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Abstract Hyperspectral imaging is an active area of re-
search in Earth and planetary observation. One of the most
important techniques for analyzing hyperspectral images is
spectral unmixing, in which mixed pixels (resulting from in-
sufficient spatial resolution of the imaging sensor) are de-
composed into a collection of spectrally pure constituent
spectra, called endmembers weighted by their correspondent
fractions, or abundances. Over the last years, several algo-
rithms have been developed for automatic endmember ex-
traction. Many of them assume that the images contain at
least one pure spectral signature for each distinct material.
However, this assumption is usually not valid due to spa-
tial resolution, mixing phenomena, and other considerations.
A recent trend in the hyperspectral imaging community is to
design endmember identification algorithms which do not
assume the presence of pure pixels. Despite the prolifera-
tion of this kind of algorithms, many of which are based on
minimum enclosing simplex concepts, a rigorous quantita-
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tive and comparative assessment is not yet available. In this
paper, we provide a comparative analysis of endmember ex-
traction algorithms without the pure pixel assumption. In our
experiments we use synthetic hyperspectral data sets (con-
structed using fractals) and real hyperspectral scenes col-
lected by NASA’s Jet Propulsion Laboratory.

Keywords Hyperspectral imaging - Endmember
extraction - Spectral unmixing - Minimum enclosing
simplex

1 Introduction

Hyperspectral imaging has been transformed from a sparse
research tool into a commodity product available to a broad
user community [1]. The wealth of spectral information
available from advanced hyperspectral imaging instruments
currently in operation has opened new perspectives in many
application domains, such as monitoring of environmen-
tal and urban processes or risk prevention and response,
including—among others—tracking wildfires, detecting bi-
ological threats, and monitoring oil spills and other types
of chemical contamination. Advanced hyperspectral instru-
ments such as NASA’s Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) [2] are now able to cover the wave-
length region from 0.4 to 2.5 um using more than 200 spec-
tral channels, at nominal spectral resolution of 10 nm.

In hyperspectral imaging, endmember extraction is the
process of selecting a collection of pure signature spectra
of the materials present in a remotely sensed hyperspectral
scene. These pure signatures are then used to decompose the
scene into a set of so-called abundance fractions by means
of a spectral unmixing algorithm. Most techniques available

@ Springer


mailto:jplaza@unex.es
mailto:gamahefpi@unex.es
mailto:aplaza@unex.es
mailto:Eligius.Hendrix@wur.nl
mailto:igarcia@ual.es

164

J Math Imaging Vis (2012) 42:163-175

in endmember extraction literature have been designed un-
der the pure pixel assumption, i.e., they assume that the in-
put hyperspectral data set contains at least one pure observa-
tion for each distinct material present in the collected scene,
and therefore a search procedure aimed at finding the most
spectrally pure signatures in the input scene is correct [3].
Techniques include, among many others [4], the orthogonal
subspace projection (OSP) algorithm [5], the N-FINDR al-
gorithm [6], a vertex component analysis (VCA) [7], the it-
erative error analysis (IEA) [8], and other approaches based
on mathematical morphology [9] and lattice auto-associative
memories [10, 11]. Maximum volume techniques, of which
N-FINDR is a representative algorithm, have found wide ac-
ceptance in the community [12]. This technique looks for
the set of pixels filling the largest possible volume by inflat-
ing a simplex inside the data.

Although the procedure adopted by N-FINDR has been
quite successful when pure pixels are present in the original
hyperspectral image, given the spatial resolution of state-of-
the-art imaging spectrometers and the presence of the mix-
ture phenomenon at different scales (even at microscopic
levels), this assumption is not true for many nowadays im-
ages where pixels are completely mixed [13]. In order to
deal with this important issue, other methods have been de-
veloped that do not assume the presence of pure signatures
in the input data. Instead, these methods aim at generating
virtual endmembers (not necessarily present in the set com-
prised by input data samples). Techniques in this category
include volume minimization approaches inspired by the
seminal minimum volume transform (MVT) algorithm [14],
such as the minimum volume constrained non-negative ma-
trix factorization method (MVC-NMF) [15], the minimum
volume simplex analysis (MVSA) algorithm [16], the con-
vex analysis-based minimum volume enclosing simplex al-
gorithm (MVES) [17], the simplex identification via split
augmented Lagrangian (SISAL) algorithm [18], or the iter-
ative constrained endmembers (ICE) [19].

Despite the proliferation of endmember identification al-
gorithms designed outside the pure pixel stream, available
algorithms have not been rigorously compared by using a
unified scheme. In this paper, we present a comparative
study of endmember selection algorithms without the pure
pixel assumption, using both simulated and real hyperspec-
tral data sets. The major contributions of this work are:
(1) the development of a framework and test set for ex-
perimental comparison of endmember selection algorithms
without the pure pixel assumption, and (2) an assessment of
the state of the art for endmember identification by drawing
comparisons between substantially different approaches to
the problem in rigorous fashion. The comparison includes
algorithms with and without the pure pixel assumption, in a
way that each method is fairly compared with others on the
same common ground. The investigation in this paper fol-
lows the path initiated in [3], but substantially expands the
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study by considering algorithms proposed in recent years
and which present significant innovations with regards to
methods designed under the pure pixel assumption. The lat-
ter category of algorithms may not be appropriate for an-
alyzing data sets provided by the new generation of hy-
perspectral imaging instruments, which continue increasing
their spectral resolution at the expense of maintaining (or
even decreasing) the spatial resolution in the hope of imag-
ing larger portions of the surface of the Earth.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the algorithms that will be compared in this
study. Section 3 presents the comparative framework, per-
formance criteria and test set, which comprises a database
of simulated data sets (which have been generated in this
work using fractals) and a real AVIRIS hyperspectral im-
age. In Sect. 4, a comparative performance analysis for the
algorithms described in Sect. 2 is presented and discussed.
Finally, Sect. 5 points out main concluding statements de-
rived from this paper and future research opportunities.

2 Endmember Identification Algorithms

In this section, we describe several endmember identifica-
tion algorithms designed under the linear mixture model as-
sumption. Let us denote the reflectance at channel i from a
given pixel of the original hyperspectral image as follows:

p
V=) pijetj + wi, (M
j=1

where p;; denotes the reflectance of endmember j at wave-
length A;, aj denotes the abundance of endmember j at the
considered pixel, and p is the number of endmembers. The
abundances are generally subject to the abundance sum-to-
one constraint (ASC) and the abundance non-negativity con-
straint (ANC):

aj >0, j=1,...,p. 2)

Let y; be an B x 1 vector, where B is the total number of
bands, and m; = [p1}, p2j, ..., ,oB.,']T be the spectral sig-
nature of the jth endmember. Expression (1) can then be
written in compact matrix form as:

Y=MS+W, 3)

where Y is a hyperspectral image made up of n pixel vec-
tors in total, defined as Y = [yq,...,y,] € REX". M =
[(my,my,...,m,] € RB*P is a matrix containing the sig-
natures of the endmembers present in the pixel. S =
e, ..., ;] € RP>*" is a matrix containing the fractional
abundances, and W € RB*" models additive noise. Several
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techniques have been adopted in the literature to estimate
the matrix of endmembers M by assuming the presence or
absence of pure pixels in the original hyperspectral data. In
the following, we describe the most relevant approaches in
each category.

2.1 Techniques Designed Under the Pure Pixel Assumption

These algorithms assume the presence in the original hy-
perspectral image of at least one pure pixel per endmember,
meaning that there is at least one pixel containing m; for
each endmember j being a vertex of the simplex encom-
passed by the data. Although this assumption enables the
design of efficient algorithms from a computational point of
view, it also imposes a requisite that may not hold in most
real analysis scenarios.

One of the most widely used algorithms that include the
pure pixel assumption is N-FINDR, which looks for the set
of pixels with the largest possible volume by inflating a sim-
plex inside the data. After a dimensionality reduction of the
original hyperspectral image from B to p — 1, where the
principal component analysis (PCA) [20] or the minimum
noise fraction (MNF) [21] can be used for this purpose, the
procedure begins with a random initial selection of pixels
from the original image (see Fig. 1(a)), which results in an
initial endmember matrix M. Every pixel in the image is
evaluated in order to refine the estimate of endmembers,
looking for the set of pixels that maximizes the volume of
the simplex defined by selected endmembers and calculated
as follows:

V(M)E;'det[l b 1}.
(p—1)! my mp --- mp

For every pixel the corresponding volume is checked if this
pixel replaces one of the endmember positions in matrix M.
If the replacement results in an increase of volume, the pixel
replaces the endmember. This procedure is repeated until
there are no more endmember replacements (see Fig. 1(b)).

“

Fig. 1 Graphical interpretation
of the N-FINDR algorithm in a
3-dimensional space
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(a) N-FINDR. initialized randomly (p = 4)

Another widely used approach is the OSP, which starts
by selecting the pixel vector with maximum length in the
scene as the first endmember. Then, it looks for the pixel
vector with the maximum absolute projection in the space
orthogonal to the space linearly spanned by the initial pixel,
and labels that pixel as the second endmember. A third end-
member is found by applying an orthogonal subspace pro-
jector [5] to the original image, where the signature that has
the maximum orthogonal projection in the space orthogonal
to the space linearly spanned by the first two endmembers.
This procedure is repeated until the number of endmembers,
p, has been reached [22].

The VCA algorithm also makes use of the concept of or-
thogonal subspace projections. However, as opposed to the
OSP algorithm, VCA exploits the fact that the endmembers
are the vertices of a simplex, and that the affine transforma-
tion of a simplex is also a simplex [7]. As a result, VCA uses
a positive cone, which projected on an appropriately chosen
hyperplane gives a simplex with vertices corresponding to
the endmembers. After projecting the data onto the selected
hyperplane, the VCA projects all image pixels to a random
direction and uses the pixel with the largest projection as
the first endmember. The other endmembers are identified
in sequence by iteratively projecting the data onto a direc-
tion orthogonal to the subspace spanned by the endmembers
already determined. The new endmember is then selected as
the pixel corresponding to the extreme projection, and the
procedure is repeated until a set of p endmembers is found.

Finally, the IEA algorithm implements a series of ASC
and ANC-constrained unmixing operations, each time
choosing as endmembers those pixels which minimize the
remaining reconstruction error in the unmixed image. Op-
tionally, each endmember can be averaged with the set of
pixel vectors which are within a certain spectral angle value
with regards to the extracted endmember. However, since
spectral averaging generally decreases signature purity, in
this work we have decided to use the IEA without spectral
averaging hence the algorithm falls within this category. As
a result, all the algorithms in the category that does not in-

(b) Final volume estimation by N-FINDR
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clude the pure pixel assumption (described below) are based
on minimum enclosing volume concepts.

2.2 Techniques Designed Without the Pure Pixel
Assumption

Most of the techniques in this category adopt a minimum
volume strategy aimed at finding the endmember matrix M
by minimizing the volume of the simplex defined by its
columns and containing the endmembers. This is a non-
convex optimization problem much harder than those con-
sidered in the previous subsection in which the endmembers
are assumed to belong to the input hyperspectral image.

Craig’s seminal work established the concepts regard-
ing the algorithms of minimum volume type. The MVSA
and SISAL algorithms implement a robust version of the
minimum volume concept. The robustness is introduced
by allowing the ANC to be violated. These violations are
weighted using a soft constraint given by the hinge loss
function (hinge(x) = 0 if x > 0 and —x if x < 0). After
reducing the dimensionality of the input data from B to
p—1, MVSA/SISAL aim at solving the following optimiza-
tion problem:

Q=arg max log(|det(Q)) — 1 hinge(QY)1, )
st: 17Q=qpu. (6)

where Q = M1 p and 1,, are column vectors of ones of
sizes p and n (n stands for the number of spectral vectors),
respectively, q,,, = IIT,Y;1 with Y, being any set of linearly
independent spectral vectors taken from the hyperspectral
data set Y, and X is a regularization parameter. Here, maxi-
mizing log(] det(Q)|) is equivalent to minimizing V (M).

The MVES algorithm aims at solving the optimization
problem (5) with A = o0, i.e., for hard ANC but without us-
ing a de-noising strategy prior to the data analysis. Instead,
MVES implements a cyclic minimization using linear pro-
gramming. Although the optimization problem (5) is non-
convex, it is proved in [17] that the existence of pure pixels
is a sufficient condition for MVES to perfectly identify the
true endmembers.

The MVC-NMF algorithm solves the following opti-
mization problem applied to the original data set, i.e., with-
out dimensionality reduction, as follows:

M =arg min

1
—IY = MS||% + AVZ(M
MelRMZII lx + M)

N
st:=M>0, S§>0, 1'S=1],

where ||A||%p = tr(ATA) is the Frobenius norm of matrix A
and A is a regularization parameter. The optimization (7)

minimizes a two term objective function, where the term
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a/2)1Y — MS||%; measures the approximation error and
the term V(M) measures the square of the volume of the
simplex defined by the columns of M. The regularization
parameter A controls the tradeoff between the reconstruc-
tion errors and simplex volumes. MVC-NMF implements
a sequence of alternate minimizations with respect to S
(quadratic programming problem) and with respect to M
(non-convex programming problem). The major difference
between MVC-NMF and MVSA/SISAL algorithms is that
the latter allows violations of the ANC, whereas the former
does not.

Finally, we have recently developed a new minimum vol-
ume enclosing algorithm called MINVEST [23]. This algo-
rithm adopts a hierarchical vision of the spectral unmixing
problem. First, it uses PCA to reduce the dimensionality of
the data from B to p — 1. Then, it minimizes the volume of
an enclosing simplex in the reduced space while estimating
the fractional abundance of vertices in simultaneous fash-
ion. Although the concept of MINVEST is similar to that of
other algorithms discussed in this section, a distinguishing
feature is that MINVEST takes care of noise by iteratively
identifying and removing pixels that fall outside the simplex
to be estimated.

2.3 IMustrative Example Without Pure Pixels

To conclude this section, we illustrate via a simple toy exam-
ple the potential advantages of algorithms without the pure
pixel assumption. For this purpose, we have generated a toy
data set made up of linear mixtures of three endmembers
(designated as ‘A’, ‘B’ and ‘C’, respectively) where the max-
imum degree of purity of any of the considered endmembers
in the available observations is given a maximum of 70% of
an endmember. The endmembers have been randomly se-
lected from a library of mineral spectral available online
from U.S. Geological Survey (USGS). The simulated data
set does not include any pure observations. A peculiarity of
this situation is that, although the pure signatures ‘A’, ‘B’
and ‘C’ have been used to create all the simulated mixtures,
the pure observations themselves (which can be considered
as ground-truth) are not included in the input data to be pro-
cessed. As aresult, finding p = 3 endmembers in this toy ex-
ample is a challenging problem. In this case, algorithms with
the pure pixel assumption (e.g., N-FINDR) tackle the prob-
lem by finding the best combination that can be formed us-
ing samples contained in the data set. Quite opposite, mini-
mum enclosing-based approaches (e.g., MINVEST) address
the problem by finding the simplex with minimum volume
that can enclose all the observations. The situation is graph-
ically illustrated in Fig. 2, which plots the outcome of the
endmember identification process by N-FINDR and MIN-
VEST in a two-dimensional space given by the first two
PCA components. As shown in Fig. 2, only MINVEST can
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Fig. 2 (Color online) (a) Two-dimensional representation of a toy data set without pure samples, and endmembers extracted by MINVEST (red)
and N-FINDR (green). (b) Coordinates of the endmembers and simplices defined by the endmembers extracted by MINVEST (red) and N-FINDR
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Fig. 3 Synthetic images, where spatial patterns were generated using fractals (/eff) then segmented into clusters (right)

successfully retrieve the endmembers (even if these are not
contained in the input data).

3 Framework, Test Set and Criteria
3.1 Synthetic Hyperspectral Data

A database of five 100 x 100-pixel synthetic hyperspectral
scenes has been created using fractals to generate distinct
spatial patterns, which are then used to simulate linear mix-
tures of a set of endmember signatures randomly selected
from a spectral library compiled by the U.S. Geological Sur-
vey (USGS)! and made up of a total of 420 spectral signa-
tures. The leftmost part of Fig. 3 displays the five fractal
images used in the simulations. These images are further
divided into a number of clusters using the k-means algo-
rithm in [24], where the number of clusters extracted from

Thttp://speclab.cr.usgs.gov/spectral-lib.html.

the five fractal images was always larger than the number of
endmember signatures, fixed in our experiments to p = 9.
The resulting clusters are displayed in the rightmost part of
Fig. 3. A crucial step in the simulation procedure is how to
assign a spectral signature to each cluster. For this purpose,
we have implemented an automatic procedure that follows a
simple strategy in which the p = 9 signatures are first as-
signed to spatially disjoint regions belonging to different
clusters. The remaining regions are then assigned spectral
signatures in an automatic way, ensuring that: (1) spatially
adjacent clusters always have different signatures associated
to them, and (2) there is a balance among the overall num-
ber of pixels in the image which are associated to each spec-
tral signature. Inside each region, the abundance proportions
of spectral signatures have been generated following a pro-
cedure that tries to imitate reality as much as possible, i.e.
those pixels closer to the borders of the regions are more
heavily mixed, while the pixels located at the center of the
regions are more spectrally pure in nature. This is accom-
plished by linearly mixing the signature associated to each
cluster with those associated to neighboring clusters, mak-
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Fig. 4 Block diagram
describing our procedure for
generating synthetic
hyperspectral images

Library of spectral signatures

 p—
v -

Reflectance

Clusters fractal 1

A-means clustering

/For each region:
1. Select a signature from the library
2. Assign the signature to the region
3. Signature abundance is not constant
inside the region (Gaussian filter):
- Purest signature at region center
- Signature purily decreased linearly
away (linear mixcing) from the center

Spatially adjacent regions have
different spectral signatures

ing sure that the most spectrally pure signature remains at
the center of the region while signature purity decreases lin-
early away from the center to the borders of the regions. For
this purpose, a Gaussian filter is applied where the width of
the Gaussian is carefully adjusted according to the width of
each window. With the aforementioned procedure, which is
graphically illustrated by a block diagram in Fig. 4, the sim-
ulated regions exhibit the following properties:

1. All the simulated pixels inside a region are mixed, and
the simulated image does not contain completely pure
pixels. This increases the complexity of the unmixing
problem and simulates the situation often encountered in
real-world analysis scenarios, in which completely pure
pixels are rarely found.

2. Pixels close to the borders of the region are more heavily
mixed than those in the center of the region.

3. If the simulated region is sufficiently large, the pixels lo-
cated at the center can exhibit a degree of purity of 99%
of a certain endmember. However, if the size of the simu-
lated region is small, the degree of purity of pixels at the
center of the region can decrease until 95% of a certain
endmember, while pixels located in the region borders
are generally more heavily mixed.

To conclude the simulation process, zero-mean Gaussian
noise was added to the scenes in different signal to noise
ratios (SNRs)—from 30 to 110—to simulate contributions
from ambient and instrumental sources, following the proce-
dure described in [5]. For illustrative purposes, Fig. 5 shows
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the spectra of the USGS signatures used in the simulation of
one of the synthetic scenes (the one labeled as “Fractal 1”
in Fig. 3). The full database of simulated hyperspectral im-
ages is available online.” The abundance maps associated to
each reference USGS signature in the construction of the
synthetic scene are also displayed in Fig. 5, where black
color indicates 0% abundance of the corresponding mineral,
white color indicates 100% abundance of the mineral, and
the fractional abundances in each pixel of the scene sum to
unity, thus ensuring that the simulated fractal images strictly
adhere to a fully constrained linear mixture model.

Finally, we emphasize that other methods exist for perfor-
mance evaluation of endmember extraction and hyperspec-
tral imaging algorithms using synthetic hyperspectral im-
ages. Of particular relevance is a Matlab toolbox (available
online®) for generating synthetic endmember abundances
using random fields and Legendre polynomials [25].

3.2 Real Hyperspectral Data

The real hyperspectral data set used in our experiments is the
well-known AVIRIS Cuprite data set, available online in re-
flectance units* after atmospheric correction. This scene has

Zhttp://www.umbc.edu/rssipl/people/aplaza/fractals.zip.

3http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_
Synthesis_tools_for MATLAB.

“4http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
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Fig. 5 USGS library signatures (fop) and fractional abundance distributions (boftom) considered for generating the simulated hyperspectral scene

labeled as “Fractal 1” in experiments

been widely used to validate the performance of endmember
extraction algorithms. The portion used in our experiments
corresponds to a 150 x 150-pixel subset of the image sec-
tor labeled as f970619t01p02_r02_sc03.a.rfl in the online
data, which were collected in 1997. The scene comprises
224 spectral bands between 0.4 and 2.5 pwm, with full width
at half maximum of 10 nm and spatial resolution of 20 me-
ters per pixel. Prior to the analysis, several bands were re-
moved due to water absorption and low SNR in those bands,
leaving a total of 192 reflectance channels to be used in the
experiments. The Cuprite site is well understood mineralog-
ically [26], and has several exposed minerals of interest in-
cluded in a spectral library compiled by the U.S. Geological
Survey (USGS).?

3.3 Performance Criteria

We describe two criteria that can be used in the comparison
of the performance of endmember extraction and spectral
unmixing algorithms in the synthetic fractal and real scenes.
The first metric is the spectral angle (SA) [27] between each
extracted endmember and the available USGS ground-truth

Shttp://speclab.cr.usgs.gov/spectral-lib.html.

spectral signatures. This metric is equivalent to the abso-
lute value of correlation. Low SA scores mean high spectral
similarity between the compared vectors (the value range
of SA is [0, 90] degrees). This spectral similarity measure
is invariant under the multiplication of pixel vectors by con-
stants and, consequently, is invariant to unknown multiplica-
tive scalings that may arise due to differences in illumination
and angular orientation. The SA allows us to identify the
USGS signature which is most similar to each endmember
by observing the minimum SA distance reported for such
endmember across the entire set of available USGS signa-
tures using the following spectral similarity matching algo-
rithm. Let us denote by M = [my, my, ..., m,] the set of p
endmembers extracted by a certain algorithm from a hyper-
spectral scene, and let G = [g1, g, ..., g;] denote a set of
ground-truth spectral signatures. Note that the number of ex-
tracted endmembers, p, might be different from the number
of available ground-truth signatures, g. With this in mind,
we can establish the correspondence between ground-truth
endmembers in set G and the endmembers obtained from
the image data in set M as follows:

1. Initialization. Label all endmembers in sets G and M as
‘unmatched.’

@ Springer
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Table 1 Average spectral similarity scores (in degrees) between the USGS mineral spectra and their corresponding endmember pixels produced
by several endmember extraction algorithms across the five synthetic scenes in Fig. 3

Algorithm SNR =30 SNR =50 SNR =70 SNR =90 SNR =110 SNR =00
IEA 2.087 0.460 0.349 0.342 0.342 0.342
N-FINDR 2.089 0.464 0.384 0.389 0.362 0.362
OSP 2.118 0.452 0.350 0.361 0.345 0.365
VCA 2.188 0.520 0.368 0.434 0.436 0.400
MINVEST 7.477 1.221 0.228 0.149 0.164 0.162
MVC-NMF 1.558 0.384 0.383 0.351 0.374 0.316
MVES 12.569 1.436 0.279 0.085 0.042 0.108
MVSA 15.256 1.365 0.130 0.028 0.024 0.024
SISAL 12.754 1.256 0.206 0.142 0.212 0.154

2. Matching. For each unmatched endmember in set G, cal-
culate the SA between such endmember and all end-
members in the set M. If a certain pair {m;, g j}, with
l<i<pand 1 <j<gq, results in the minimum ob-
tained value of SA(m;, g;) after comparing all possible
combinations of endmembers across the two sets, then la-
bel the associated endmembers, m; and g ; as ‘matched.’

3. Iterative procedure and termination. Each time a pair of
endmembers {m;, g j} has been ‘matched’, the endmem-
ber m; is removed from the set M and the endmember g j
is removed from the set G. Once these endmembers have
been removed, the process is repeated from step 2 until
all endmembers in set G have been labeled as ‘matched.’

A second criterion to measure the goodness of the recon-
struction is the root mean square error (RMSE) between the
original and the reconstructed hyperspectral scene. Let us
assume that Y is the original hyperspectral image, and that Y
is a reconstructed version of Y, obtained using (3) with a set
of endmembers M, automatically derived by a certain algo-
rithm from the original scene, and their corresponding frac-
tional abundances. Let us also assume that the pixel vector
y; in the original image is given by y; = [y1;, ¥2j, ..., Y81,
while the corresponding pixel vector in the reconstructed hy-
perspectral scene is given by ¥; = [J1;, 2;, ..., ¥B;1, with
j=1,..., p. With the above notation in mind, the RMSE
between the original and the reconstructed hyperspectral
scenes can be calculated as follows:

1

2

o118 .
RMSE(Y, ¥) = - > | 5 i =3l | ®)
i=1 j=1

It should be noted that the RMSE metric is based on the
assumption that a set of high-quality endmembers may al-
low reconstruction of the original hyperspectral scene with
higher precision than a set of low-quality endmembers, re-
gardless of the presence of such endmembers in the original
scene or not.

@ Springer

4 Comparison of Algorithms

The exact algorithms to be compared are described first in
Sect. 4.1. This is followed by the performance compari-
son on the synthetic data in Sect. 4.2 and on the real data
(Sect. 4.3).

4.1 Algorithms Used in Our Comparison

The algorithms selected for demonstration purposes com-
prise four endmember extraction algorithms which assume
the presence of pure pixels in the scene (IEA, N-FINDR,
OSP and VCA) and five endmember identification algo-
rithms which do not assume the presence of pure pixels in
the input scene (MINVEST, MVC-NMF, MVES, MVSA
and SISAL). The Matlab codes of MVC-NMF, MVES,
MVSA, SISAL and VCA have been obtained from the al-
gorithm developers, while the other algorithms have been
carefully implemented by us according to the original de-
scriptions available in the literature and with the recom-
mended parameter settings in each case. Specifically, our
Matlab implementations of N-FINDR, OSP and IEA algo-
rithms are available online.® The Matlab implementations of
MINVEST,” MVSA,® SISAL,” and VCA!? are also avail-
able.

4.2 Experiments with Synthetic Data

Table 1 shows the average spectral similarity scores (in de-
grees) between the reference USGS mineral spectra and
their corresponding endmember pixels produced by several

Shttp://www.umbc.edu/rssipl/people/aplaza/codes.zip.
http://www.umbc.edu/rssipl/people/aplaza/minvest.zip.
8http://www.Ix.it.pt/~bioucas/code/mvsa_demo.zip.
http://www.lx.it.pt/~bioucas/code/sisal_demo.zip.

Ohttp://www.Ix.it.pt/~bioucas/code/demo_vca.zip.


http://www.umbc.edu/rssipl/people/aplaza/codes.zip
http://www.umbc.edu/rssipl/people/aplaza/minvest.zip
http://www.lx.it.pt/~bioucas/code/mvsa_demo.zip
http://www.lx.it.pt/~bioucas/code/sisal_demo.zip
http://www.lx.it.pt/~bioucas/code/demo_vca.zip
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Table 2 Average RMSE scores after reconstructing the five synthetic scenes in Fig. 3 using the extracted endmembers

Algorithm SNR =30 SNR =50 SNR =70 SNR =90 SNR =110 SNR = oo
IEA 0.3566 0.0398 0.0107 0.0088 0.0087 0.0087
N-FINDR 0.3563 0.0392 0.0095 0.0075 0.0080 0.0080
OSP 0.3590 0.0394 0.0100 0.0083 0.0088 0.0091
VCA 0.3692 0.0446 0.0171 0.0217 0.0187 0.0106
MINVEST 0.2982 0.0364 0.0041 0.0009 0.0008 0.0008
MVC-NMF 0.3268 0.0345 0.0190 0.0124 0.0135 0.0125
MVES 0.2968 0.0296 0.0029 0.0005 0.0004 0.0004
MVSA 0.2963 0.0296 0.0030 0.0005 0.0004 0.0004
SISAL 0.2969 0.0297 0.0023 0.0005 0.0004 0.0004

endmember identification algorithms, across the five syn-
thetic scenes in Fig. 3. As a result, each value reported in
Table 1 corresponds to the average SA obtained after pro-
cessing the five considered scenes with the same SNR (five
different SNR values, ranging from 30 to 110, together with
the no-noise scenario are reported in the table). In all cases,
the number of endmembers to be detected was setto p =9
which is the number of different spectral signatures used to
simulate each scene.

Table 1 reveals that, as expected, under extremely high
noise conditions (SNR < 30) the algorithms which assume
the presence of pure pixels in the original image outperform
those without the pure pixel assumption. This is because ex-
treme noise can significantly affect the construction of the
minimum enclosing simplex, thus resulting in endmembers
which are far away from the actual pixel observations. In
this particular scenario, the MVC-NMF provides a better
characterization of noise by violating the ANC, which al-
lows for the identification of endmembers which are closer
to the actual observations. For SNR = 50 all algorithms pro-
vide very similar spectral angle values with regards to the
USGS reference spectra, i.e. within a range below 1.5° in
all cases. As the SNR is increased (e.g. SNR > 70) the al-
gorithms without the pure pixel assumption generally out-
perform the algorithms with the pure pixel assumption, with
both MVSA and SISAL providing the best spectral angle
similarity scores across all methods.

On the other hand, Table 2 displays the average RMSE
scores after reconstructing the five synthetic scenes in Fig. 3
using the endmembers extracted by several methods. The
table shows that, in most cases, the algorithms which do
not assume the existence of pure pixels outperform those
assuming the presence of pure pixels in the hyperspectral
image. For high noise condition (SNR < 30) the perfor-
mance of all algorithms is similar. However, even in this
scenario the algorithms without the pure pixel assumption
tend to perform slightly better than the algorithms with the
pure pixel assumption. As the SNR increases, algorithms

such as MVSA and SISAL (and also MVES) generally pro-
vide the best performance among the algorithms without the
pure pixel assumption, while MVC-NMF provides slightly
higher reconstruction errors. This is probably due to the fact
that MVC-NMF has less flexibility with constraints than
MVSA/SISAL have.

To conclude this subsection, we emphasize that the SNR
values observed in real hyperspectral imaging instruments
are ever-increasing, and hence the consideration of low SNR
values in our experiments should not be considered as in-
dicative of real parameter values in state of the art hyper-
spectral imaging instruments. Instead, we are testing our
algorithms under high noise conditions in order to evalu-
ate their sensitivity to this parameter. For instance, the SNR
in the AVIRIS sensor at the time of the acquisition of the
real hyperspectral image over the Cuprite mining district
in Nevada in 1997 was considerably higher than the val-
ues used in computer simulations: the highest SNR levels
calculated for a 50% reflectance target was measured in the
wavelength at 0.7 um to levels of SNR = 1000, while the
lowest was measured in the wavelength at 2.2 um with lev-
els of SNR = 400. In the following section, we conduct an
experiment with this real hyperspectral image.

4.3 Experiments with Real Data

In this subsection we report the RMSE scores after recon-
structing the AVIRIS Cuprite image using the endmembers
extracted by several methods. Due to the fact that the USGS
library spectra are acquired under different conditions as the
airborne data, we have decided to avoid SA-based compar-
isons in this subsection. This is because we consider that
the evaluation of the performance of the different algorithms
would be directly related with the quality of the atmospheric
correction algorithm applied to convert the at-sensor radi-
ance data into reflectance units. We did not have any control
on such algorithm since we directly used the reflectance data
available in AVIRIS website. Hence, we focus only on the
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use of the RMSE metric. In all our experiments, the num-
ber of endmembers to be identified was set to p =9 af-
ter the consensus reached between two of the most popu-
lar methods for estimating the number of endmembers in
hyperspectral data: HySime [28] and the VD concept [29],
implemented using Pr = 1073 as the input false alarm prob-
ability.

As shown in Table 3, the tendency of the results is simi-
lar to that of the experiments with synthetic scenes for mod-
erately high SNR values; the algorithms which assume the
presence of pure pixels in the image provide significantly
higher reconstruction errors than those without the pure
pixel assumption. For illustrative purposes, Fig. 6 shows the
error maps obtained after reconstructing the AVIRIS Cuprite
scene using p = 9 endmembers identified by different meth-
ods. As shown by Fig. 6, the algorithms with the pure pixel
assumption produce higher overall and specific reconstruc-
tion errors in certain areas (this is related to incorrectly se-

Table 3 Average RMSE scores after reconstructing the AVIRIS
Cuprite image using the extracted endmembers

Algorithm Average RMSE
IEA 0.1599
N-FINDR 0.1068
OSpP 0.4184
VCA 0.1007
MINVEST 0.0393
MVC-NMF 0.0403
MVES 0.0392
MVSA 0.0392
SISAL 0.0393

N-FINDR

MINVEST MVC-NMF

MVES

lected or missing endmembers for these areas). However,
the algorithms without the pure pixel assumption clearly
avoid these modeling errors at the reconstruction level, al-
though further studies should be conducted in order to ana-
lyze the physical interpretation of the endmembers derived
using such algorithms.

5 Conclusions and Future Research

Many endmember identification algorithms have been pro-
posed in the literature over the past decade in the context of
hyperspectral image analysis. Comparing these approaches
has been a challenging task due to a lack of rigorous crite-
ria to substantiate any new algorithm. This paper provides
a framework to evaluate algorithms consisting of a test set
of both simulated and real hyperspectral images and per-
formance criteria. Algorithms of two categories, based on
and not based on the pure pixel assumption are compared
within this framework. A comparison of methods has been
carried out from two different scopes. First, the issue was
undertaken under the assumption that reliable ground-truth
spectral signatures are available via synthetic hyperspec-
tral images. A further experiment was conducted using real
AVIRIS hyperspectral data and an image reconstruction-
based criterion. In both cases, we have observed that al-
gorithms without the pure pixel assumption generally out-
perform those methods in the other considered category, al-
though there is still an issue related with the quality of the
generated endmembers from the viewpoint of spectral sig-
nature quality (particularly when the hyperspectral data is
acquired under high noise conditions). However, given the
fact that the signal to noise ratios observed in hyperspec-

MVSA SISAL

Fig. 6 Errors measured for various endmember identification algorithms after reconstructing the AVIRIS Cuprite scene
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tral imaging instruments are ever-increasing, our compara-
tive study confirms that the recent change of trend in the
design of endmember identification algorithms may well be
associated to the superior quality of these algorithms under
moderate to low noise conditions.

Despite our effort to conduct a comprehensive, impartial,
and rigorous comparative analysis of various algorithms,
completion is not claimed. The designed framework leaves
space for further comparison of algorithms. The number of
algorithms based on the pure pixel assumption compared in
this work is four, while five methods are compared in the
category of algorithms without the pure pixel assumption.
All methods included in our study have been selected based
on their availability and on the fact that they represent very
different design alternatives. In contrast, the application of
the proposed comparative framework to a larger number of
real images with high-quality ground-truth data is required
in order to extrapolate the main conclusions drawn from
the present study. Although the spectral quality of the end-
members produced by the methods without the pure pixel
assumption has been shown to be appropriate in the syn-
thetic data experiments, further studies related to the phys-
ical meaning of the endmembers derived by such methods
from real hyperspectral data sets should be conducted.
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