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Abstract. Computationally efficient processing of hyperspectral image cubes can be greatly
beneficial in many application domains, including environmental modeling, risk/hazard preven-
tion and response, and defense/security. As individual cluster computers often cannot satisfy the
computational demands of emerging problems in hyperspectral imaging, there is a growing need
for distributed supercomputing using multicluster systems. A well-known manner of obtaining
speedups in hyperspectral imaging is to apply data parallel approaches, in which commonly
used data structures (e.g., the image cubes) are being scattered among the available compute
nodes. Such approaches work well for individual compute clusters, but—due to the inherently
large wide-area communication overheads—these are generally not applied in distributed multi-
cluster systems. Given the nature of many algorithmic approaches in hyperspectral imaging,
however, and due to the increasing availability of high-bandwidth optical networks, wide-area
data parallel execution may well be a feasible acceleration approach. This paper discusses the
wide-area data parallel execution of two realistic and state-of-the-art algorithms for endmem-
ber extraction in hyperspectral unmixing applications: automatic morphological endmember
extraction and orthogonal subspace projection. It presents experimental results obtained on a
real-world multicluster system, and provides a feasibility analysis of the applied parallelization
approaches. The two parallel algorithms evaluated in this work had been developed before
for single-cluster execution, and were not changed. Because no further implementation efforts
were required, the proposed methodology is easy to apply to already available algorithms, thus
reducing complexity and enhancing standardization. C© 2011 Society of Photo-Optical Instrumentation

Engineers (SPIE). [DOI: 10.1117/1.3595292]
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1 Introduction

Hyperspectral imaging involves the measurement, analysis, and interpretation of spectra ac-
quired from a given scene by an airborne or satellite sensor. A major challenge for the devel-
opment of efficient hyperspectral imaging systems in the context of remote sensing is how to
deal with the extremely large volumes of data produced by the imaging spectrometers.1 For in-
stance, the NASA Jet Propulsion Laboratory’s Airborne Visible Infra-red Imaging Spectrometer
(AVIRIS)2 is able to record the visible and near-infrared spectrum (wavelength region from 0.4
to 2.5 μm) of the reflected light of an area 2 to 12 km wide and several kilometers long using 224
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Fig. 1 An illustration of the processing demands introduced by the ever increasing dimensionality
of remotely sensed hyperspectral imaging instruments.

spectral bands. The resulting hyperspectral data cube is a stack of images in which each pixel
(vector) is represented by a spectral signature that uniquely characterizes the underlying scene
(see Fig. 1). With the resulting multidimensional data volume typically comprising many Gbytes
per flight, and individual compute clusters either being too small or largely being occupied by
other users, there is a growing need for distributed supercomputing using (large) collections of
compute clusters.

It is well-known that data parallel approaches in the field of hyperspectral image processing
can provide efficient acceleration.3 In such approaches, the input data cube is scattered uniformly
among the available compute nodes, such that each node processes the allocated partial data
structure only. Internode data dependencies are then resolved by communication between the
nodes. In recent years, numerous (hyperspectral) imaging applications have been executed
successfully in this manner, in particular using compute clusters, which are now widely available
for cost-effecive exploitation.3,4

For fine-grain data parallel execution internode communication is the major hurdle for
obtaining high speedups. With the advent of low-latency, high-bandwidth optical networks,
however, wide-area data parallel execution may become a feasible acceleration approach. In
this paper we apply wide-area data parallelism to a specific class of fine-grained, tightly-coupled,
data parallel regular domain problems, represented by two state-of-the-art algorithms for spectral
unmixing of hyperspectral data. In recent years, many hyperspectral imaging algorithms have
been researched extensively for their high computational demands.3,5,6 One of the most relevant
techniques for information extraction from hyperspectral data is spectral unmixing, which aims
to overcome problems that occur when the spatial resolution of a remote sensor is not high enough
to separate different materials.6 Figure 2(a) illustrates the problem of mixed pixels containing
different macroscopically pure spectral substances (endmembers) that need to be found by
a certain algorithm, in order to interpret each mixed pixel as a combination of endmembers
weighted by their respective abundance fractions. A second important problem is that of finding
spectrally distinct signatures in the scenes. Depending on the complexity and dimensionality of
the input scene, these problems may be computationally very expensive, limiting the possibility
of utilizing the algorithms in— for example— time-critical applications.

Two representative algorithms to address the problem of finding spectrally pure signatures
(endmembers) for unmixing hyperspectral images are the automated morphological endmember
extraction [AMEE Ref. 3 and 7], and the orthogonal subspace projection [OSP Ref. 5 and
8]. Although several other approaches are described in the literature (Ref. 9)—most notably
the spectral-based N-FINDR algorithm for endmember extraction [Ref. 10]– previous parallel
versions of N-FINDR for single cluster systems show that this algorithm is hard to parallelize
efficiently.11 In turn, efficient implementations for this algorithm have been developed based
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Fig. 2 The mixture problem in hyperspectral data analysis.

on software optimizations.12 This supports our selection of AMEE (representative of a class of
spatial-spectral algorithms) and OSP (a spectral-based algorithm, much like N-FINDR, but with
more intensive communications than the AMEE).

The two selected algorithms represent two widely used design choices in the endmem-
ber extraction community: i. use of spectral information alone (OSP), and ii. use of spatial
and spectral information in combined fashion (AMEE). Both methods are dominated by reg-
ular computations which make them appealing for parallel processing in commodity clusters.
Also, these methods are well-established in the literature and have been used by many au-
thors in different application contexts. For instance, different applications of OSP have been
explored in Refs. 1, 5, 6, 8, and 13 while other applications of AMEE have been explored in
Refs. 3, 7, 9, 11, and 14. The algorithms are applied to real AVIRIS hyperspectral data sets on
a distributed multicluster system which—apart from being equipped with conventional Internet
connections—comprises a dedicated wide-area optical interconnect. We present experimental
results, and provide a feasibility analysis of the applied parallelization approach leading to
findings which can be generalized to other fine-grained, tightly-coupled, data parallel regular
domain problems.

This paper is organized as follows. Section 2 describes the two considered hyperspectral
imaging algorithms. Section 3 describes the data parallel execution of the two algorithms.
Section 4 describes the distributed multicluster system applied in the experiments. Section 5
gives an evaluation of the performance and speedup results. Section 6 concludes with some
remarks and hints at plausible future research.

2 Hyperspectral Imaging Algorithms

In recent years, many hyperspectral imaging algorithms have been researched extensively for
their high computational demands.3,5,6 The following describes two important, and computa-
tionally expensive, techniques for information extraction from hyperspectral data by way of
spectral unmixing: AMEE and OSP.

2.1 AMEE

The AMEE (Ref. 7) algorithm runs on the full data cube with no dimensional reduction,
and begins by searching spatial neighborhoods around each pixel vector in the image for the
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Fig. 3 Example illustrating extended morphological operations of dilation and erosion.

most spectrally pure and most highly mixed pixel. This task is performed by using extended
mathematical morphology operators of dilation and erosion,7 which are graphically illustrated in
Fig. 3. Here, dilation selects the most spectrally pure pixel in a local neighborhood around each
pixel vector, while erosion selects the most highly mixed pixel in the same neighborhood. Each
spectrally pure pixel is then assigned an eccentricity value, which is calculated as the spectral
angle distance between the most spectrally pure and most highly mixed pixel for each given
spatial neighborhood. This process is repeated iteratively for larger spatial neighborhoods up to
a maximum size that is pre-determined. At each iteration, the eccentricity values of the selected
pixels are updated. The final end member set is obtained by selecting the set of pixel vectors
with higher associated eccentricity scores and removing those pixels which are not sufficiently
distinct among each other in a spectral sense.

The inputs to AMEE are the full hyperspectral data cube F, a structuring element B (used to
define the spatial context around each image pixel), a maximum number of algorithm iterations
Imax, and a number of endmembers (pure spectral signatures) to be extracted, p. The output is
an endmember set, {Ei}qi=1, with q ≤ p. The algorithm consists of the following steps:7,14

1. Set i = 1 and initialize a morphological eccentricity index (MEI) (x, y) = 0 for each
hyperspectral image pixel F(x, y).

2. Move B through all the pixels of the input data, defining a local spatial search area around
each pixel F(x, y), and calculate the maximum and minimum pixel vectors at each B
neighborhood using extended morphological erosion and dilation, respectively, defined
as follows:

(F�B)(x, y) = argmin
(i,j )∈Z2(B)

{DB[F(x+i,y+j )]}, (1)

(F ⊕ B)(x, y) = argmin
(i,j )∈Z2(B)

{DB[F(x+i,y+j )]}. (2)

3. Update the MEI at each spatial location (x, y) using:

MEI(x, y) = Dist[(F�B)(x, y), (F ⊕ B)(x,y)] (3)

4. Set i = i + 1. If i = Imax, then go to step 5. Otherwise, replace the original image with
its dilation using B using F = F ⊕ B. This represents an optimization of the algorithm
that propagates only the purest pixels at the local neighborhood to the following algorithm
iteration. Then, go to step 2.
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5. Select the set of p pixel vectors with higher associated MEI scores (called endmember
candidates) and form a unique spectral set of {Ei}qi=1 pixels, with q ≤ p, by calculating
the spectral angle1 for all pixel vector pairs.

6. Finally, a fully constrained unmixing procedure15 is accomplished by applying a least-
squares-based technique to estimate the abundance fractions of each of the p derived
endmembers in each pixel of the hyperspectral image F.

2.2 OSP

The OSP was developed to find spectrally distinct pixel vectors in the scene.13 The algorithm
first calculates the pixel vector with maximum length in the hyperspectral image and labels it
as an initial endmember E1 [see Fig. 4(a)] using the following expression:

E1 = argmax
(x,y)∈Z2(F)

{F(x,y) · F(x, y)T }, (4)

where the superscript T denotes the vector transpose operation. Once an initial endmember
has been identified, the algorithm assigns U1 = [E1] and applies an orthogonal projector13 to
all image pixel vectors, thus calculating the second endmember as the one with the maximum
projection value [see Fig. 4(b)] as follows:

E2 = argmax
(x,y)∈Z2(F)

{[
P ⊥

U1
F (x, y)

]T [
P ⊥

U1
F (x, y)

]}

with p⊥
U1

= I − U1(UT
1 U1)−1UT

1 ,

(5)

where I is the identity matrix and the matrix U1 will be iteratively expanded with the inclusion of
the additional endmembers identified in the process, i.e., at the next iteration U2 = [E1, E2]. As
a result, Uj is simply a matrix that stores the j endmembers which have been already extracted
in iterative fashion in the process. With this in mind, the algorithm now iterates to find new

Fig. 4 Graphical interpretation of the OSP algorithm in a two-dimensional space. (a) Initial
endmember E1 selected as the pixel with maximum length. (b) Orthogonal projection to find
second endmember E2. (c) Orthogonal projection to find third endmember E3. (d) The algorithm
terminates for a given number of endmembers (in this case, p = 3).
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endmember pixels iteratively [see Fig. 4(c)] as the pixels with maximum projection value:

Ej+1 = argmax
(x,y)∈Z2(F )

{[
P ⊥

Uj
F (x, y)

]T [
P ⊥

Uj
F (x, y)

]}

with p⊥
Uj

= I − Uj (UT
j Uj )−1UT

j .

(6)

The iterative procedure is terminated once a predefined number of p endmembers, {Ei}pi=1, has
been identified [see Fig. 4(d)].

3 Parallel Implementations

The parallel implementations of the two algorithms are based on a data-driven partitioning
strategy in which different parts of the image cube are assigned to different compute nodes.
Essentially, two approaches for data partitioning exist, namely spectral-domain decomposition
and spatial-domain decomposition. Previous experimentation with both strategies have shown
that spatial-domain decomposition can significantly reduce inter-processor communication,
resulting from the fact that a single pixel vector is never partitioned and communication is not
needed at the pixel level.3 Another important advantage of spatial domain partitioning is that the
problem of load-balancing on multicluster systems is not more complex in comparison with the
one on a single cluster system. Before describing the parallel algorithms, we emphasize that the
total number of iteration counts performed by each node/cluster in the parallel versions summa-
rized below are exactly the same. As a result, the computation loads are equally balanced among
nodes and also among clusters (i.e., when the algorithms are run in a multicluster environment).

3.1 Parallel AMEE

1. The master processor partitions the data into K spatial-domain partitions. To avoid repet-
itive communication steps taking place, we make sure that each node is provided with a
partial data structure that contains a so-called “scratch border” with size depending on
the structuring element, containing all data that otherwise would need to be communi-
cated during the course of the execution of the algorithm (see Fig. 5).3 These parallel
spatial-spectral partitions are denoted by {PSSPi}Ki=1.

Fig. 5 Scratch border for a 3 × 3-pixel structuring element in the partitioning of a hyperspectral
image into two parallel spatial-spectral partitions.
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2. Using parameters Imax (maximum number of iterations) and p (maximum number of
endmembers to be extracted), each worker executes (in parallel) steps 1–5 of the sequential
AMEE algorithm for its corresponding PSSPi, thus obtaining a MEI score for each pixel
in the local partition and obtaining a local set of unique endmembers.

3. The master gathers all the local endmember sets provided by the workers and forms a
global set of endmembers {Ei}pi=1, with q ≤ p, by calculating the spectral angle for all
possible endmember pairs in parallel.

4. Using the sets {PSSPi}Ki=1 and {Ei}pi=1, perform step 6. of the sequential AMEE algo-
rithm locally at each worker. This is an embarrassingly parallel computation, since the
abundance estimations can be performed independently at each worker. In the end, the
master gathers the information provided by the workers, and forms a final output.

While several steps are purely sequential (performed by the master alone), the AMEE
algorithm has high potential for parallel speedups and scalability in the number of workers.
This is because step 3—which is by far the most time-consuming part of the algorithm—is fully
parallel and can be performed without the need for internode communication.

3.2 Parallel OSP

1. As above, the master node first splits the input image cube into K spatial-domain partitions
(without scratch borders, as this algorithm is a pixel-based technique), and distributes
these among the workers. The communication overhead is based on broadcast communi-
cation performed by the master node, and not on peer-to-peer communication. Note that
the communication overhead generated by this step will grow linearly with an increasing
number of nodes.

2. Each worker calculates the brightest pixel in its local partition using Eq. (4) and then
sends the spatial location of the local brightest pixel back to the master. Note that the
calculation time in this step will decrease linearly with an increasing number of nodes.

3. The master computes the brightest pixel of the complete input scene, t1, by applying the
operator of step 2 to all pixels at the spatial locations received from the workers. Then,
the master sets U1 = [E1] and broadcasts this matrix to all workers. This communication
overhead generated by this step grows linearly with an increasing number of nodes.

4. Each worker finds the pixels in its local partition which are most orthogonal relative to
the pixel vectors in U1. Each worker then sends the spatial locations of these local pixels
to the master. Note that the calculation time in this step grows linearly with the increasing
number of computing nodes applied.

5. The master now finds a second endmember E2 by applying an orthogonal subspace
projection operator to the pixel vectors at the spatial locations provided by the workers,
and selecting the one with the maximum score as indicated in Eq. (5). The master now
sets U1 = [E1, E2] and broadcasts this matrix to all workers. This communication step
will increase proportionally with an increasing number of nodes used.

6. Repeat iteratively from step 4 by applying Eq. (6) until a set of p endmember pixels,
{Ei}pi=1, is extracted from the input data.

Similar to the AMEE algorithm, several steps of the algorithm are purely sequential. More-
over, as the OSP requires more communication steps between master and workers to be per-
formed, there seems less potential for significant speedups and scalability than in the AMEE
case. Figure 6 presents a graphical summary of the parallel OSP algorithm.

3.3 Distributed MultiCluster Execution

The presented parallel algorithms initially were developed for execution on single compute
clusters. Often, the use of individual compute clusters is not sufficient, however. First, this is
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Fig. 6 Parallel OSP using 1 master and 3 workers.

because the shear volume of hyperspectral image data may be too large for a single-cluster
system. Similarly, in time-critical applications, a single cluster may not provide the necessary
compute power. Finally, even if a single-cluster system in principle would adhere to the algo-
rithmic requirements in terms of available compute power, memory, networking, and storage,
such a system often is heavily used for other tasks (by other users)—effectively rendering its
use impossible in practice.

To overcome these problems, we apply the presented parallel algorithms unchanged in a
multicluster setting. This approach has the advantage that no further implementation effort is
required from the application user (in general a domain expert having little or no expertise in
high-performance and distributed computing). As communication within a cluster is generally
an order of magnitude faster than communication between clusters, results obtained with this
approach will indicate a lower bound on the obtainable speedup. Nevertheless, we aim to
show that the presented single-cluster algorithms already show close-to-optimal performance
in a multicluster setting. Given the nature of the presented parallel algorithms, the need for
intercluster communications is expected to be limited, to the effect that the negative impact of
such slow wide-area connectivity may be insignificant. In particular, we expect this to be the
case in the presence of a (dedicated) low-latency, high-bandwidth optical wide-area network.

If our expectations indeed are supported by actual results obtained in a distributed multicluster
setting, this will open up important new possibilities for the field of hyperspectral imaging. First,
in particular for time-critical applications it will become possible to scale up to problem sizes
that better match the required performance (e.g., in terms of obtained detection results). This will
support a trend toward designing algorithms with high potential for efficient parallelization over
commonly used, but hard-to-parallelize, ones. Also, for many hyperspectral imaging algorithms
(i.e., those which are appealing for parallel implementations) it may become feasible to scale
up to much larger processor counts than is currently commonplace, which (a.o.) will allow for
much “deeper” analysis of the image data than before.

4 Experimentation Platform: DAS-3

In real-world distributed systems, many fluctuations exist in the performance, load, and avail-
ability of the geographically dispersed nodes. As a result, the repeatability of experiments is
hard to guarantee. It is therefore essential to perform experiments on a testbed that shows the key

Journal of Applied Remote Sensing 051501-8 Vol. 5, 2011



Liu, Seinstra, and Plaza: Parallel hyperspectral image processing on distributed multicluster systems

Fig. 7 DAS-3 and the StarPlane Optical Interconnect.

characteristics of a real-world distributed multicluster system on the one hand, yet that allows
for controlled experiments on the other.

To meet these requirements, we perform all our evaluations on the DAS-3 testbed system
[distributed ASCI Supercomputer 3; see Fig. 7 and also Table 1 (http://www.cs.vu.nl/das3/)].
DAS-3 is a five-cluster wide-area distributed system, with individual clusters located at four
different universities in The Netherlands: Vrije Universiteit Amsterdam (VU), University of
Amsterdam (UvA), Leiden University (LU), and Delft University of Technology (TUD). The
MultimediaN Consortium (UvA-MN) also participates with one cluster.

Besides the ubiquitous 1 and 10 GBit/s Ethernet networks, four of the five DAS-3 clusters
incorporate the high-speed Myri-10G interconnect technology from Myricom as a high-speed
connection between the nodes within a cluster (as the TUD cluster does not have a Myri-10G
interconnect, we do not consider its use in our experiments). Also, apart from being connected
by conventional Internet connections, the DAS-3 clusters are interconnected via a 10 GBit/s

Table 1 Specification of four of the five DAS-3 clusters used in our experiments.

Cluster name No. of nodes (and type) CPU type CPU (Ghz) Memory (GB) Network

VU 85 dual Dual-core 2.4 4 Myri-10G
UvA 41 dual Dual-core 2.2 4 Myri-10G
LU 32 dual Single-core 2.6 4 Myri-10G
UvA-MN 46 dual Single-core 2.4 4 Myri-10G
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wide-area network based on light paths [StarPlane (http://www.straplane.org)]. The rationale
of the StarPlane optical interconnect is to allow part of the photonic network infrastructure
of the Dutch SURFnet6 network to be manipulated by distributed applications to optimize
performance. The novelty of StarPlane is that it gives flexibility directly to applications by
allowing them to choose one of the multiple logical network topologies in real time, ultimately
with subsecond switching times.

5 Performance Evaluation

To perform experiments on DAS-3, we have compiled our applications with OpenMPI.16 This
communication library provides the correct communication setup for message passing programs
that need to use multiple heterogeneous networks. For highest performance, we have initialized
OpenMPI such that we use optical links between the clusters, and the local Myri-10G network
for intracluster communication. We do not use any of the GbE networks. For comparison, we
also perform experiments using conventional Internet links between the clusters.

To avoid results that need normalization to a “base node” of a certain speed and capacity,
we limit ourselves to scenarios in which the set of compute elements is relatively homogeneous.
Also, we do not include scenarios involving multiple cores per CPU, as this would allow us
to scale up to two clusters only (i.e., VU and UvA; the remaining clusters have single-core
CPUs). Given these restrictions, we perform experiments using three different (multi-)cluster
configurations (see also Table 2). Single-cluster runs are always performed at the VU, using a
maximum of 64 nodes (= 128 CPUs). Dual-cluster runs are always performed using VU and
UvA simultaneously, each with an equal number of nodes. Because it was not possible to use
more than 28 UvA nodes, dual-cluster runs have been performed using a maximum of 56 nodes
(= 112 CPUs) in total. Four-cluster runs have been performed in a similar manner, for runs
using a maximum of 96 nodes (= 192 CPUs).

Keeping in mind the marginal differences between the four cluster systems used in our
experiments, we have obtained the sequential run-times for both our algorithms using a single
CPU of the VU cluster. These sequential runtimes are used as the base reference for our speedup
calculations in all experiments. Also, despite the fact that the nodes in the different DAS-3
clusters run at slightly different clock speeds, in multicluster runs the total workload is spread
such that each node is provided with an equal-sized partition of the original input data. Dealing
with situations in which much larger speed differences exist between the nodes in a multicluster
system is left as future work (and briefly discussed in Sec. 6).

Finally, the image cubes used to evaluate our two algorithms were standard hyperspec-
tral data sets commonly used as testbeds in spectral unmixing applications. Specifically, the
AMEE algorithm was applied to the well-known AVIRIS Cuprite data set, available online in
reflectance units (http://aviris.jpl.nasa.gov/html/aviris.freedata.html). The portion used in ex-
periments corresponds to the sector labeled as f970619t01p02-r02-sc03.a.rfl in the online data,
with 614 × 512 pixels, 224 spectral bands, and a total size of approximately 80 MBytes. The
number of endmembers in this scene was set to p = 19 after estimating the number of end-
members using the HySime method.17 On the other hand, the image cube selected for the OSP
algorithm consists of a full AVIRIS flightline comprising 4230 × 750 pixels and 224 spectral
bands (approximately 1.5 Gbytes), collected over the World Trade Center (WTC) in New York

Table 2 Specification of the three (multi-)cluster configurations used in our experiments. In every
multicluster run, each participating cluster contributed with an equal number of nodes.

No. of clusters Names of cluster(s) used Max. no. of nodes used

1 VU 64 (= 128 CPUs)
2 VU, UvA 56 (= 112 CPUs)
4 VU, UvA, LU, UvA-MN 96 (= 192 CPUs)
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City, just 5 days after the terrorist attacks that collapsed the two towers at theWTC area. The
number of OSP endmember pixels to be detected was set to p = 30. In both cases, the accuracy
of AMEE and OSP for spectral unmixing purposes has already been widely reported in the
literature.5,14

5.1 Performance and Speedup

A purely sequential execution revealed that the AMEE algorithm takes over 85 min and 40 s to
complete on a single CPU; the OSP algorithm takes over 24 min and 3 s. A parallel single-cluster
run using 64 nodes (= 128 CPUs) for the AMEE algorithm resulted in a total execution time of
47.3 s, indicating a close-to-linear speedup of almost 109. A similar single-cluster run for OSP
gave a runtime of 20.2 s, and a speedup of over 71.

These results confirm our initial expectations expressed in Sec. 3, and are in line with results
reported earlier in Refs. 3 and 5; while it is possible to obtain high speedups for both algorithms,
OSP is more difficult to parallelize efficiently than AMEE. In both cases, even if the executions
are (almost) perfectly load balanced, efficiency loss is due to the usual causes for parallelization
overhead: communication (e.g., to resolve data-dependencies between nodes) and additional
memory operations (e.g., to create, copy, and delete intermediate partial data structures).

The speedup graph of Fig. 8 shows that the AMEE algorithm indeed benefits from an
increasing number of nodes, even when spread over multiple clusters. When considering mul-
ticluster scenarios with all wide-area communication taking place over the StarPlane optical
interconnect, obtained results are very similar to the single-cluster measurements. For example,
a run using 128 CPUs spread over 4 clusters takes 48.9 s (giving a speedup of 105), as opposed
to the above-mentioned 47.3 s for a single-cluster run with the same CPU count. As stated in
Sec. 3, this is because the required amount of wide-area communication is very limited. Also note
that part of the marginal performance drop can be attributed to the lower clock-speed (2.2 Ghz)
of the UvA CPUs.

The most important result, however, is that a four-cluster run allows for concurrent use
of more CPUs than can be provisioned by any of the available clusters alone: the use of 192
CPUs spread over four clusters results in a runtime of 32.4 s, giving a speedup of over 158. The
speedup graph of Fig. 8 also shows that runs over conventional links are less efficient, albeit only
marginally so. Using 192 CPUs over four clusters results in a runtime of 35.2 s, giving a slightly
lower speedup of 146. Based on these results, we conclude that the AMEE algorithm indeed can
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Fig. 8 Speedup results for AMEE on DAS-3.

Journal of Applied Remote Sensing 051501-11 Vol. 5, 2011



Liu, Seinstra, and Plaza: Parallel hyperspectral image processing on distributed multicluster systems

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  20  40  60  80  100  120  140  160  180

S
pe

ed
up

Nr. of CPUs

OSP on DAS-3 using Dual CPU Single Core

linear(x)
1 cluster

Optical: 2 clusters
Optical: 4 clusters

Conventional: 2 clusters
Conventional: 4 clusters

Fig. 9 Speedup results for OSP on DAS-3.

benefit significantly from multicluster execution, with close-to-linear speedup obtained for all
measured scenarios. The availability of a high-speed optical wide-area interconnect only gives
a limited additional benefit. Given the fact that the input data used for the AMEE algorithm was
relatively small, these results also provide excellent prospects for larger input sizes.

Although OSP requiresmore communication, the overall results (shown in Fig. 9) are rather
similar. First, the optical multicluster runs are almost identical compared to the single-cluster
execution: a run using 128 CPUs spread over 4 clusters takes 20.9 s (for a speedup of 69),
where a single-cluster run took 20.2 s. Again, this is due to the limited need for wide-area
communication. Scaling up to 192 CPUs spread over four clusters gives a runtime of 16.6 s,
and a speedup of 87. As before, the negative impact of conventional wide-area communication
is quite limited: a four-cluster run using 192 CPUs takes 18.1 s, with a speedup of just below
80. Given these results, we conclude that—despite the higher need for communication— the
OSP algorithm benefits significantly from multicluster execution as well. The speedup graph of
Fig. 9 does indicate, however, that scaling up to even larger CPU counts (i.e., 200 CPUs or
more) may not provide further benefits.

6 Conclusions and Future Work

In this paper we have applied a wide-area data parallelization approach to two well-known end-
member extraction algorithms for hyperspectral unmixing. The considered parallel algorithms,
which are representative of a class of fine-grained, tightly-coupled, data parallel regular domain
problems, have been tested on a real-world distributed and homogeneous multicluster system,
a.o. using a dedicated wide-area optical interconnect. Through experimental evaluation, we have
indicated the feasibility of the applied approach.

An important feature of the presented work is that the parallel algorithms were not changed
and no further implementation efforts were needed. This means that the parallel implementations
of the algorithms were previously developed (for MPI clusters) and now adapted to multicluster
environments. As a result, the proposed methodology is easy to apply to already available
algorithms, which reduces complexity and increases standardization.

We believe that the presented results are important in hyperspectral imaging for several
reasons. First, for many hyperspectral imaging applications it may become feasible to scale
up to much larger processor counts than can be provided by a single compute cluster (this
performance increase may even come at no cost, since free access to clusters is widely available).
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Also, for time-critical applications it will become possible to scale up to problem sizes that better
match the specific data analysis problems at hand. Moreover, when available cluster systems are
heavily used by others, wide-area data parallel execution may well be the only way to perform
realistic experiments.

The presented work is part of a much larger strive to bring the benefits of high-performance
and distributed computing to the hyperspectral imaging community. Future work will therefore
include the integrated use of state-of-the-art many-core technologies (e.g., Graphics Processing
Units, or GPUs) in single- and multicluster execution scenarios, as will be possible with—
for example— the state-of-the-art DAS-4 system (http://www.cs.vu.nl/das4/). We also aim
to expand our earlier work on hyperspectral imaging for heterogeneous cluster systems to
multi-cluster environments. One immediate possibility would be to make use of HeteroMPI
(http://hcl.ucd.ie/project/HeteroMPI), a parallel programming library which can automatically
balance the load in heterogeneous execution settings. Alternative solutions could come from
techniques that partition the input data structures in a dynamic fashion, either relative to the
(known) clock-speeds of the participating nodes, or based on problem-specific performance
models. Finally, another important future research direction is the consideration of MPI-2
parallel I/O functionality and other collective operations that could speed up several steps of the
considered parallel algorithms.
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