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Abstract—Spectral unmixing is an important technique for hy-
perspectral data exploitation, in which a mixed spectral signature
is decomposed into a collection of spectrally pure constituent
spectra, called endmembers, and a set of correspondent fractions,
or abundances, that indicate the proportion of each endmember
present in the mixture. Over the last years, several algorithms
have been developed for automatic or semiautomatic endmember
extraction. Some available approaches assume that the input data
set contains at least one pure spectral signature for each distinct
material and further conduct a search for the most spectrally
pure signatures in the high-dimensional space spanned by the
hyperspectral data. Among these approaches, those aimed at max-
imizing the volume of the simplex that can be formed using avail-
able spectral signatures have found wide acceptance. However, the
presence of spectrally pure constituents is unlikely in remotely
sensed hyperspectral scenes due to spatial resolution, mixing phe-
nomena, and other considerations. In order to address this issue,
other available algorithms have been developed to generate virfual
endmembers (not necessarily present among the input data sam-
ples) by finding the simplex with minimum volume that encloses all
available observations. In this paper, we discuss maximum-volume
versus minimum-volume enclosing solutions and further develop a
novel algorithm in the latter category which incorporates the frac-
tional abundance estimation as an internal step of the endmember
searching process (i.e., it does not require an external method to
produce endmember fractional abundances). The method is based
on iteratively enclosing the observations in a lower dimensional
space and removing observations that are most likely not to be
enclosed by the simplex of the endmembers to be estimated. The
performance of the algorithm is investigated and compared to that
of other algorithms (with and without the pure pixel assumption)
using synthetic and real hyperspectral data sets collected by a
variety of hyperspectral imaging instruments.

Index Terms—Endmember extraction, fractional abundance
estimation, hyperspectral imaging, maximum-volume simplex,
minimum-volume enclosing simplex (MVES), spectral unmixing.
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I. INTRODUCTION

PECTRAL unmixing is an important tool for remotely
sensed hyperspectral data interpretation [1]. Due to the
available spatial resolution, most of the pixels (vectors) col-
lected by the latest generation imaging spectrometers such as
the National Aeronautics and Space Administration Jet Propul-
sion Laboratory’s Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) [2]—with a spatial resolution of 20 m per pixel
and 224 spectral bands comprised between 0.4 and 2.5 yym—are
mixed in nature [3]. Consider a hyperspectral scene with ¢ =
1,...,m spectral bands and k = 1, ..., m-dimensional pixel
vectors x modeled by
r=Fa+e (D)
where E = [e1,€e2,...,¢,] is an m X n matrix containing a
set of n pure spectral constituents (endmembers) and a is an
n-dimensional vector containing the fractional abundance of
each of the n endmembers in the pixel x. Finally, € is an m-
dimensional vector of white Gaussian noise with standard devi-
ation o. The final goal of an endmember extraction method is to
recover the matrix £ and the endmember fractional abundance
a for each observed pixel. To do so, usually, noise needs to
be minimized (in least squares fashion), and the volume of
the simplex spanned by the columns of matrix E should be
minimized [4]. Moreover, the abundances should be positive for
each entry in the m X r matrix of band observations (nonnega-
tivity constraint), and the sum of all endmember abundances in
a given pixel should add up to unity (sum-to-one constraint) [5].
The question is how to deal with least squares and minimum
volume in such a way that the estimation is unbiased, i.e., the
expected value of the estimator is the real value. When applying
the idea of least squares during the estimation procedure, we
encounter a first problem in the fact that, often, the number
of endmembers is not known in advance, and an external
technique is required for estimating this number [6], [7]. Also,
techniques based on principal component analysis (PCA) [8]
or maximum noise fraction [9] can be used for dimension
reduction. In other words, if we assume that n endmembers are
sufficient to characterize mixed pixels in the scene, the goal is to
discover an (n — 1)-dimensional subspace responsible for the
main variations, while the rest of the m-dimensional space can
be considered noise. It should be noted that several techniques
have been developed to automatically estimate the number
of endmembers n in practice. Examples include the virtual
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Fig. 1. Graphical interpretation of the N-FINDR maximum-volume estima-
tion algorithm in a 3-D space. (a) N-FINDR initialized randomly. (b) Final
volume estimation by N-FINDR.

dimensionality concept [6] or the hyperspectral subspace iden-
tification by minimum error [7].

Over the last years, several algorithms have also been devel-
oped for automatic or semiautomatic estimation of endmembers
in matrix £ by assuming that the input hyperspectral data set
contains at least one pure observation for each distinct material
present in the collected scene, and therefore, a search procedure
aimed at finding the most spectrally pure signatures in the input
scene is feasible [10]. Techniques include, among many others
[11], [12], the orthogonal subspace projection (OSP) algorithm
[13], the N-FINDR algorithm [4], the vertex component anal-
ysis (VCA) algorithm [14], and spatial-spectral approaches
such as the automatic morphological endmember extraction
(AMEE) [15], a spatial preprocessing (SPP) technique [16],
and a region-based SPP (RBSPP) technique [17]. Several other
techniques for endmember extraction and spectral unmixing
have been recently developed under the pure pixel assumption
[18]-[27]. Volume-inflating techniques, of which N-FINDR is
a representative algorithm, have found wide acceptance in the
community [28]. This technique looks for the set of pixels with
the largest possible volume by inflating a simplex inside the
data [29]. The procedure begins with a random initial selection
of pixel vectors [see Fig. 1(a)]. Every pixel must be evaluated
in order to refine the initial estimate of endmembers, looking
for the set of pixels that maximize the volume of the simplex
defined by selected endmembers. The corresponding volume
is calculated for every pixel in each endmember position by
replacing that endmember and finding the resulting volume.
If the replacement results in an increase of volume, the pixel
replaces the candidate endmember. This procedure is repeated
until no improvement is found [see Fig. 1(b)].

Although the procedure adopted by N-FINDR is successful if
pure pixels are present in the data, given the spatial resolution of
state-of-the-art imaging spectrometers and the presence of the
mixture phenomenon at different scales (even at microscopic
levels), this assumption may no longer be valid, and most of
the pixels may be mixed in nature. Other methods have been
developed for endmember extraction that do not assume the
presence of pure signatures in the input data. Instead, these
methods aim at generating virfual endmembers [30] (not nec-
essarily present in the set composed of input data samples and
most likely without physically meaningful spectral signatures)
by finding the simplex with minimum volume that encompasses
all observations. Techniques in this category include convex
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cone analysis [31], iterative constrained endmembers (ICEs)
[32], a sparsity-promoting version of this algorithm (SPICE)
[33], dependent component analysis [34], or optical real-time
adaptive spectral identification system [35]. The normal com-
positional model initially introduced in [36] has been shown
in [37] to have good unmixing properties when there are few
or no pure pixels in the image. Also included in this category
are volume minimization approaches inspired by the seminal
minimum-volume transform (MVT) algorithm [38], such as the
minimum-volume simplex analysis (MVSA) algorithm [39],
the convex-analysis-based minimum-volume enclosing simplex
(MVES) algorithm [40], or the minimum-volume constrained
nonnegative matrix factorization (MVC-NMF) method [41].
Other methods based on the NMF have been recently developed
for spectral unmixing purposes [42], [43].

Having n endmembers and the observed data set containing
sufficient (e.g., n — 1) points on each facet, the principle of
minimum-volume-based methods is that the vertices can be
inferred by seeking for the simplex with minimum volume to
which all the observed pixel vectors belong, without the need
for using real pixels as vertices. MVT-inspired algorithms can
first reduce the dimensionality of the input data frommton — 1
and then apply the aforementioned concept (in iterative fashion)
until a set of n endmembers has been derived. Once the (pos-
sibly virtual) endmembers have been derived, an abundance
estimation process usually follows in order to determine the
contribution of each endmember to each observed pixel. Several
MVT-based methods, however, perform endmember extraction
and abundance estimation simultaneously (e.g., MVC-NMF or
ICE). It should be noted that noise in hyperspectral imaging
instruments is relatively low. As a result, standard least squares
approaches such as the fully constrained linear spectral un-
mixing [5] have been widely used for abundance estimation.
However, these methods generally assume that pure spectral
signatures are available in the input data, which may not be
the case. To address this issue, the MVSA replaces the hard
constraints on the abundance fractions with a hinge-type loss
function [39] to account for outliers and noise. Other algorithms
such as MVC-NMF or SPICE use a weight to balance a least-
squares-related term and a volume-related term, which are
minimized into a single objective function.

In this paper, we present and investigate a new method for
endmember identification (called MINVEST) which follows
the MVT principle. First, it uses a dimensionality reduction
technique to bring the dimensionality of the data from m to
n — 1, and second, it minimizes the volume of an enclosing
simplex in the reduced space while estimating the fractional
abundance of vertices simultaneously. The novel feature of
MINVEST is that it takes care of noise by iteratively identi-
fying and removing pixels that fall outside the simplex to be
estimated. In addition, MINVEST estimates fractional abun-
dances during the endmember identification process. In other
words, the method does not require an external abundance
estimation module to produce fully constrained endmember
fractional abundances. This is a highly desirable feature in
techniques aimed at deriving virtual endmembers since the
spectral signatures associated to such endmembers often lack
physical interpretation [35] and, therefore, might not be feasible
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for an abundance estimation process such as the one conducted
under the assumption that pure pixels are present in the input
data. Recently, a similar approach has been developed using se-
quential linear programming to solve the MVES problem [40],
[44]. As will be shown, standard available nonlinear optimi-
zation algorithms can be used to solve the same problem.

The remainder of this paper is organized as follows.
Section II describes the method and its underlying principles.
Section III provides a detailed experimental assessment of the
performance of the method using a database of synthetic hyper-
spectral scenes generated using fractals and a real hyperspectral
data set collected by AVIRIS. In all cases, the performance is
compared to that of state-of-the-art techniques for endmember
extraction which assume the presence of pure pixels [OSP,
N-FINDR, VCA, spatial-spectral endmember extraction
(SSEE), AMEE, SPP, and RBSPP] and also to that of
techniques that do not incorporate such assumption (MVES
and MVSA). Section IV concludes with some remarks and
hints at plausible future research.

II. Minimum-Volume Simplicial Enclosure Method
A. Principle of Volume Reduction

Linear spectral unmixing methods [3] exploit the idea that
the observations = in m-dimensional space (m = 224 spectral
bands for the AVIRIS imaging spectrometer) are in reality com-
binations of only n endmembers. This means that observations
in the space E = {o = Fala € R",) . a; =1} C R™ can be
represented by points in V = {z = Vala € R",>,a, =1} C
R™~1 which is much lower in dimension, i.e., n < m, where
V =[vi,...,v,] is an (n — 1) x n matrix of the so-called
vertices v;. The transformation is based on some observations
from linear algebra and works as follows.

Let £~ be the matrix £~ = [eo —e1,e3 — €1,...,e, — €1].
Its columns span the linear space (E~) such that one can
writt Eas E = {z = e; + E~y|y € R"'}. More precisely, let
I" be a matrix where its columns form an orthonormal basis
of (E~). The number of columns of I" is equal to the rank
of (E~). The rank is n — 1 if the columns of E are affine
independent. This means that the space [E can be described as
E := {x = b+ T'd|d € R"'}, with b as an arbitrary given m-
vector in E and T' as an arbitrary m x (n — 1) orthonormal
matrix, such that (I') = (E~), i.e., its columns have length 1
and are orthogonal with respect to each other. Now, given a
choice for b and (I'), let the vertices v; be solutions of

Fvi:ei—b, i:l,...,n. (2)
Then, in matrix notation, we have E =TV + b17T, where 1
is the all-one vector of appropriate dimension. For each abun-
dance vector a (keep in mind that its elements sum to one),
we have a unique point x € E as well as z € V related as
r=FEa= TV +blT)a=Tz+b.

Two questions arise at this point: 1) What choices are conve-
nient for b and I'? and 2) what are the consequences for model
(1), which includes white noise, if we have such a vector b
and orthonormal basis matrix I'? To start with the latter, let us
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consider the so-called score vector z in (n — 1)-dimensional
space

z=Va+¢ 3)

where T'¢ is the projection of € on the space (I'). It can be de-
rived that ¢ is white noise. Due to I being orthonormal, I''T is
the unit matrix, and the projection leads to £ = (I'TT")~1T'Te =
T'Te. Notice that the variance—covariance matrix of £ is rrr,
i.e., the unit matrix. The relation of (3) with the original model

(1)is

(r—b)=Fa—-b+e=TIVa+e
=I'(Va+&)+(¢=Tz+( 4)

where ( is the projection of € on the orthoplement of (T'). So
in fact, € is decomposed into ¢ = I'¢ + (. The consequence
of these algebraic observations and the underlying stochastic
model is that, given a support vector b and matrix I, the original
model (1) in m-dimensional space reduces to model (3) in
(n — 1)-dimensional space. The observations X = [x1, ..., 2;]
that, without noise, would lay in the simplex constituted by the
so-called convex hull of E, conv(E) C E, have a one-to-one
relation with their representation Z = [z1, ..., 2] in simplex
S = conv (V). Given these observations, a desirable objective
is to find out the endmember representation V' and the original
endmember signals in F; this process is called endmember
identification.

In [41], a matrix factorization approach is used that simulta-
neously minimizes least squares and the simplex volume for
endmember generation. For volume reduction, it is good to
add a direction without variation to the principal components;
zero variation gives zero volume. In turn, the least squares
idea looks for directions with maximum variation. Miao and
Qi [41] use weights to deal with these two objectives. In
this paper, we follow a similar strategy based on estimating
the number of interior/exterior points by weighting these two
terms. Specifically, we investigate a procedure which takes a
hierarchical approach by first estimating the subspace E in
which the n endmembers are lying by means of PCA (a similar
approach was adopted in [45]).

The choice of using PCA means that space E = b+ (')
is estimated by taking b=7=(1/r) ,;x; and I'=C =
[c1,...y¢n-1] is an m X (n — 1) matrix of principal compo-
nents; we have the biggest variation in direction c1, the second
biggest in direction cq, etc. Following this procedure, the (un-
known) scores z, are estimated from observations x, by taking
2z, = (CTO)1CY (2 — T) = CT (2 — T). Then, the method
that we investigate minimizes (in that subspace) the volume of
the resulting simplex such that it encloses the scores zj, of the
observed bands of the pixels xj.

B. Principle of MVES

The problem of finding the MVES of a set of points z, k =
1,...,r in (n — 1)-dimensional space can be written as a so-
called nonlinear optimization problem [46] with (n — 1) x n
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variables ©¥;; and m X r constraints (nonnegativity) o as

follows:
m‘}in {f(V) = |det (1T }

1 ;
k

>

) (1)=0

k=1,...,r

. ®)

%<

subjectto :  ap = <

where 1 is the all-one vector. It is worth noting that the same
problem was formulated differently in [40] and [44]. Here,
problem (5) is written down from a nonlinear optimization
perspective, where nonnegativity and sum-to-one constraints
are explicitly defined in the expressions. General nonlinear
optimization codes (such as Matlab’s fmincon function used in
this work, conopt, minos, etc. [47]) are available to generate
an optimum solution for the problem (5) giving a starting matrix
V. They also provide information on the binding constraints
which, in this specific problem, determine which «;, has a
value of zero and, therefore, which pixels & are active, i.e., they
can be found on the boundary of simplex conv(V). In [46], it is
shown that this is a global optimization problem, i.e., there are
instances in which the problem has several local (nonglobal)
solutions. However, in all cases of applying a nonlinear op-
timization algorithm to an instance of spectral unmixing, the
optimum found has been a global minimum point. The initial
matrix determines which of the minimum points (permuta-
tion of vertices) are found. Hendrix et al. [46] also describe
the underlying combinatorial optimization problem aimed at
by the N-FINDR algorithm [4]; the volume of the simplex
is maximized (instead of minimized) by selecting n pixels
out of r.

As discussed before, problem (5) generates the exact end-
member matrix V in case all z;’s are convex combinations of
its columns and there is no noise. In practice, there is noise
and pixels z;, with an abundance of a;;, = 0 in model (3) may
be located outside S = conv(V). As simplex S = conv (V)
includes all z;’s, it is usually larger in volume than the simplex
S that we actually intend to estimate.

It should be noted that, in the specific case of remotely sensed
hyperspectral data, noise is generally low due to the very high
signal-to-noise ratio (SNR) achieved by instruments such as
AVIRIS [2]. In addition, pixels are generally well spread on the
boundary of the originating simplex, i.e., the high-dimensional
space defined by the hyperspectral data is mostly empty, with
most of the samples concentrated at the boundaries of S and
at the corners [48]. Finally, it is known that, in practice, a
mixed pixel consists of at most four to five constituents [6],
[49]. These observations are all quite important in this context
because, as soon as noise is added, one can approximate with
the probability theory the chance that a pixel lays outside S.

C. Counting Interior and Exterior Points

Following model (3), it is desirable to estimate how many
of the projected pixels z lay outside the simplex S. Given end-
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member matrix V/, linear constrained (sum-to-one) unmixing of
(3) results into an abundance estimator

=) ()= () 6 o

Here, vector a has a normal distribution with mean a. The
probability that a pixel lays within S is the probability that a
is nonnegative, i.e., the probability mass of random variable
a on the positive orthant. This exact probability is unpractical
to work with. The following reasoning gives a crude approx-
imation to the number of interior points which will be shown
to be effective in practice. Let a; = 0 for a pixel. As a; is
symmetric around zero, the probability that abundance value
a4 is negative is one-half. Notice that the components of a are
not stochastically independent. Let [V represent the number of
abundance values of a pixel that are zero, N =0,1,...,n — 1.
The probability that the observation a of the pixel is inside
the simplex S is approximated by py = (1/2)™. Notice that
we are dealing with the fact that low values of a; may yield
observations outside S. Therefore, it is relevant that, in practice,
noise is relatively low and positive abundance estimates are
obtained. The number P of observations z; located inside
simplex S that we want to estimate depends on the distribution
of zero abundance values over the pixels. Let 7y denote the
number of pixels that have N zero values such that > ry = 7.
The number of pixels inside .S is estimated by

n—

> rapw. (7)

P =

N=0
It is important to notice that, in an experimental setting using
synthetic data, the number ry is given by the construction of
the data. In other experiments, the abundance estimation results
obtained after using other endmember extraction methods can
provide approximations of either 7y or P.

D. Algorithmic Description: Endmember Extraction

As suggested in the previous section, the relevance of P
is that outer approximations S of S should in fact ignore the
r — P pixels outside S and enclose the P pixels that are located
in S. Now, the question is how to determine which ones are
inside S and which ones are outside. This consideration is
the basis of a new estimation algorithm, called MINVEST
and described in Algorithm 1. The idea is to base the final
estimate of endmembers on the P pixels that are expected
to be interior with respect to S. Iteratively, the endmembers
are estimated from the minimum-volume problem (5), and
the pixels at its boundary (i.e., those which have at least one
aj = 0) are removed until P is left over. As starting simplex,
one can take a random matrix or, for instance, the abundance
estimation result after applying another algorithm such as
N-FINDR. At this point, it is important to emphasize that such
initialization (according to our experiments) mainly affects the
computational efficiency of the algorithm but not the final
obtained result.
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After obtaining the estimate V of the endmembers, we can
estimate the abundance of all pixels. Corresponding to V', we

have for pixel z
Ao -1
. Vv z
=) () ®

The pixels located in the final set Z0 (geometrically within
simplex S) have automatically nonnegative abundance values
corresponding to o in (5). A remaining question at this point
is how to estimate the abundance for pixels outside S.

Algorithm 1: MINVEST

Inputs: Z: (n — 1) x r matrix of pixel scores

P: number of interior pixels
Output: V: (n — 1) X n matrix of endmember estimates
Funct MinVol estimator

1) Initialization: R :=r, Z0 := Z, generate starting sim-
plex 1%

2) while(R > P)

3) Generate V by solving (5) for Z0, former V is starting
value

4) remove pixels at boundary S = conv (V) from Z0, up-
date number of pixels to R = |Z0|

5) endwhile

E. Algorithmic Description: Abundance Estimation

Let us assume that pixel z is outside S. In this case, the pixel
has at least one a; < 0. Now, we can use the idea that the noise
¢ of z; is component-wise independent by projecting z on the
linear space of the facet of S close to z. Let IF be the space of a
facet containing p < n vertices called uq, ..., u,. If we define
matrix W = [wy, ..., wp_1] with w; = u; — u,, we can now
write

P P
F= y:Zajuj\Zaj =1
j=1 j=1

p—1
=qy=u+ Y djwld RV S =, + (W) (9)

j=1

The relation between the two representations is that, for an
abundance a having 25:1_ a; :.1 —a,=1- g;i a;j, one
can express the corresponding point y € F as

D p—1 p—1
y=> aju;=u,+ Y aj(u;—uy) =u,+ > aw;.
j=1 j=1 j=1

(10)
The projection of z on [F implies finding y being the minimum
point of

Y

. 2 . 2
min _ = min _ - W
yel]F ”Z y” ae]RL_l HZ Up aH
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with minimum point y = W(WTW)"'WT (2 — w,) and cor-
responding abundance
a=WW) "WT(z - up)

p—1
-1
a €RP""and a) = leaj.

j=1

(12)

An important choice to make at this point is which facet to
project on, i.e., which a;’s are zero and, correspondingly, their
v; is not considered in matrix U. Let J(a) = {j|a; > 0} be
the index set of positive values in a vector a. Algorithm 2
first determines a via (8), then selects the endmembers v; from
J(a) into matrix U, determines W, and finally calculates (12).
Although not often, it may occur that the result still contains
negative components. In this case, those components can be set
to zero, and (12) can be recalculated for the lower dimensional
facet until only positive abundance values are left.

Algorithm 2: Abundance estimation

Inputs: V: (n — 1) x n matrix of endmember scores
z: n — 1 vector of pixel scores

Outputs: a: nonnegative abundance vector

Funct Abundance

1) Initialization: determine a via (8)

2) while not all components (a; > 0)

3) forall j witha; <0, puta; := 0

4) forall j € J(a), put their v; in U

5) Construct W and determine values a; for j € J(a)

via (12)
6) endwhile

III. EXPERIMENTAL RESULTS
A. Synthetic Hyperspectral Data

A database of five 100 x 100-pixel synthetic hyperspectral
scenes has been created using fractals to generate distinct
spatial patterns, which are then used to simulate linear mixtures
of a set of endmember signatures selected from a spectral
library compiled by the U.S. Geological Survey (USGS)' and
made up of a total of 420 spectral signatures. The leftmost
part of Fig. 2 displays the five fractal images used in the
simulations. These images are further divided into a number of
clusters using the k-means algorithm in [50], where the number
of clusters extracted from the five fractal images was always
larger than the number of endmember signatures, fixed in our
experiments to n = 9. The resulting clusters are displayed in
the rightmost part of Fig. 2. A crucial step in the simulation
procedure is how to assign a spectral signature to each cluster.
For this purpose, we have implemented an automatic procedure
that follows a simple strategy, in which the n = 9 signatures
are first assigned to spatially disjoint regions belonging to
different clusters. The remaining regions are then assigned with

Uhttp://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 2. Synthetic images used in experiments, where spatial patterns were generated using (left) fractals and then segmented into (right) clusters.
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spectral signatures in an automatic way, ensuring the follow-
ing: 1) Spatially disjoint regions are associated with different
signatures, and 2) there is a balance in the overall number
of pixels in the image which are associated to each spectral
signature. Inside each region, the abundance proportions of
spectral signatures have been simulated following a procedure
that tries to imitate reality as much as possible, i.e., those pixels
closer to the borders of the regions are more heavily mixed,
while the pixels located at the center of the regions are more
spectrally pure in nature. For this purpose, a Gaussian filter is
applied, where the width of the Gaussian is carefully adjusted
according to the width of each window. With the aforemen-
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(Top) USGS library signatures and (bottom) fractional abundance distributions considered for generating the simulated hyperspectral scene labeled as

tioned procedure, the simulated regions exhibit the following
properties.

1) All the simulated pixels inside a region are mixed, and
the simulated image does not contain completely pure
pixels. This increases the complexity of the unmixing
problem and simulates the situation often encountered in
real-world analysis scenarios, in which completely pure
pixels are very rarely found.

2) The pixels close to the borders of the region are
more heavily mixed than those in the center of the
region.
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TABLE 1
AVERAGE SPECTRAL SIMILARITY SCORES (IN DEGREES) BETWEEN THE USGS MINERAL SPECTRA AND THEIR CORRESPONDING ENDMEMBER
PIXELS PRODUCED BY SEVERAL ENDMEMBER EXTRACTION ALGORITHMS ACROSS THE FIVE SYNTHETIC SCENES IN FIG. 2

Algorithm SNR=30:1 SNR=50:1 SNR=70:1 SNR=90:1 SNR=110:1 SNR= oo
N-FINDR 2.089 0.464 0.384 0.389 0.362 0.362
osp 2.118 0.452 0.350 0.361 0.345 0.364
VCA 2.188 0.520 0.368 0.434 0.436 0.400
SPP-N-FINDR 2.293 0.779 0.701 0.694 0.694 0.694
SPP-OSP 2.343 0.622 0.537 0.530 0.529 0.529
SPP-VCA 2.271 0.456 0.327 0.319 0.347 0.325
RBSPP-N-FINDR 2.175 0.875 0.676 0.787 0.804 0.785
RBSPP-OSP 2.227 0.764 1.021 1.089 1.034 0.898
RBSPP-VCA 1.033 0.686 0.678 0.809 0.715 0.669
AMEE 2.671 1.261 0.970 1.193 1.252 1.175
SSEE 2.125 1.078 0.576 0.723 0.646 0.475
MVSA 15.256 1.365 0.130 0.028 0.024 0.024
MVES 12.569 1.436 0.279 0.085 0.042 0.108
MINVEST 7.477 1.221 0.228 0.149 0.164 0.162
TABLE 11
AVERAGE RMSE SCORES AFTER RECONSTRUCTING THE FIVE SYNTHETIC SCENES IN
FIG. 2 USING THE ENDMEMBERS EXTRACTED BY SEVERAL METHODS

Algorithm SNR=30:1 SNR=50:1 SNR=70:1 SNR=90:1 SNR=110:1 SNR= o0
N-FINDR 0.356336 0.039180 0.009510 0.007453 0.008028 0.008029
OSpP 0.359041 0.039359 0.010022 0.008277 0.008843 0.009067
VCA 0.369223 0.044585 0.017149 0.021748 0.018675 0.010606
SPP-N-FINDR 0.359943 0.045030 0.017994 0.016252 0.016202 0.016201
SPP-OSP 0.368326 0.048540 0.016941 0.015210 0.015159 0.015158
SPP-VCA 0.368823 0.040922 0.011250 0.009823 0.009000 0.007831
RBSPP-N-FINDR 0.358208 0.049320 0.028065 0.026850 0.028388 0.026568
RBSPP-OSP 0.359748 0.055439 0.072980 0.054676 0.054219 0.043830
RBSPP-VCA 0.308590 0.048593 0.033052 0.043469 0.028862 0.025272
AMEE 0.627502 0.484898 0.468297 0.473804 0.484930 0.491231
SSEE 0.358918 0.135952 0.035355 0.066931 0.026965 0.046549
MVSA 0.296320 0.029640 0.002980 0.000513 0.000418 0.000418
MVES 0.296900 0.029720 0.003000 0.000514 0.000420 0.000419
MINVEST 0.298320 0.036460 0.004140 0.000858 0.000820 0.000800

3) If the simulated region is sufficiently large, the pixels
located at the center can exhibit a degree of purity of
99% of a certain endmember. However, if the size of the
simulated region is small, the degree of purity of pixels
at the center of the region can decrease until 95% of
a certain endmember, while pixels located in the region
borders are generally much more heavily mixed.

To conclude the simulation process, zero-mean Gaussian
noise was added to the scenes in different SNRs—from 30: 1
to 110: 1—to simulate contributions from ambient and instru-
mental sources. The procedure used to simulate different SNR
values in our experiments is the one described in [13]. For
illustrative purposes, Fig. 3 shows the spectra of the USGS
signatures used in the simulation of one of the synthetic
scenes (the one labeled as “Fractal 1” in Fig. 2). All the

simulated scenes are available online.> The abundance maps
associated to each reference USGS signature in the construc-
tion of the synthetic scene are also shown in Fig. 3, where
the black color indicates 0% abundance of the corresponding
mineral, the white color indicates 100% abundance of the
mineral, and the fractional abundances in each pixel of the
scene sum to unity, thus ensuring that the simulated fractal
images strictly adhere to a fully constrained linear mixture
model.

Several different metrics have been used to measure the per-
formance of endmember identification and spectral unmixing
algorithms in the synthetic fractal scenes. The first metric is the
spectral angle (SA) [51] between each extracted endmember

Zhttp://www.umbc.edu/rssipl/people/aplaza/fractals.zip
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TABLE 1II

AVERAGE RMSE SCORES BETWEEN THE GROUND-TRUTH AND THE ESTIMATED ABUNDANCE MAPS ACROSS THE FIVE SYNTHETIC
SCENES IN FIG. 2 FOR THE ENDMEMBER IDENTIFICATION METHODS WITHOUT THE PURE PIXEL ASSUMPTION

Algorithm SNR=30:1 SNR=50:1 SNR=70:1 SNR=90:1 SNR=110:1 SNR= oo

MVSA 0.111385 0.021149 0.002337 0.000432 0.000356 0.000211

MVES 0.114632 0.026371 0.008103 0.001695 0.000996 0.000347

MINVEST 0.090770 0.034890 0.006671 0.005447 0.006926 0.006782
TABLE 1V

AVERAGE RMSE SCORES BETWEEN THE GROUND-TRUTH ENDMEMBERS AND THE ENDMEMBER SIGNATURES IDENTIFIED BY
ALGORITHMS WITHOUT THE PURE PIXEL ASSUMPTION ACROSS THE FIVE SYNTHETIC SCENES IN FIG. 2
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Algorithm SNR=30:1 SNR=50:1 SNR=70:1 SNR=90:1 SNR=110:1 SNR= oo
MVSA 0.159665 0.018010 0.001808 0.000366 0.000311 0.000131
MVES 0.146744 0.020800 0.004128 0.001099 0.000520 0.000302
MINVEST 0.092180 0.015617 0.003691 0.002686 0.002624 0.002601
TABLE V TABLE VI

NUMBER OF INTERIOR PIXELS P FOR EACH OF THE
FIVE SYNTHETIC SCENES IN FIG. 2

Fractal 1 Fractal 2 Fractal 3 Fractal 4 Fractal 5
311 291 305 545 550
8
— 7 1
$ -5~ SNR=110:1
B ¢
3 /-~ SNR=90:1
T e
8 -5 SNR=70:1
Q
2 @ —¥- SNR=50:1
<
4 3 ~- SNR=30:1
1)
P e———k— 2 = —¢
1
0 = = ] ] ] ] [
| P-25%P | P-10%P | P-5%P | P |P+5%P |P+10%P P+25%P|

Number of interior pixels

Fig. 4. Analysis of the sensitivity of MINVEST to the number of interior
pixels using the average SA (across the five synthetic scenes in Fig. 2) as the
performance metric.

and the set of available USGS ground-truth spectral signatures.
Low SA scores mean high spectral similarity between the
compared vectors (the value range of SA is [0, 90] degrees).
This spectral similarity measure is invariant under the multi-
plication of pixel vectors by constants and, consequently, is
invariant to unknown multiplicative scaling that may arise due
to differences in illumination. The SA allows identification
of the USGS signature most similar to each endmember by
looking for the minimum SA distance between the endmember
and USGS signature among the entire set.

The second metric to evaluate the goodness of the recon-
struction is the root-mean-square error (rmse) between the
original and the reconstructed hyperspectral scene [16]. Let I
be the synthetic hyperspectral scene and I be a reconstructed
version of I. Specifically, the pixel vector at spatial coor-
dinates (7,7) in the original hyperspectral scene is I(4,7) =

RMSE SCORES AFTER RECONSTRUCTING THE AVIRIS CUPRITE IMAGE
USING THE ENDMEMBERS EXTRACTED BY SEVERAL METHODS

Algorithm Average RMSE

N-FINDR 0.1068

osp 0.4184

VCA 0.1007

SPP-N-FINDR 0.0951

SPP-OSP 0.1248

SPP-VCA 0.2229

RBSPP-N-FINDR 0.1024

RBSPP-OSP 0.1416

RBSPP-VCA 0.1065

AMEE 0.1916

SSEE 0.1272

MVSA 0.0389

MVES 0.0392

MINVEST 0.0393
[€1(%,7),x2(4,7), ..., 2m(i,7)], and the corresponding pixel
vector at the same spatial coordinates in the reconstructed hy-
perspectral scene is I(4,7) = [#1(¢,5), £2(4, 7). ., Tm (4, 5)]-

The rmse between the original and reconstructed hyperspectral
scenes is calculated as follows:

2

. 1 s 1 1 m
rmse(I, 1) = -y ;; — ; (zx(i,§) — 2x(i, 7))
‘ (13)

where s x [ is the number of pixels in the hyperspectral im-
age. It should be noted that the rmse metric is based on the
assumption that a set of high-quality endmembers may allow
reconstruction of the synthetic hyperspectral scene with higher
precision than a set of low-quality endmembers, regardless
of the presence of such endmembers in the original scene.
Finally, other performance metrics used in our experiments
with synthetic scenes are the rmse between the ground-truth
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Fig. 5.

abundance maps and the abundances estimated after applying
the different endmember identification methods, and the rmse
between the ground-truth endmembers and the endmember
signatures identified by different methods.

The algorithms selected for comparative purposes comprise
three spectral-based techniques which assume the presence
of pure pixels in the scene (N-FINDR [4], OSP [13], and
VCA [14]), an SPP technique which can be combined with
spectral-based algorithms designed under the pure pixel as-
sumption (SPP [16]), an RBSPP technique which can also be
combined with spectral-based algorithms (RBSPP [17]), two
spatial-spectral techniques based on the pure pixel assumption
(AMEE [15] and SSEE [52]); two endmember identification
algorithms which do not assume the presence of pure pixels
in the input scene (MVSA [39] and MVES [41]), and the pre-
sented MINVEST algorithm. For the nonlinear optimization in
MINVEST, the fmincon solver of Matlab 7.5.0342 (R2007b)
was used. Matlab codes of both MVSA and MVES have been
provided by the algorithm developers. The other algorithms

Fractional abundance maps obtained for the AVIRIS Cuprite image by MVSA.

have been implemented according to the original descriptions
available in the literature.

Table T shows the average spectral similarity scores (in
degrees) between the reference USGS mineral spectra and their
corresponding endmember pixels produced by the endmember
identification algorithms, across the five synthetic scenes in
Fig. 2. As a result, each value in Table I is the average SA
obtained after processing the five considered scenes with the
same SNR (five different SNR values, ranging from 30:1
to 110: 1, are reported in the table). Numerical results from
Table I show that, for SNR > 50 : 1, algorithms which do not
assume the existence of pure pixels outperform those assuming
the presence of pure pixels in the hyperspectral image. How-
ever, for noisy data (SNR <= 50 : 1, which is far away from
current sensor specifications in terms of SNR [2]), methods
based on SPP perform better. As shown in Table I, for low
SNR values, all methods which do not assume the presence
of pure pixels in the data exhibit poor performance in terms
of the SA.
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Fig. 6. Fractional abundance maps obtained for the AVIRIS Cuprite image by MVES.

On the other hand, Table II reports the reconstruction rmse
between the original and the reconstructed versions of the
synthetic scenes in Fig. 2, obtained using the endmembers
extracted by several methods. As show in Table II, the methods
without the pure pixel assumption outperform those methods
which assume the existence of pure pixels, even in noisy anal-
ysis scenarios. In order to further substantiate the performance
of endmember identification algorithms without the pure pixel
assumption, Table III shows the rmse between the ground-
truth and the estimated abundance maps obtained for these
methods, while Table IV shows the rmse between the ground-
truth endmembers and the endmember signatures identified by
the same methods. As shown in Table III, MINVEST can only
outperform the other tested methods in low SNR conditions
(SNR <=30:1), while for the other SNR cases, MVSA
provides the best scores of rmse in abundance estimation.
On the other hand, Table IV provides similar observations,
with MINVEST outperforming the other tested methods for
SNR <= 50: 1.

At this point, it is important to emphasize that we have
also analyzed the statistical significance of the improvements
achieved by the algorithms without the pure pixel assumption
(in terms of the considered performance metrics) by repeating
the random noise generation step 50 times for each simulated
fractal scene and SNR level and calculated the mean values
(reported in Tables II-IV) and the standard deviation of the
obtained results. The standard deviations, which do not vary
significantly for the different tested methods, are not displayed
in the tables for better visualization of the results. However,
we have observed that the standard deviation in the measured
values across the 50 runs is always at least 10 times smaller than
the mean value. This indicates that the measured values for all
the considered metrics do not deviate significantly from their
mean; hence, the reported improvements can be considered
statistically significant.

To conclude this section, we describe an experiment ana-
lyzing the sensitivity of MINVEST to the number of interior
pixels P, which is an input parameter for the algorithm. Table V
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Fig. 7. Fractional abundance maps obtained for the AVIRIS Cuprite image by MINVEST.

shows the estimated values of P for each of the five synthetic
hyperspectral images considered in our experiments. It should
be noted that, for each synthetic data set, the distribution 7
is known from the ground truth and can be used to derive an
estimate of P. On the other hand, Fig. 4 shows the plot of the
average spectral similarity scores obtained by MINVEST for
the synthetic scenes when the number of interior pixels was set
to the optimal value (denoted by P in Fig. 4) and to values that
deviate 5%, 10%, and 25% above or below such optimal value.
As indicated in Fig. 4, the average SA scores remain almost
identical for all considered SNR values regardless of the choice
of the number of interior pixels. This experiment indicates that
the final estimation is not sensitive to the actual value of P,
i.e., removing or not removing many points hardly influences
the resulting simplex if data are well spread. Similar results
were obtained for the other considered performance metrics,
and therefore, these results are not reported here for space
considerations.

B. Real Hyperspectral Data

This experiment uses the well-known AVIRIS Cuprite data
set, available online in reflectance units® after atmospheric
correction. This scene has been widely used to investigate the
performance of endmember extraction algorithms. The portion
used in experiments corresponds to a 150 x 150-pixel subset
of the sector labeled as f970619t01p02_r02_sc03.a.rfl in the
online data. The scene comprises 224 spectral bands between
0.4 and 2.5 pm, with full-width at half-maximum of 10 nm
and spatial resolution of 20 m per pixel. Prior to the analysis,
several bands were removed due to water absorption and low
SNR in those bands, leaving a total of 192 reflectance chan-
nels to be used in the experiments. The Cuprite site is well
understood mineralogically [53], [54] and has several exposed

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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minerals of interest included in a spectral library compiled by
the USGS.*

Table VI shows the rmse scores after reconstructing the
AVIRIS Cuprite image using the endmembers extracted by
different methods. In all cases, the number of endmembers was
set to n = 9 using the virtual dimensionality concept [6]. For
the MINVEST method, the value for the number of interior
pixels was set empirically to P = 2810 from the distribution
of zeros over the pixels after analyzing the outcome of the
N-FINDR algorithm applied to the data. The tendency of the
results is similar to that of the experiments with synthetic
scenes; the algorithms which assume the presence of pure
pixels in the image provide higher reconstruction errors than the
three considered algorithms without the pure pixel assumption,
which provide similar results.

Figs. 5-7 show the fully constrained fractional abundance
maps estimated by MVSA, MVES, and MINVEST, respec-
tively. Compared to the published geologic maps [55], these
estimations present a high level of similarity. Given the spatial
resolution of 20 m per pixel, it is reasonable to assume that
most of the pixels in the AVIRIS Cuprite scene are made up
of several different constituents. In this regard, the fractional
abundance estimations provided by MVSA, MVES, and MIN-
VEST seem realistic since most of the mineral maps do not
indicate the presence of completely pure instances of minerals
across the pixels of the scene. A visual assessment of the maps
in Figs. 5-7 reveals that some endmembers are well identified
by all methods, for instance, the maps labeled as (a) correspond
to the buddingtonite mineral, which appears in the image as an
anomaly, while the maps labeled as (d) correspond to a spatially
homogeneous area: the montmorillonite playa, located at the
lower rightmost corner of the scene.

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

In this paper, a novel endmember identification algorithm
(of minimum-volume enclosing type) has been presented and
analyzed. The main features of the algorithm are as follows:
1) It does not require pure samples to be present in the input
hyperspectral data; 2) it is based on iteratively removing pixels
from an enclosing simplex expected to be outside the ground-
truth simplex; and 3) it incorporates the fractional abundance
estimation as an internal step of the endmember searching pro-
cess itself. The performance of the algorithm has been evaluated
using synthetic and real hyperspectral scenes and compared
to other state-of-the-art endmember identification algorithms.
Analyses with synthetic data indicate that the described method
is effective in the characterization of constituents that never
appear in pure form in the scene. These experiments also reveal
that the method outperforms algorithms designed under the
pure pixel assumption and provides comparable results with
regard to other algorithms which do not assume the presence of
pure pixels in the scene. The analyses with real hyperspectral
data reveal similar conclusions and further indicate that the
described new method has the potential to outperform other
endmember identification algorithms with and without the pure

“http://speclab.cr.usgs.gov/spectral-lib.html
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pixel assumption in real analysis scenarios. This flexible and
adaptive behavior broadens the application domain with regard
to other methods which exhibit more restrictions than the
presented one, such as the need for pure instances of each end-
member to be present in the input data or the need to resort to an
external method to produce endmember fractional abundances
(the final product in spectral unmixing applications).

As with any new approach, there are some unresolved issues
that may present challenges over time. One of them is estimat-
ing the number P of interior pixels on which the final result is
based. In this paper, the value could be based on the result of
other methods. Although our experimental results indicate that
the method is not very sensitive to the setting of this parameter,
a more detailed investigation of automatic procedures in order
to set the optimal value for this parameter after observing the in-
put data properties is worth being conducted in future research.
Another issue to be addressed in future developments is the
computational complexity of the algorithm, which, in any event,
is similar to that exhibited by other endmember identification
methods of the same type, such as MVSA or MVES. Although
the experimental results reported in this paper are encouraging,
further experiments with additional hyperspectral scenes and
endmember identification methods should be conducted in fu-
ture research to fully substantiate these remarks.
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