Dspatial compression.   
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